
Open Journal of Statistics, 2015, 5, 140-142 
Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.52017  

How to cite this paper: Nanjundan, G. and Pasha, S. (2015) A Note on the Characterization of Zero-Inflated Poisson Model. 
Open Journal of Statistics, 5, 140-142. http://dx.doi.org/10.4236/ojs.2015.52017  

 
 

A Note on the Characterization of 
Zero-Inflated Poisson Model 
G. Nanjundan, Sadiq Pasha 
Department of Statistics, Bangalore University, Bangalore, India 
Email: nanzundan@gmail.com 
 
Received 14 March 2015; accepted 16 April 2015; published 20 April 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Zero-Inflated Poisson model has found a wide variety of applications in recent years in statistical 
analyses of count data, especially in count regression models. Zero-Inflated Poisson model is cha-
racterized in this paper through a linear differential equation satisfied by its probability generat-
ing function [1] [2]. 
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1. Introduction 
A random variable X is said to have a zero-inflated Poisson distribution if its probability mass function is given 
by 
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Thus, the distribution of X is a mixture of a distribution degenerate at zero and a Poisson distribution with mean 
θ . 
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2. Probability Generating Function 
The probability generating function (pgf) of X is given by 
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( ) ( ) ( )11 e sf s θϕ ϕ −= + − . 

3. Characterization 
Let X be a non-negative integer valued random variable with ( )0 0 1P X< = <  and the pgf ( )f s . Then, the 
distribution of X is zero-inflated Poisson if and only if ( ) ( )f s a bf s′= + , where 0 1a< < , b are constants and 

( )f s′  is the first derivative of ( )f s . 
Proof: 
1) Suppose that X has a zero-inflated Poisson distribution specified in (1.1). Then the pgf of X is given by 

( ) ( ) ( )11 e sf s θϕ ϕ −= + −  

On differentiation, we get 
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( ) ( )1f s f sϕ
θ

′= + . 

Hence ( )f s  satisfies the linear differential equation 

( ) ( ).f s a bf s′= +                                   (2) 

2) Suppose that the pgf ( )f s  of X satisfies 

( ) ( ).f s a bf s′= +  

If 0b = , then ( )f s a=  and in turn ( ) ( )0 1f f a= = . By the property of the pgf, ( )1 1f a= = . But 
( ) ( )0 0f P X a= = = , which is not possible because ( )0 1P X = < . 
Therefore 0b ≠ . 
3) The Linear Differential Equation 
The linear differential equation ( ) ( )f s a bf s′= +  is of the form 
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where P  and Q  are functions of x . 
Then its solution is given by 

d de e dP x P xy Q x c∫ ∫= +∫ , 

where c is an arbitrary constant. 
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Here 

( ) ( )bf s f s a′ − = −  

( ) ( )1 af s f s
b b
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Hence 1P
b

= − , aQ
b

= − . 

Therefore the solution of the Equation (2) is given by 

( ) es bf s a c= + . 

We now extract the probabilities ( ) kP X k p= = , 0,1, 2,k =   using the above solution. 

Since ( )f s  is a pgf, 
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Since ( )1 1f = , it is easy to see that ( ) 11 e bc a −= − , 
We have 
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with aϕ =  and 1 bθ = . 
Therefore X has the pgf specified in Equation (1).                                               
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