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We study𝐷
𝑎
-homothetic deformations of𝐾-contactmanifolds.Weprove that𝐷

𝑎
-homothetically deformed𝐾-contactmanifold is a

generalized Sasakian space form if it is conharmonically flat. Further, we find expressions for scalar curvature of𝐷
𝑎
-homothetically

deformed𝐾-contact manifolds.

1. Introduction

In 1968 Tanno [1] introduced the notion of 𝐷
𝑎
-homothetic

deformations. Carriazo and Mart́ın-Molina [2] studied 𝐷
𝑎
-

homothetic deformation of generalized (𝑘, 𝜇) space forms
and gave several examples for manifolds of dimension 3.
De and Ghosh [3] studied 𝐷

𝑎
-homothetic deformation of

almost normal contact metric manifolds and prove that
𝑄𝜙-𝜙𝑄 is invariant under such transformation. Bagewadi and
Venkatesha [4] studied concircularly semisymmetric trans-
Sasakianmanifolds andDe et al. [5] studied conharmonically
semisymmetric, conharmonically flat, 𝜉-conharmonically
flat, and conharmonically recurrent generalized Sasakian
space forms. Several authors [6–11] studied 𝐾-contact man-
ifolds and proved conditions for these manifolds to be of 𝜉-
conformally flat, 𝜙-conformally flat, quasi-conharmonically
flat, and 𝜉-conharmonically flat.Motivated by the above stud-
ies, in this paper we study𝐷

𝑎
-homothetic deformations of𝐾-

contact manifolds by considering conharmonic and projec-
tive curvature tensor.The paper is organized as follows. After
Preliminaries, we give a brief account of information of 𝐷

𝑎
-

homothetic deformation of𝐾-contactmanifolds in Section 3.
In Section 4, we study conharmonically flat, semisymmetric,
𝜙-conharmonically flat, quasi-conharmonically flat, and 𝜉-
conharmonically flat 𝐾-contact manifolds with respect to
𝐷
𝑎
-homothetic deformation. In the last section, we con-

sider Weyl projective curvature in 𝐾-contact manifolds with
respect to𝐷

𝑎
-homothetic deformation.

2. Preliminaries

Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional almost contact
metric manifold [12], consisting of a (1, 1) tensor field 𝜙,
a vector field 𝜉, a 1-form 𝜂, and Riemannian metric 𝑔.
Then

𝜙
2

= −𝐼 + 𝜂 ⊗ 𝜉, 𝜂 (𝜉) = 1,

𝜙𝜉 = 0, 𝜂 ∘ 𝜙 = 0,

(1)

𝑔 (𝜙𝑋, 𝜙𝑌) = 𝑔 (𝑋, 𝑌) − 𝜂 (𝑋) 𝜂 (𝑌) , (2)

𝑔 (𝑋, 𝜙𝑌) = −𝑔 (𝜙𝑋, 𝑌) ,

𝑔 (𝑋, 𝜙𝑋) = 0, 𝑔 (𝑋, 𝜉) = 𝜂 (𝑋) ,

(3)

for all 𝑋, 𝑌 ∈ 𝑇𝑀. If 𝜉 is a Killing vector field, then
𝑀 is called a 𝐾-contact Riemannian manifold [13]. A 𝐾-
contact Riemannian manifold is called Sasakian [12], if the
relation

(∇
𝑋
𝜙)𝑌 = 𝑔 (𝑋, 𝑌) 𝜉 − 𝜂 (𝑌)𝑋 (4)

holds, where ∇ denotes the operator of covariant differentia-
tion with respect to 𝑔.
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If 𝑀
2𝑛+1 is a 𝐾-contact Riemannian manifold, then

besides (1), (2), (3), and (4) the following relations hold [14]:

∇
𝑋
𝜉 = −𝜙𝑋, (5)

(∇
𝑋
𝜂) (𝑌) = −𝑔 (𝜙𝑋, 𝑌) , (6)

𝑆 (𝑋, 𝜉) = 𝑔 (𝑄𝑋, 𝜉) = 2𝑛𝜂 (𝑋) , (7)

𝜂 (𝑅 (𝑋, 𝑌)𝑍) = 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) , (8)

𝑅 (𝑋, 𝑌) 𝜉 = 𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌, (9)

𝑅 (𝜉,𝑋) 𝑌 = 𝑔 (𝑋, 𝑌) 𝜉 − 𝜂 (𝑌)𝑋, (10)

for any vector fields 𝑋 and 𝑌, where 𝑅 and 𝑆 denote, respec-
tively, the curvature tensor of type (1, 3) and the Ricci tensor
of type (0, 2).

Definition 1. A contact metric manifold 𝑀 is said to be 𝜂-
Einstein if 𝑆(𝑋, 𝑌) = 𝛼𝑔(𝑋, 𝑌) + 𝛽𝜂(𝑋)𝜂(𝑌), where 𝛼 and 𝛽

are smooth functions on𝑀.

3. 𝐷
𝑎
-Homothetic Deformation of

𝐾-Contact Manifolds

Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional almost contact
metricmanifold. A𝐷

𝑎
-homothetic deformation is defined by

𝜙 = 𝜙, 𝜉 =

1

𝑎

𝜉, 𝜂 = 𝑎𝜂,

𝑔 = 𝑎𝑔 + 𝑎 (𝑎 − 1) 𝜂 ⊗ 𝜂,

(11)

with 𝑎 being a positive constant [1].
It is clear that the (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is also an almost contact

metric manifold.
If (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is a𝐾-contactmanifold with Riemannian

connection ∇, the connection ∇ of the 𝐷
𝑎
-deformed 𝐾-

contact manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) can be calculated from ∇ and
𝑔. Using Koszul’s formula and (5), (6), and (11),∇ of 𝑔 is given
by

∇
𝑋
𝑌 = ∇

𝑋
𝑌 − 𝑎 (𝑎 − 1) [𝜂 (𝑌) 𝜙𝑋 + 𝜂 (𝑋) 𝜙𝑌] . (12)

Using (12), we obtain

(∇
𝑋
𝜙)𝑌 = (∇

𝑋
𝜙)𝑌 + (𝑎 − 1) 𝜂 (𝑌) 𝜙

2

𝑋. (13)

The curvature tensor 𝑅 of (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) is given by

𝑅 (𝑋, 𝑌)𝑍

= 𝑅 (𝑋, 𝑌)𝑍 − (𝑎 − 1)

× (𝑔 (𝜙𝑌, 𝑍) 𝜙𝑋 + 𝑔 (𝜙𝑍,𝑋) 𝜙𝑌 + 2𝑔 (𝜙𝑌,𝑋) 𝜙𝑍

+ [𝑔 (𝑋, 𝑍) 𝜉 − 𝜂 (𝑍)𝑋] 𝜂 (𝑌)

− [𝑔 (𝑌, 𝑍) 𝜉 − 𝜂 (𝑍) 𝑌] 𝜂 (𝑋)

+𝑎 [𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] 𝜂 (𝑍)) .

(14)

Using (9), (10), and (14), we have

𝑅 (𝑋, 𝑌) 𝜉 = (2 − 𝑎) [𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] ,

𝑅 (𝜉, 𝑌)𝑍 = [𝑔 (𝑌, 𝑍) 𝜉 − 𝜂 (𝑍) 𝑌]

− (𝑎 − 1) [𝜂 (𝑌) 𝜉 − 𝑌] 𝜂 (𝑍) ,

𝑅 (𝜉, 𝑌) 𝜉 =

(2 − 𝑎)

𝑎

[𝜂 (𝑌) 𝜉 − 𝑌] ,

𝜂 (𝑅 (𝑋, 𝑌)𝑍) = 𝑎
2

[𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌)] .

(15)

From (14), we get

𝑆 (𝑌, 𝑍)

= 𝑎𝑆 (𝑌, 𝑍) − 𝑎 (𝑎 − 1)

× ((2 − 𝑎) 𝑔 (𝑌, 𝑍) + [2𝑛 (𝑎 − 1) + 𝑎 − 2] 𝜂 (𝑌) 𝜂 (𝑍)) ,

(16)

where 𝑆 and 𝑆 are theRicci tensors of (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) and (𝑀, 𝜙,

𝜉, 𝜂, 𝑔), respectively.
It follows from (16) that

𝑆 (𝑌, 𝜉) = 2𝑛𝑎 (2 − 𝑎) 𝜂 (𝑌) , (17)

𝑆 (𝜙𝑌, 𝜙𝑍) = 𝑆 (𝑌, 𝑍) − 2𝑛𝑎
2

(2 − 𝑎) 𝜂 (𝑌) 𝜂 (𝑍) . (18)

Again contracting (16) over 𝑌, 𝑍, we get

𝑟 = 𝑎𝑟 − 2𝑛𝑎 (𝑎 − 1) , (19)

where 𝑟 and 𝑟 are the scalar curvatures of (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) and
(𝑀, 𝜙, 𝜉, 𝜂, 𝑔), respectively.

4. Conharmonic Curvature
Tensor in 𝐷

𝑎
-Homothetically Deformed

𝐾-Contact Manifolds

The conharmonic tensor of a 𝐷
𝑎
-homothetically deformed

𝐾-contact manifold is defined by [15]

𝐾 (𝑋, 𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 −

1

2𝑛 − 1

× [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌 + 𝑔 (𝑌, 𝑍)𝑄𝑋

−𝑔 (𝑋, 𝑍)𝑄𝑌] ,

(20)

for 𝑋, 𝑌, 𝑍 ∈ 𝑇𝑀, where 𝑅, 𝑆, and 𝑄 are the Riemannian
curvature tensor, Ricci tensor, and Ricci operator of (𝑀, 𝜙,

𝜉, 𝜂, 𝑔).

Definition 2. An almost contact metric manifold (𝑀, 𝜙, 𝜉,

𝜂, 𝑔) is said to be
(1) conharmonically flat if

𝐾 (𝑋, 𝑌)𝑍 = 0, (21)
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(2) conharmonically semisymmetric if

𝑅 ⋅ 𝐾 = 0, (22)

(3) 𝜙-conharmonically flat if

𝑔 (𝐾 (𝜙𝑋, 𝜙𝑌) 𝜙𝑍, 𝜙𝑊) = 0, (23)

(4) quasi-conharmonically flat if

𝑔 (𝐾 (𝑋, 𝑌)𝑍, 𝜙𝑊) = 0, (24)

(5) 𝜉-conharmonically flat if

𝐾 (𝑋, 𝑌) 𝜉 = 0, (25)

for all vector fields𝑋, 𝑌, and 𝑍.

Assume that 𝑀 is conharmonically flat 𝐾-contact mani-
fold with respect to𝐷

𝑎
-homothetic deformation. So, we have

𝐾(𝑋, 𝑌)𝑍 = 0.
Then from (20), we have

𝑅 (𝑋, 𝑌)𝑍 =

1

2𝑛 − 1

× [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌 + 𝑔 (𝑌, 𝑍)𝑄𝑋

−𝑔 (𝑋, 𝑍)𝑄𝑌] .

(26)

Setting 𝑍 = 𝜉, contracting (26) with 𝑊, and using (7), (9),
(14), and (16), we obtain

(2 − 𝑎) (2𝑛 − 1 − 2𝑛𝑎) [𝜂 (𝑌) 𝑔 (𝑋,𝑊) − 𝜂 (𝑋) 𝑔 (𝑌,𝑊)]

= 𝜂 (𝑌) 𝑆 (𝑋,𝑊) − 𝜂 (𝑋) 𝑆 (𝑌,𝑊) .

(27)

Taking𝑌 = 𝜉 in (27) and using (1), (7), and (16), it follows that

𝑆 (𝑋,𝑊) =

(2 − 𝑎) (2𝑛 − 1 − 2𝑛𝑎)

𝑎

𝑔 (𝑋,𝑊)

+

(2 − 𝑎) (4𝑛𝑎 − 2𝑛 + 1)

𝑎

𝜂 (𝑋) 𝜂 (𝑊) .

(28)

Thus,𝑀 is 𝜂-Einstein.
Using (28) in (26), we obtain

𝑅 (𝑋, 𝑌, 𝑍,𝑊)

=

2 (2 − 𝑎) (2𝑛 − 1 − 2𝑛𝑎)

𝑎 (2𝑛 − 1)

× [𝑔 (𝑌, 𝑍) 𝑔 (𝑋,𝑊) − 𝑔 (𝑋, 𝑍) 𝑔 (𝑌,𝑊)]

+

(2 − 𝑎) (4𝑛𝑎 − 2𝑛 + 1)

𝑎 (2𝑛 − 1)

× ([𝑔 (𝑋,𝑊) 𝜂 (𝑌) − 𝑔 (𝑌,𝑊) 𝜂 (𝑋)] 𝜂 (𝑍)

+ [𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌)] 𝜂 (𝑊)) .

(29)

From (29), we get

𝑅 (𝑋, 𝑌)𝑍 =

2 (2 − 𝑎) (2𝑛 − 1 − 2𝑛𝑎)

𝑎 (2𝑛 − 1)

× [𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌]

−

(2 − 𝑎) (4𝑛𝑎 − 2𝑛 + 1)

𝑎 (2𝑛 − 1)

× [𝜂 (𝑋) 𝜂 (𝑍) 𝑌 − 𝜂 (𝑌) 𝜂 (𝑍)𝑋

+𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉 − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉] .

(30)

Hence, it reduces to a generalized Sasakian space form with
𝑓
1
= 2(2 − 𝑎)(2𝑛 − 1 − 2𝑛𝑎)/𝑎(2𝑛 − 1), 𝑓

2
= 0, and 𝑓

3
= −(2 −

𝑎)(4𝑛𝑎 − 2𝑛 + 1)/𝑎(2𝑛 − 1). Thus, (30) leads to the following.

Theorem3. A conharmonically flat𝐾-contactmanifold admi-
tting 𝐷

𝑎
-homothetic deformation reduces to a generalized

Sasakian space form with associated functions 𝑓
1

= 2(2 −

𝑎)(2𝑛 − 1 − 2𝑛𝑎)/𝑎(2𝑛 − 1), 𝑓
2
= 0, and 𝑓

3
= −(2 − 𝑎)(4𝑛𝑎 −

2𝑛 + 1)/𝑎(2𝑛 − 1).

Let us now consider a conharmonically semisymmetric
𝐾-contact manifold admitting 𝐷

𝑎
-homothetic deformation.

Then the condition

𝑅 (𝑋, 𝑌) ⋅ 𝐾 = 0 (31)

holds on𝑀 for all vector fields𝑋, 𝑌.
From (8), (14), (17), and (20), we obtain

𝜂 (𝐾 (𝑋, 𝑌)𝑍)

= 𝑎
2

[𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌)] −

1

(2𝑛 − 1)

× [(𝑆 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑆 (𝑋, 𝑍) 𝜂 (𝑌))

+ 2𝑛𝑎 (2 − 𝑎) (𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌))] .

(32)

Setting 𝑍 = 𝜉, in (32), we get

𝜂 (𝐾 (𝑋, 𝑌) 𝜉) = 0. (33)

Again taking𝑋 = 𝜉 in (32) and using (17), we obtain

𝜂 (𝐾 (𝜉, 𝑌)𝑍) =

−1

2𝑛 − 1

𝑆 (𝑌, 𝑍) + [1 −

2𝑛 (2 − 𝑎)

2𝑛 − 1

] 𝑔 (𝑌, 𝑍)

+ [−1 +

4𝑛 (2 − 𝑎)

2𝑛 − 1

] 𝜂 (𝑍) 𝜂 (𝑌) .

(34)

Now, (21) yields

𝑅 (𝑋, 𝑌)𝐾 (𝑈,𝑉)𝑍 − 𝐾(𝑅 (𝑋, 𝑌)𝑈, 𝑉)𝑍

− 𝐾(𝑈, 𝑅 (𝑋, 𝑌)𝑉)𝑍 − 𝐾 (𝑈,𝑉) 𝑅 (𝑋, 𝑌)𝑍 = 0.

(35)
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Therefore,

𝑔 (𝑅 (𝜉, 𝑌)𝐾 (𝑈,𝑉)𝑍, 𝜉) − 𝑔 (𝐾 (𝑅 (𝜉, 𝑌)𝑈,𝑉)𝑍, 𝜉)

− 𝑔 (𝐾 (𝑈, 𝑅 (𝜉, 𝑌)𝑉)𝑍, 𝜉)

− 𝑔 (𝐾 (𝑈,𝑉) 𝑅 (𝜉, 𝑌)𝑍, 𝜉) = 0.

(36)

From this it follows that

− 𝐾 (𝑈,𝑉, 𝑍, 𝑌) + 𝜂 (𝐾 (𝑈,𝑉)𝑍) 𝜂 (𝑌)

+ [𝑔 (𝑌, 𝑈) − (𝑎 − 1) 𝜂 (𝑈) 𝜂 (𝑌)] 𝜂 (𝐾 (𝜉, 𝑉)𝑍)

+ (𝑎 − 2) 𝜂 (𝑈) 𝜂 (𝐾 (𝑌, 𝑉)𝑍)

+ [𝑔 (𝑌, 𝑉) − (𝑎 − 1) 𝜂 (𝑉) 𝜂 (𝑌)] 𝜂 (𝐾 (𝑈, 𝜉) 𝑍)

+ (𝑎 − 2) 𝜂 (𝑉) 𝜂 (𝐾 (𝑈, 𝑌)𝑍)

+ [𝑔 (𝑌, 𝑍) − (𝑎 − 1) 𝜂 (𝑍) 𝜂 (𝑌)] 𝜂 (𝐾 (𝑈,𝑉) 𝜉)

+ (𝑎 − 2) 𝜂 (𝑍) 𝜂 (𝐾 (𝑈,𝑉) 𝑌) = 0,

(37)

where

𝐾 (𝑈,𝑉, 𝑍, 𝑌) = 𝑔 (𝐾 (𝑈,𝑉)𝑍, 𝑌) . (38)

Taking 𝑌 = 𝑈 in (37) and making use of (32) and (33), we
obtain

− 𝐾 (𝑈,𝑉, 𝑍, 𝑈) + (𝑎 − 1) 𝜂 (𝑈) 𝜂 (𝐾 (𝑈,𝑉)𝑍)

+ [𝑔 (𝑈,𝑈) − (𝑎 − 1) 𝜂 (𝑈) 𝜂 (𝑈)] 𝜂 (𝐾 (𝜉, 𝑉)𝑍)

+ [𝑔 (𝑈, 𝑉) − (𝑎 − 1) 𝜂 (𝑈) 𝜂 (𝑉)] 𝜂 (𝐾 (𝑈, 𝜉) 𝑍)

+ (𝑎 − 2) 𝜂 (𝑍) 𝜂 (𝐾 (𝑈,𝑉)𝑈) = 0.

(39)

If {𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑛
, 𝜉} is a local orthonormal basis of vector fields

in𝑀, then, from (39), we get

2𝑛

∑

𝑖=1

𝐾(𝑒
𝑖
, 𝑉, 𝑍, 𝑒

𝑖
)

= (𝑎 − 1)

2𝑛

∑

𝑖=1

𝜂 (𝑒
𝑖
) 𝜂 (𝐾 (𝑒

𝑖
, 𝑉)𝑍)

+

2𝑛

∑

𝑖=1

[𝑔 (𝑒
𝑖
, 𝑒
𝑖
) − (𝑎 − 1) 𝜂 (𝑒

𝑖
) 𝜂 (𝑒
𝑖
)] 𝜂 (𝐾 (𝜉, 𝑉)𝑍)

+

2𝑛

∑

𝑖=1

[𝑔 (𝑒
𝑖
, 𝑉) − (𝑎 − 1) 𝜂 (𝑒

𝑖
) 𝜂 (𝑉)] 𝜂 (𝐾 (𝑒

𝑖
, 𝜉) 𝑍)

+ (𝑎 − 2)

2𝑛

∑

𝑖=1

𝜂 (𝐾 (𝑒
𝑖
, 𝑉) 𝑒
𝑖
) 𝜂 (𝑍) .

(40)

From (20), it follows that

2𝑛

∑

𝑖=1

𝐾(𝑒
𝑖
, 𝑉, 𝑍, 𝑒

𝑖
) =

1

2𝑛 − 1

𝑆 (𝑉, 𝑍)

− [1 −

𝑟 + 2𝑛 (2 − 𝑎)

2𝑛 − 1

] 𝑔 (𝑉, 𝑍)

+ [1 −

4𝑛 (2 − 𝑎)

2𝑛 − 1

] 𝜂 (𝑉) 𝜂 (𝑍) ,

2𝑛

∑

𝑖=1

𝜂 (𝑒
𝑖
) 𝜂 (𝐾 (𝑒

𝑖
, 𝑉)𝑍)

=

1 − 𝑎
2

𝑎
2
(2𝑛 − 1)

𝑆 (𝑉, 𝑍)

+ [

𝑎
2

− 1

𝑎
2

+

2𝑛 (2 − 𝑎) (1 − 𝑎
2

)

𝑎
2
(2𝑛 − 1)

] 𝑔 (𝑉, 𝑍)

+

1 − 𝑎
2

𝑎
2

𝜂 (𝑉) 𝜂 (𝑍) ,

2𝑛

∑

𝑖=1

[𝑔 (𝑒
𝑖
, 𝑉) − (𝑎 − 1) 𝜂 (𝑒

𝑖
) 𝜂 (𝑉)] 𝜂 (𝐾 (𝑒

𝑖
, 𝜉) 𝑍)

=

1

2𝑛 − 1

𝑆 (𝑉, 𝑍) + [−𝑎
2

+

2𝑛𝑎
2

(2 − 𝑎)

2𝑛 − 1

] 𝑔 (𝑉, 𝑍)

+ [𝑎
2

−

2𝑛𝑎 (2 − 𝑎) (𝑎 + 1) (𝑎
2

− 𝑎 + 1)

2𝑛 − 1

] 𝜂 (𝑉) 𝜂 (𝑍) ,

2𝑛

∑

𝑖=1

𝜂 (𝐾 (𝑒
𝑖
, 𝑉)𝑍) 𝜂 (𝑍) = [

𝑟

2𝑛 − 1

+ 4𝑛 (1 − 𝑎)] 𝜂 (𝑉) 𝜂 (𝑍) .

(41)

Using (41) in (40), we obtain

(2𝑛 + 2 − 𝑎) 𝜂 (𝐾 (𝜉, 𝑉)𝑍)

=

(𝑎 − 1) (𝑎
2

− 1)

𝑎
2
(2𝑛 − 1)

𝑆 (𝑉, 𝑍)

+ [

𝑟

2𝑛 − 1

+

2𝑛𝑎
2

− 𝑎 (1 + 4𝑛) + 1 + 2𝑛

𝑎
2
(2𝑛 − 1)

] 𝑔 (𝑉, 𝑍)

+ [

(𝑎 − 2) 𝑟

𝑎
2
(2𝑛 − 1)

+

𝑝

𝑎
2
(2𝑛 − 1)

] 𝜂 (𝑉) 𝜂 (𝑍) ,

(42)

where

𝑝 = − 2𝑛𝑎
5

+ 2𝑛𝑎
4

+ 10𝑛𝑎
3

+ 𝑎
2

(8𝑛
2

− 18𝑛)

+ 𝑎 (14𝑛 − 24𝑛
2

+ 1) + 16𝑛
2

− 6𝑛 − 1.

(43)
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In view of (34), (42) yields

𝑆 (𝑉, 𝑍) = −

1

𝑎
2
(2𝑛 + 1) + 1 − 𝑎

[𝛼𝑔 (𝑉, 𝑍) + 𝛽𝜂 (𝑉) 𝜂 (𝑍)] ,

(44)

where
𝛼 = 𝑟𝑎

2

+ 2𝑛𝑎
4

+ 𝑎
3

(−4𝑛
2

− 6𝑛 − 1)

+ 𝑎
2

(4𝑛
2

+ 8𝑛 + 2) + 𝑎 (−1 − 4𝑛) + 1 + 2𝑛,

𝛽 = (𝑎 − 2) 𝑟 − 2𝑛𝑎
5

− 2𝑛𝑎
4

+ 𝑎
3

(8𝑛
2

+ 24𝑛 + 1)

+ 𝑎
2

(−4𝑛
2

− 32𝑛 − 2) + 𝑎 (14𝑛 − 24𝑛
2

+ 1)

+ 16𝑛
2

− 6𝑛 − 1.

(45)

Thus,𝑀 is 𝜂-Einstein.
If {𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑛
, 𝜉} is a local orthonormal basis of vector

fields in𝑀, then, from (44), we get

𝑟 = (−2𝑛𝑎
5

+ 4𝑛
2

𝑎
4

+ 𝑎
3

𝑙 + 𝑎
2

𝑚

+ 𝑎 (−324𝑛
2

+ 8𝑛) + 20𝑛
2

+ 2𝑛)

× (1 − 2𝑎
2

(2𝑛 + 1))

−1

,

(46)

where
𝑙 = −8𝑛

3

− 8𝑛
2

+ 16𝑛,

𝑚 = 8𝑛
3

+ 16𝑛
2

− 20𝑛.

(47)

So, we can state the following.

Theorem 4. In a (2𝑛 + 1)-dimensional conharmonically
semisymmetric 𝐾-contact manifold admitting 𝐷

𝑎
-homothetic

deformation, scalar curvature 𝑟 is given by (46).

Analogous to the definition of 𝜙-conharmonically flat𝐾-
contact manifolds [8], we define 𝜙-conharmonically flat 𝐾-
contact manifolds with respect to 𝐷

𝑎
-homothetic deforma-

tion. Let us assume that 𝑀 is a 𝜙-conharmonically flat 𝐾-
contact manifold with respect to 𝐷

𝑎
-homothetic deforma-

tion. It can be easily seen that

𝑔 (𝐾 (𝜙𝑋, 𝜙𝑌) 𝜙𝑍, 𝜙𝑊) = 0, (48)

where𝑋, 𝑌, 𝑍,𝑊 ∈ 𝑇𝑀.
Using (20), (48) yields

𝑔 (𝑅 (𝜙𝑋, 𝜙𝑌) 𝜙𝑍, 𝜙𝑊)

=

1

2𝑛 − 1

(𝑆 (𝜙𝑌, 𝜙𝑍) 𝑔 (𝜙𝑋, 𝜙𝑊)

− 𝑆 (𝜙𝑋, 𝜙𝑍) 𝑔 (𝜙𝑌, 𝜙𝑊)

+ 𝑆 (𝜙𝑋, 𝜙𝑊)𝑔 (𝜙𝑌, 𝜙𝑍)

−𝑆 (𝜙𝑌, 𝜙𝑊)𝑔 (𝜙𝑋, 𝜙𝑍)) ,

(49)

for all𝑋, 𝑌, 𝑍,𝑊 ∈ 𝑇𝑀.

If {𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑛
, 𝜉} is a local orthonormal basis of vec-

tor fields in 𝑀, then {𝜙𝑒
1
, 𝜙𝑒
2
, . . . , 𝜙𝑒

2𝑛
, 𝜉} is also a local

orthonormal basis. So, using (1), (6), (14), (16), and (18), it can
be easily verified that

2𝑛

∑

𝑖=1

𝑅 (𝜙𝑒
𝑖
, 𝜙𝑌, 𝜙𝑍, 𝜙𝑒

𝑖
) = 𝑆 (𝑌, 𝑍) − 𝑎𝑔 (𝑌, 𝑍)

+ [𝑎 − 2𝑛𝑎 (2 − 𝑎)] 𝜂 (𝑌) 𝜂 (𝑍) ,

2𝑛

∑

𝑖=1

𝑔 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) = 2𝑛,

2𝑛

∑

𝑖=1

𝑆 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) = 𝑟 − 2𝑛 (2 − 𝑎) ,

2𝑛

∑

𝑖=1

𝑆 (𝜙𝑌, 𝜙𝑒
𝑖
) 𝑔 (𝜙𝑒

𝑖
, 𝜙𝑍) = 𝑆 (𝜙𝑌, 𝜙𝑍) .

(50)

For a local orthonormal basis {𝜙𝑒
1
, 𝜙𝑒
2
, . . . , 𝜙𝑒

2𝑛
, 𝜉} of vector

fields in𝑀, putting𝑋 = 𝑊 = 𝑒
𝑖
in (49) and summing upwith

respect to 𝑖 = 1, 2, . . . , 2𝑛 + 1, we have

2𝑛

∑

𝑖=1

𝑔 (𝑅 (𝜙𝑒
𝑖
, 𝜙𝑌) 𝜙𝑍, 𝜙𝑒

𝑖
)

=

1

2𝑛 − 1

2𝑛

∑

𝑖=1

(𝑆 (𝜙𝑌, 𝜙𝑍) 𝑔 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
)

− 𝑆 (𝜙𝑒
𝑖
, 𝜙𝑍) 𝑔 (𝜙𝑌, 𝜙𝑒

𝑖
)

+ 𝑆 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) 𝑔 (𝜙𝑌, 𝜙𝑍)

−𝑆 (𝜙𝑌, 𝜙𝑒
𝑖
) 𝑔 (𝜙𝑒

𝑖
, 𝜙𝑍)) ,

(51)

for all 𝑌, 𝑍 ∈ 𝑇𝑀. The previous equation, in view of (50),
becomes

𝑆 (𝜙𝑌, 𝜙𝑍) = [𝑎 (2𝑛 − 1) + 𝑎 (𝑟 − 2𝑛 (2 − 𝑎))]

× [𝑔 (𝑌, 𝑍) − 𝜂 (𝑌) 𝜂 (𝑍)] ,

(52)

for all 𝑌, 𝑍 ∈ 𝑇𝑀.
Using (2) and (18), (52) reduces to

𝑆 (𝑌, 𝑍) = [𝑟 + 2𝑛 − 1 − 2𝑛 (2 − 𝑎)] 𝑔 (𝑌, 𝑍)

+ [2𝑛 (2 − 𝑎) (𝑎
2

+ 2𝑎 − 1)

− (2𝑎 − 1) (𝑟 + 2𝑛 − 1) ] 𝜂 (𝑌) 𝜂 (𝑍) .

(53)

Setting 𝑌 = 𝑍 = 𝑒
𝑖
in (53), summing up with respect to 𝑖 =

1, 2, . . . , 2𝑛 + 1, and using (19), we obtain

𝑟 =

−2𝑛𝑎
3

+ 𝑎 (4𝑛
2

+ 8𝑛 + 2) − 4𝑛
2

− 6𝑛 − 2

2𝑎 − 2𝑛 − 1

.
(54)
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Replacing 𝑋 by 𝜙𝑋 and 𝑌 by 𝜙𝑌 in (53) and using (54), we
obtain 𝑆(𝜙𝑋, 𝜙𝑌) = (𝑟 + 2𝑛 − 1 − 2𝑛(2 − 𝑎))𝑔(𝜙𝑋, 𝜙𝑌) for all
𝑋,𝑌 ∈ 𝑇𝑀.

Now using the previous expression in (49), we obtain

𝑅 (𝜙𝑋, 𝜙𝑌, 𝜙𝑍, 𝜙𝑊)

=

2 (𝑟 + 2𝑛 − 1 − 2𝑛 (2 − 𝑎))

2𝑛 − 1

× (𝑔 (𝜙𝑌, 𝜙𝑍) 𝑔 (𝜙𝑋, 𝜙𝑊) − 𝑔 (𝜙𝑋, 𝜙𝑍) 𝑔 (𝜙𝑌, 𝜙𝑊)) ,

(55)

for all𝑋, 𝑌, 𝑍,𝑊 ∈ 𝑇𝑀.
The converse is obvious. Thus we have the following.

Theorem 5. A (2𝑛 + 1)-dimensional𝐾-contact manifold is 𝜙-
conharmonically flat with respect to 𝐷

𝑎
-homothetic deforma-

tion if and only if𝑀 satisfies (55).

From (20), we obtain

𝑔 (𝐾 (𝑋, 𝑌)𝑍, 𝜙𝑊)

= 𝑅 (𝑋, 𝑌, 𝑍, 𝜙𝑊) −

1

2𝑛 − 1

× (𝑆 (𝑌, 𝑍) 𝑔 (𝑋, 𝜙𝑊) − 𝑆 (𝑋, 𝑍) 𝑔 (𝑌, 𝜙𝑊)

+ 𝑆 (𝑋, 𝜙𝑊)𝑔 (𝑌, 𝑍) − 𝑆 (𝑌, 𝜙𝑊)𝑔 (𝑋, 𝜙𝑍)) ,

(56)

for all𝑋, 𝑌, 𝑍,𝑊 ∈ 𝑇𝑀.
Suppose that 𝑀 is quasi-conharmonically flat 𝐾-contact

manifold with respect to𝐷
𝑎
-homothetic deformation; that is,

𝑔 (𝐾 (𝑋, 𝑌)𝑍, 𝜙𝑊) = 0. (57)

Then (56) reduces to
𝑅 (𝑋, 𝑌, 𝑍, 𝜙𝑊)

=

1

2𝑛 − 1

(𝑆 (𝑌, 𝑍) 𝑔 (𝑋, 𝜙𝑊) − 𝑆 (𝑋, 𝑍) 𝑔 (𝑌, 𝜙𝑊)

+𝑆 (𝑋, 𝜙𝑊)𝑔 (𝑌, 𝑍) − 𝑆 (𝑌, 𝜙𝑊)𝑔 (𝑋, 𝑍)) .

(58)

For a local orthonormal basis {𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑛
, 𝜉} of vector fields

in 𝑀, putting 𝑋 = 𝜙𝑒
𝑖
and 𝑊 = 𝑒

𝑖
in (58) and summing up

with respect to 𝑖 = 1, 2, . . . , 2𝑛 + 1, we obtain
2𝑛

∑

𝑖=1

𝑅 (𝜙𝑒
𝑖
, 𝑌, 𝑍, 𝜙𝑒

𝑖
)

=

1

2𝑛 − 1

2𝑛

∑

𝑖=1

(𝑆 (𝑌, 𝑍) 𝑔 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
)

− 𝑆 (𝜙𝑒
𝑖
, 𝑍) 𝑔 (𝑌, 𝜙𝑒

𝑖
)

+ 𝑆 (𝜙𝑒
𝑖
, 𝜙𝑒
𝑖
) 𝑔 (𝑌, 𝑍)

− 𝑆 (𝑌, 𝜙𝑒
𝑖
) 𝑔 (𝜙𝑒

𝑖
, 𝑍)) .

(59)

Using (2), (10), (14), and (17) in (59), we obtain

𝑆 (𝑌, 𝑍) = [𝑟 + 2𝑛 − 1 − 2𝑛 (2 − 𝑎)] 𝑔 (𝑌, 𝑍)

− (2𝑛 − 1) 𝜂 (𝑌) 𝜂 (𝑍) .

(60)

Taking 𝑍 = 𝜉 and using (1) and (17), we obtain

𝑟 = 2𝑛 (2 − 𝑎) (𝑎 + 1) , (61)

and using (61) in (19), we obtain

𝑟 =

4𝑛

𝑎

. (62)

Hence, we can state the following.

Theorem6. Let𝑀 be a𝐾-contactmanifold. Suppose that𝑀 is
obtained from𝑀 by𝐷

𝑎
-homothetic deformation. If𝑀 is quasi-

conharmonically flat, then the scalar curvatures 𝑟 and 𝑟 of 𝑀
and𝑀 are, respectively, given by (61) and (62).

Suppose that 𝑀 is 𝜉-conharmonically flat. Then from
(20), we have

𝑅 (𝑋, 𝑌) 𝜉 =

1

2𝑛 − 1

× (2𝑛𝑎 (2 − 𝑎) [𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌]

+ [𝑄𝑋𝜂 (𝑌) − 𝑄𝑌𝜂 (𝑋)]) .

(63)

Contracting the above equation with respect to𝑊, we obtain

𝑅 (𝑋, 𝑌, 𝜉,𝑊)

=

1

2𝑛 − 1

(2𝑛𝑎 (2 − 𝑎) [𝜂 (𝑌) 𝑔 (𝑋,𝑊) − 𝜂 (𝑋) 𝑔 (𝑌,𝑊)]

+ [𝑆 (𝑋,𝑊) 𝜂 (𝑌) − 𝑆 (𝑌,𝑊) 𝜂 (𝑋)]) ,

(64)

for all𝑋, 𝑌, 𝑍,𝑊 ∈ 𝑇𝑀.
For a local orthonormal basis {𝑒

1
, 𝑒
2
, . . . , 𝑒

2𝑛
, 𝜉} of vector

fields in𝑀, using (64), we obtain

2𝑛

∑

𝑖=1

𝑅 (𝑒
𝑖
, 𝑌, 𝜉, 𝑒

𝑖
)

=

1

2𝑛 − 1

2𝑛

∑

𝑖=1

(2𝑛𝑎 (2 − 𝑎) [𝜂 (𝑌) 𝑔 (𝑒
𝑖
, 𝑒
𝑖
) − 𝜂 (𝑒

𝑖
) 𝑔 (𝑌, 𝑒

𝑖
)]

+ [𝑆 (𝑒
𝑖
, 𝑒
𝑖
) 𝜂 (𝑌) − 𝑆 (𝑌, 𝑒

𝑖
) 𝜂 (𝑒
𝑖
)]) .

(65)

Therefore,

2𝑛𝑆 (𝑌, 𝜉) = [4𝑛
2

(2 − 𝑎) + 𝑟] 𝜂 (𝑌) . (66)

Using (17) in (66), we obtain

𝑟 = 0. (67)
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Taking 𝑌 = 𝜉 in (64) and using (10), (14), and (17), we obtain

𝑆 (𝑋,𝑊) = [2𝑛𝑎 − 4𝑛 − 1] 𝑔 (𝑋,𝑊)

+ [6𝑛 − 4𝑛𝑎 + 1] 𝜂 (𝑋) 𝜂 (𝑊) .

(68)

From thiswe can conclude that𝑀 is 𝜂-Einstein.Thus,we have
the following.

Theorem 7. A 𝐷
𝑎
-Homothetically deformed 𝜉-conharmoni-

cally flat 𝐾-contact manifold is 𝜂-Einstein and its scalar cur-
vature vanishes.

5. 𝐷
𝑎
-Homothetic Deformation of 𝜉-Weyl

Projectively Flat 𝐾-Contact Manifolds

Suppose that, in a (2𝑛 + 1)-dimensional 𝐾-contact manifold
𝑀 with 𝐷

𝑎
-homothetic deformation, the Ricci tensor van-

ishes; that is,

𝑆 (𝑋, 𝑌) = 0. (69)

Then from (16), we have

𝑆 (𝑌, 𝑍) = (𝑎 − 1) (3𝑔 (𝜙𝑌, 𝜙𝑍) − (1 + 𝑎) 𝑔 (𝑌, 𝑍)

+ [2𝑛 (𝑎 − 1) + 1 + 𝑎] 𝜂 (𝑌) 𝜂 (𝑍)) .

(70)

TheWeyl projective curvature tensor of𝑀 is given by [16]

𝑊(𝑋,𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 −

1

2𝑛

[𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌] .

(71)

If𝑊(𝑋,𝑌)𝜉 = 0, then (71) reduces to

𝑅 (𝑋, 𝑌) 𝜉 =

1

2𝑛

[𝑆 (𝑌, 𝜉)𝑋 − 𝑆 (𝑋, 𝜉) 𝑌] . (72)

Using (70) in (72), we obtain

𝑅 (𝑋, 𝑌) 𝜉 = (𝑎 − 1)
2

[𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] . (73)

The Weyl projective curvature tensor of 𝑀 with respect to
𝐷
𝑎
-homothetic deformation is given by

𝑊(𝑋,𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 −

1

2𝑛

[𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌] .

(74)

Now using (14) and (69) in (74), we get

𝑊(𝑋,𝑌) 𝜉 = 𝑅 (𝑋, 𝑌) 𝜉 −

(𝑎 − 1)
2

𝑎

[𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] .

(75)

From (73), the (75) reduces to

𝑊(𝑋,𝑌) 𝜉 = 0. (76)

Thus, we can state the following.

Theorem 8. Let 𝑀 be obtained from a 𝐾-contact manifold
𝑀 by 𝐷

𝑎
-homothetic deformation. If the Ricci tensor of 𝑀

vanishes, then it is 𝜉-Weyl projectively flat.
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