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Abstract 
In this paper, we study the problem of meromorphic functions that share one small function of 
differential polynomial with their derivatives and prove one theorem. The theorem improves the 
results of Jin-Dong Li and Guang-Xin Huang [1]. 
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1. Introduction and Results 
Let   denote the complex plane and f be a nonconstant meromorphic function on  . We assume the reader 
is familiar with the standard notion used in the Nevanlinna value distribution theory such as ( ) ( ), , , ,T r f m r f  

( ),N r f  (see, e.g., [2] [3]), and ( ),S r f  denotes any quantity that satisfies the condition  
( ) ( )( ), ,S r f o T r f=  as r →∞  outside of a possible exceptional set of finite linear measure. A meromorphic 

function a is called a small function with respect to f, provided that ( ) ( ), ,T r a S r f= . 
Let f and g be two nonconstant meromorphic functions. Let a be a small function of f and .g  We say that f, 

g share a counting multiplicities (CM) if ,f a g a− −  have the same zeros with the same multiplicities and we 
say that f, g share a ignoring multiplicities (IM) if we do not consider the multiplicities. In addition, we say that f  

and g share ∞ CM, if 1 1,
f g

 share 0 CM, and we say that f and g share ∞ IM, if 1 1,
f g

 share 0 IM. Suppose 

that f and g share a IM. Throughout this paper, we denote by 1,
1LN r

f
 
 − 

 the reduced counting function of 
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those common a-points of f and g in z r< , where the multiplicity f each a-point of f is greater than that of the 

corresponding a-point of g, and denote by 11
1,N r

f a
 
 − 

 the counting function for common simple 1-point of 

both f and g, and (2 1,
1EN r

f
 
 − 

 the counting function of those 1-points of f and g where 2p q= ≥ . In the 

same way, we can define (2
11

1 1, , ,
1 1EN r N r

g g
   
   − −   

 and 1, .
1LN r

g
 
 − 

 If f and g share 1 IM, it is easy to 

see that  

(2
11

1 1 1 1 1 1, , , , , ,
1 1 1 1 1 1L L EN r N r N r N r N r N r

f f f g g g
           

= + + + =           − − − − − −           
 

In addition, we need the following definitions: 
Definition 1.1. Let f be a non-constant meromorphic function, and let p be a positive integer and 

{ }.a∈ ∞  Then by )
1, ,pN r

f a
 
 − 

 we denote the counting function of those a-points of f (counted with 

proper multiplicities) whose multiplicities are not greater that p, by )
1,pN r

f a
 
 − 

 we denote the correspond-

ing reduced counting function (ignoring multiplicities). By (
1, ,pN r

f a
 
 − 

 we denote the counting function of 

those a-points of f (counted with proper multiplicities) whose multiplicities are not less than ,p  by 

(
1,pN r

f a
 
 − 

 we denote the corresponding reduced counting function (ignoring multiplicities,) where and 

what follows, ) ) ( (
1 1 1 1, , , , , , ,p p p pN r N r N r N r

f a f a f a f a
       
       − − − −       

 mean ( ) ( )) ), , , ,p pN r f N r f  

( )( , ,pN r f  ( )( , ,pN r f  respectively, if a = ∞ . 
Definition 1.2. Let f be a non-constant meromorphic function, and let a be any value in the extended complex 

plane, and let k be an arbitrary nonnegative integer. We define  

( ) ( )

1,
, 1 limsup ,

,

k

k
r

N r
f a

a f
T r f

δ
→∞

 
 − = −  

where 

(2 (
1 1 1 1, , , ,k kN r N r N r N r

f a f a f a f a
       

= + + +       − − − −       


 

Remark 1.1. From the above inequalities, we have  

( ) ( ) ( ) ( )1 10 , , , , 1.k ka f a f a f a fδ δ δ−≤ ≤ ≤ ≤ Θ ≤  

Definition 1.3. Let f be a non-constant meromorphic function, and let a be any value in the extended complex 
plane, and let k be an arbitrary nonnegative integer. We define  

( ) ( )

)

)

1,
, 1

,

k

k r

N r
f a

a f N
T r f→∞

 
 − Θ = −  

Remark 1.2. From the above inequality, we have  

( ) ( ) ( )) 1)0 , , , 1.k ka f a f a f−≤ Θ ≤ Θ ≤ Θ ≤  
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Definition 1.4. (see [4]). Let k be a nonnegative integer or infinity. For a C∈  we denote by ( ),kE a f  the 
set of all a-points of f, where an a-point of multiplicity m is counted m times if m k≤  and 1k +  times if 
m k> . If ( ) ( ), ,k kE a f E a g= , we say that f, g share the value a with weight k.  

We write f, g share ( ),a k  to mean that f, g share the value a with weight k; clearly if f, g share ( ),a k , then f, 
g share ( ),a p  for all integers p with 0 p k≤ ≤ . Also, we note that f, g share a value a IM or CM if and only 
if they share ( ),0a  or ( ),a ∞ , respectively. 

R. Bruck [5] first considered the uniqueness problems of an entire function sharing one value with its deriva-
tive and proved the following result. 

Theorem A. Let f be a non-constant entire function satisfying ( )1, ,N r S r f
f

 
= ′ 

. If f and f ′  share the 

value 1 CM, then 1
1

f c
f
′ −

≡
−

 for some nonzero constant c. 

Bruck [5] further posed the following conjecture. 
Conjecture 1.1. Let f be a non-constant entire function ( )1 fρ  be the first iterated order of f. If ( )1 fρ  is not 

a positive integer or infinite, f and f ′  share the value 1 CM, then 1
1

f c
f
′ −

≡
−

 for some nonzero constant.  

Yang [6] proved that the conjecture is true if f is an entire function of finite order. Yu [7] considered the 
problem of an entire or meromorphic function sharing one small function with its derivative and proved the fol-
lowing two theorems. 

Theorem B. Let f be a non-constant entire function and ( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. 

If f a−  and ( )kf a−  share 0 CM and ( ) 30,
4

fδ > , then ( )kf f≡ . 

Theorem C. Let f be a non-constant non-entire meromorphic function and ( ) ( )0,a a z≡ ≡ ∞/  be a mero-
morphic small function. If 

1) f and a have no common poles. 
2) f a−  and ( )kf a−  share 0 CM. 
3) ( ) ( ) ( )4 0, 2 8 , 19 2 ,f k f kδ + + Θ ∞ > +  

then ( )kf f≡  where k is a positive integer. 
In the same paper, Yu [7] posed the following open questions. 
1) Can a CM shared be replaced by an IM share value? 

2) Can the condition ( ) 30,
4

fδ >  of theorem B be further relaxed? 

3) Can the condition 3) in theorem C be further relaxed? 
4) Can in general the condition 1) of theorem C be dropped? 
In 2004, Liu and Gu [8] improved theorem B and obtained the following results. 
Theorem D. Let f be a non-constant entire function ( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. If 

f a−  and ( )kf a−  share 0 CM and ( ) 10, ,
2

fδ >  then ( )kf f≡ . 

Lahiri and Sarkar [9] gave some affirmative answers to the first three questions improving some restrictions 
on the zeros and poles of a. They obtained the following results. 

Theorem E. Let f be a non-constant meromorphic function, k be a positive integer, and ( ) ( )0,a a z≡ ≡ ∞/  be 
a meromorphic small function. If 

1) a has no zero (pole) which is also a zero (pole) of f or ( )kf  with the same multiplicity. 
2) f a−  and ( )kf a−  share ( )0,2  
3) ( ) ( ) ( )22 0, 4 , 5k f k f kδ + + + Θ ∞ > +  then ( )kf f≡ . 
In 2005, Zhang [10] improved the above results and proved the following theorems. 
Theorem F. Let f be a non-constant meromorphic function, ( ) ( )1 , 0k l≥ ≥  be integers. Also let  

( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. Suppose that f a−  and ( )kf a−  share ( )0, l . If 
2l ≥  and  
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( ) ( ) ( )23 , 2 0, 4kk f f kδ ++ Θ ∞ + > +                             (1) 

or 1l =  and  

( ) ( ) ( )24 , 3 0, 6kk f f kδ ++ Θ ∞ + > +                             (2) 

or 0l =  and  

( ) ( ) ( )26 2 , 5 0, 2 10kk f f kδ ++ Θ ∞ + > +                            (3) 

then ( ) .kf f≡  
In 2015, Jin-Dong Li and Guang-Xiu Huang proved the following Theorem. 
Theorem G. Let f be a non-constant meromorphic function, ( ) ( )1 , 0k l≥ ≥  be integers. Also let  

( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. Suppose that f a−  and ( )kf a−  share ( )0, l . If 
2l ≥  and  

( ) ( ) ( ) ( )2 23 , 0, 0, 4kk f f f kδ δ ++ Θ ∞ + + > +                         (4) 

1l =  and  

( ) ( ) ( ) ( )2 2
7 1, 0, 0, 0, 5
2 2 kk f f f f kδ δ +

 + Θ ∞ + Θ + + > + 
 

                   (5) 

or 0l =  and  

( ) ( ) ( ) ( ) ( ) ( )2 1 26 2 , 2 , 0, 0, 0, 2 10k kk f f f f f kδ δ δ+ ++ Θ ∞ + Θ ∞ + + + > +              (6) 

then ( ) .kf f≡  
In this paper, we pay our attention to the uniqueness of more generalized form of a function namely ( )nf P f  

and ( ) ( )knf P f    sharing a small function.  

Theorem 1.1. Let f be a non-constant meromorphic function, ( ) ( )1 , 0k l≥ ≥  be integers. Also let  

( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. Suppose that ( )nf P f a−  and ( ) ( )knf P f a  −   share 

( )0, l . If  
2l ≥  and  

( ) ( ) ( ) ( ) ( )3 , 4 0, 2 0, 2 7k f k f m f k m nδ+ Θ ∞ + + Θ + > + + −                   (7) 

1l =  and  

( ) ( ) ( )7 9, 0, 2 0, 2 8
2 2

k f k f m f k m nδ   + Θ ∞ + + Θ + > + + −   
   

                 (8) 

or 0l =  and  

( ) ( ) ( ) ( ) ( )2 6 , 2 7 0, 3 0, 4 13 2k f k f m f k m nδ+ Θ ∞ + + Θ + > + + −                 (9) 

then ( ) ( ) ( )
.

kn nf P f f P f ≡    

Corollary 1.2. Let f be a non-constant meromorphic function, ( ) ( ) ( ), 1 , 1 , 0n m k l≥ ≥ ≥  be integers. Also let  

( ) ( )0,a a z≡ ≡ ∞/  be a meromorphic small function. Suppose that ( )nf P f a−  and ( ) ( )knf P f a  −   share 

( )0, l . If  

2l ≥  and ( ) 10,
3

fδ >  

or 1l =  and ( ) 110,
13

fδ >  
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or 0l =  and ( ) ( ) ( ) ( )4 10, 2 0, 2 , 4 0,
5 5

f f f fδ δ> − Θ + Θ ∞ −    

then ( ) ( ) ( )
.

kn nf P f f P f ≡    

2. Lemmas 
Lemma 2.1 (see [1]). Let f be a non-constant meromorphic function, ,k p  be two positive integers, then  

( ) ( ) ( )1 1, , , ,p p kk
N r N r kN r f S r f

ff +

   
≤ + +       

 

clearly ( ) ( )1
1 1, ,

k k
N r N r

f f

   
=      

   
 

Lemma 2.2 (see [1]). Let  

2 2
1 1

F F G GH
F F G G
′′ ′ ′′ ′   = − − −   ′ ′− −   

                             (10) 

where F and G are two non constant meromorphic functions. If F and G share 1 IM and 0H ≡/ , then  

( ) ( ) ( )11
1, , , ,

1
N r N r H S r F S r G

F
  ≤ + + − 

 

Lemma 2.3 (see [11]). Let f be a non-constant meromorphic function and let  

( ) 0

0

n k
kk

m j
jj

a f
R f

b f
=

=

= ∑
∑

 

be an irreducible rational function in f with constant coefficients ka  and jb  where 0na ≠  and 0mb ≠ . 
Then  

( )( ) ( ) ( ), , , ,T r R f dT r f S r f= +  

where { }max , .d n m=  

3. Proof of the Theorem 

Proof of Theorem 1.1. Let ( )nf P f
F

a
=  and 

( ) ( )

.
knf P f

G
a

  =  Then F and G share ( )1, l , except the ze-

ros and poles of ( )a z . Let H be defined by (10). 
Case 1. Let 0.H ≡/  
By our assumptions, H have poles only at zeros of F ′  and G′  and poles of F and G, and those 1-points of 

F and G whose multiplicities are distinct from the multiplicities of corresponding 1-points of G and F respec-
tively. Thus, we deduce from (10) that  

( ) ( )(2 (2 0

0

1 1 1, , , , ,

1 1 1, , ,
1 1L L

N r H N r N r N r H N r
H G F

N r N r N r
G F G

     ≤ + + +     ′     
     + + +     ′ − −     

                  (11) 

here 0
1,N r
F

 
 ′ 

 is the counting function which only counts those points such that 0F ′ =  but ( )1 0F F − ≠ . 

Because F and G share 1 IM, it is easy to see that  
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(2
11

1 1 1 1 1 1, , , , , ,
1 1 1 1 1 1L L EN r N r N r N r N r N r

F F F G G G
           = + + + =           − − − − − −           

       (12) 

By the second fundamental theorem, we see that  

( ) ( ) ( ) ( )

( ) ( )0 0

1 1 1, , , , , , ,
1

1 1 1, , , , ,
1

T r F T r G N r F N r G N r N r N r
F G F

N r N r N r S r F S r G
G F G

     + ≤ + + + +     −     
     + − − + +     ′ ′−     

          (13) 

Using Lemma 2.2 and (11), (12) and (13), we get 

( ) ( ) ( )

( ) ( )

(2
2 2 11

1 1 1 1, , 3 , , , , 2 ,
1 1

1 13 , 3 , , ,
1 1

E

L L

T r F T r G N r F N r N r N r N r
F G F G

N r N r S r F S r G
F G

       + ≤ + + + +       − −       
   + + + +   − −   

       (14) 

We discuss the following three sub cases. 
Sub case 1.1. 2l ≥ . Obviously.  

( ) ( ) ( ) ( )

(2
11

1 1 1 1, 2 , 3 , 3 ,
1 1 1 1

1, , , , ,
1

E L LN r N r N r N r
F G F G

N r S r F T r G S r F S r G
G

       + + +       − − − −       
 ≤ + ≤ + + − 

                (15) 

Combining (14) and (15), we get  

( ) ( ) ( )2 2
1 1, 3 , , , ,T r F N r F N r N r S r F
F G

   ≤ + + +   
   

                    (16) 

that is  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 2
1 1, 3 , , , ,n

n kn
n m T r f N r f P f N r N r S r f

f P f f P f

    + ≤ + + +          

 

By Lemma 2.1 for 2p = , we get  

( ) ( ) ( ) ( ) ( ) ( )1 1, 4 , 3 , 2 , ,n m T r f k N r k N r f mN r S r f
f f

   
+ ≤ + + + + +   

   
 

So 

( ) ( ) ( ) ( ) ( )3 , 4 0, 2 0, 2 7k f k f m f k m nδ+ Θ ∞ + + Θ + ≤ + + −  

which contradicts with (7).  
Sub case 1.2. 1l = . It is easy to see that  

( ) ( ) ( ) ( )

(2
11

1 1 1 1, 2 , 2 , 3 ,
1 1 1 1

1, , , , ,
1

E L LN r N r N r N r
F G F G

N r S r F T r G S r F S r G
G

       + + +       − − − −       
 ≤ + ≤ + + − 

                (17) 

and  

( )

( ) ( )

1 1 1, , , ,
1 2 2

1 1, , ,
2

L
F FN r N r N r S r F

F F F

N r N r F S r F
F

′     ≤ ≤ +     ′−     
  ≤ + +    

                     (18) 
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Combining (14) and (17) and (18), we get  

( ) ( ) ( )2 2
1 1 7 1 1, , , , , ,

2 2
T r F N r N r N r F N r S r f

F G F
     ≤ + + + +     
     

               (19) 

that is  

( ) ( )
( ) ( ) ( ) ( )( )

( )
( )

2 2
1 1 7, , , ,

2

1 1, ,
2

n
n kn

n

n m T r f N r N r N r f P f
f P f f P f

N r S r f
f P f

    + ≤ + +          
 

+ +  
 

 

By Lemma 2.1 for 2p = , we get  

( ) ( ) ( ) ( )7 9 1 1, , , 2 , ,
2 2

n m T r f k N r f k N r mN r S r f
f f

      + ≤ + + + + +      
       

 

So 

( ) ( ) ( )7 9, 0, 2 0, 2 8
2 2

k f k f m f k m nδ   + Θ ∞ + + Θ + ≤ + + −   
   

 

which contradicts with (8).  
Sub case 1.3. 0l = . It is easy to see that  

( ) ( ) ( ) ( )

(2
11

1 1 1 1, 2 , , 2 ,
1 1 1 1

1, , , , ,
1

E L LN r N r N r N r
F G F G

N r S r F T r G S r F S r G
G

       + + +       − − − −       
 ≤ + ≤ + + − 

                 (20) 

( ) ( ) ( )

1 1 1, , , ,
1 1 1

1, , , , ,

L
FN r N r N r N r

F F F F
FN r S r F N r N r F S r F
F F

       ≤ − ≤       ′− − −       
′   ≤ + ≤ + +   

   

               (21) 

Similarly we have  

( ) ( )

( ) ( )1

1 1, , , ,
1

1, , ,

LN r N r N r G S r F
G G

N r N r F S r F
G

   ≤ + +   −   
 ≤ + + 
 

                        (22) 

Combining (14) and (20)-(22), we get  

( ) ( ) ( )2 2 1
1 1 1 1, , , 2 , 6 , , ,T r F N r N r N r N r F N r S r F
F G F G

       ≤ + + + + +       
       

          (23) 

that is 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1

1 1 1, , , 2 ,

1 16 , , ,

n nkn

n kn

n m T r f N r N r N r
f P f f P ff P f

N r N r S r f
f P f f P f

     + ≤ + +              
    + + +          
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By Lemma 2.1 for 2p =  and for 1p =  respectively, we get  

( ) ( ) ( ) ( ) ( )1 1, 2 7 , 2 6 , 3 ,n m T r f k N r k N r f mN r
f f

   
+ ≤ + + + +   

   
 

So  

( ) ( ) ( ) ( )( )2 6 , 2 7 0, 2 0, 4 13 2k f k f m f k m nδ+ Θ ∞ + + Θ + ≤ + + −  

which contradicts with (9).  
Case 2. Let 0.H ≡  

on integration we get from (10)  

1 ,
1 1

C D
F G

≡ +
− −

                                   (24) 

where C, D are constants and 0c ≠ . we will prove that 0D = . 
Sub case 2.1. Suppose 0D ≠ . If 0z  be a pole of f with multiplicity p such that ( )0 0, ,a z ≠ ∞  then it is a 

pole of G with multiplicity ( )n m p k+ +  respectively. This contradicts (24). It follows that  
( ) ( ), ,N r f S r f=  and hence ( ), 1.fΘ ∞ =  Also it is clear that ( ) ( ) ( ), , , .N r f N r G S r f= =  From (7)-(9) 

we know respectively  

( ) ( ) ( )4 0, 2 0, 4k f m f k m nδ+ Θ + > + + −                          (25) 

( ) ( )9 90, 2 0,
2 2

k f m f k m nδ + Θ + > + + − 
 

                        (26) 

and  

( ) ( ) ( )2 7 0, 2 0, 2 7k f m f k m nδ+ Θ + > + + −                        (27) 

Since 0D ≠ , from (24) we get  

( ) ( )1, , , ,
11

N r N r G S r f
F

D

 
 
  = =
  − +    

 

Suppose 1D ≠ − . 
Using the second fundamental theorem for F we get  

( ) ( ) ( )1 1 1, , , , , ,
11

T r F N r F N r N r N r S r f
F FF

D

 
     ≤ + + ≤ +        − +    

 

i.e.,  

( ) ( ) ( ) ( ) ( ) ( )1, , , , , .n m T r F N r S r f n m T r f S r f
F

 + ≤ + ≤ + + 
 

 

So, we have ( ) ( ) 1, ,n m T r f N r
f

 
+ =  

 
 and so ( ) ( )0, 1 .f n mΘ = − +  which contradicts (25)-(27).  

If 1,D = −  then  

1
1 1

F C
F G

≡
− −

                                    (28) 

and from which we know ( ) ( )1, , ,N r N r G S r f
F

  = = 
 

 and hence, ( )1, , .N r S r f
f

 
= 

 
 If 1,C ≠ −  
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We know from (28) that 

( ) ( ) ( )1, , ,
1

N r N r F S r f
G C

 
= =  − + 

 

So from Lemma 2.1 and the second fundamental theorem we get  

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 1, , , , ,
1

1, ,

kn

kn

T r f P f N r G N r N r S r f
G G C

N r S r f
f P f

    ≤ + + +     − +   
 
 ≤ +     

 

( ) ( ) ( ) ( ) ( )1 1, 1 , , , , ,n m T r f k N r mN r kN r f S r f
f f

   
+ ≤ + + + +   

   
 

which is absurd. So 1C = −  and we get from (28) that 1,FG ≡  which implies 
( ) ( )

( )
2

.
kn

n n m

f P f a
f P f f +

     =
 
  

 

In view of the first fundamental theorem, we get from above  

( ) ( ) ( ) ( ) ( )1, , , , , ,n m T r f k N r f N r S r f S r f
f

  
+ ≤ + + =  

  
 

which is impossible. 
Sub case 2.2. 0D =  and so from (24) we get  

( )1 1 .G C F− ≡ −  

If 1,C ≠  then  

11G C F
C

 ≡ − + 
 

 

and 
1 1, , .

11
N r N r

G F
C

 
    =      − −    

 

By the second fundamental theorem and Lemma 2.1 for 1p =  and Lemma 2.3 we have  

( ) ( ) ( ) ( )

( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

, , ,

1 1, , , ,
11

1 1, , , ,

1 1 1 1, , , 1 , , , ,

12 ,

n
n kn

n m T r f S r f T r F

N r F N r r S r G
F F

C

N r f P f N r N r S r f
f P f f P f

N r f N r mN r k N r mN r kN r f S r f
f f f f

k N r
f

+ + =

 
    ≤ + + +      − −    

    ≤ + + +          
       

≤ + + + + + + +       
       


≤ + ( ) ( ) ( )11 , 2 , , .k N r f mN r S r f

f
  
+ + + +   
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Hence  

( ) ( ) ( ) ( ) ( )1 , 2 0, 2 0, 2 3k f k f m f k m nδ+ Θ ∞ + + Θ + ≤ + + −  

So, it follows that  

( ) ( ) ( ) ( ) ( )3 , 4 0, 2 0, 2 7k f k f m f k m nδ+ Θ ∞ + + Θ + ≤ + + −  

( ) ( ) ( )7 9, 0, 3 0, 2 8 ,
2 2

k f k f m f k m nδ   + Θ ∞ + + Θ + ≤ + + −   
   

 

and  

( ) ( ) ( ) ( ) ( )2 6 , 2 7 0, 3 0, 4 13 .k f k f m f k m nδ+ Θ ∞ + + Θ + ≤ + + −  

This contradicts (7)-(9). Hence 1C =  and so ,F G≡  that is ( ) ( ) ( )
.

kn nf P f f P f ≡    This completes the 
proof of the theorem. 
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