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Abstract. In this paper, we study the uniqueness question of meromorphic functions
whose certain differential polynomials having two pseudo common values, and obtain
some results which improve and generalize the related results due to S.S. Bhoosnurmath
and R.S. Davanal [1], P. Sahoo [5], J. Xia and Y. Xu [8] and C. Wu, C. Mu and J. Li
[6].
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1. Introduction

In this paper, by meromorphic function we will always mean meromorphic func-
tion in complex plane. We adopt the standard notations of Nevanlinna theory
of meromorphic function as explained in [2], [9] and [10]. It will be convenient
to let E denote any set of positive real numbers of finite linear measure, not nec-
essarily the same at each occurrence. For a non-constant meromorphic function
ℎ, we denote by T (r, ℎ) the Nevanlinna characteristic of ℎ and by S(r, ℎ) any
quantity satisfying S(r, ℎ) = o{T (r, ℎ)}, as r → ∞ and r ∕ �E.

Let f and g be two non-constant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM, provided
that f and g have the same a-points with the same multiplicities. We say that
f and g share the value a IM, provided that f and g have the same a-points
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ignoring multiplicities (see [10]). We say that a is a small function of f , if a is a
meromorphic function satisfying T (r, a) = S(r, f) (see [10]). Let l be a positive
integer or ∞. Next we denote by El)(a; f) the set of those a-points of f in the
complex plane, where each point is of multiplicity ≤ l and counted according
to its multiplicity. By El)(a; f) we denote the reduced form of El)(a; f). If

El)(a; f) = El)(a; g), we say that a is a l-order pseudo common value of f and

g (see [3]). Obviously, if E∞)(a; f) = E∞)(a; g)
(

E∞)(a; f) = E∞)(a; g)resp.
)

,
then f and g share a CM (IM, resp.).

Recall that S.S. Bhoosmurmath and R.S. Davanal [2]in 2007 proved the fol-
lowing two theorems. Also, it is noted that the problem of meromphic function
having three weighted values and some examples of best possible of the above
results were given in [4].

Theorem 1.1. [2] Let f and g be two non-constant meromorphic functions, and
let n, k be two positive integers with n > 3k+8. If [fn](k) and [gn](k) share 1 CM,
then either f(z) = c1e

cz, g(z) = c2e
−cz where c1, c2 and c are three constants

satisfying (−1)k(c1c2)
n(nc)2k = 1 or f = tg for a constant t such that tn = 1.

Theorem 1.2. [2] Let f and g be two non-constant meromorphic functions satis-
fying Θ(∞, f) > 3

n+1 and let n, k be two positive integers with n > 3k + 13. If

[fn(f − 1)](k) and [gn(g − 1)](k) share 1 CM, then f ≡ g.

In 2010, P. Sahoo [5] proved the following theorem.

Theorem 1.3. [5] Let f and g be two transcendental meromorphic functions, and
let n ≥ 1, k ≥ 1 and m ≥ 0 be three positive integers. Let [fn(f − 1)m](k) and
[gn(g − 1)m](k) share 1 IM. Then one of the following holds:

(i) when m = 0, if f ∕= ∞, g ∕= ∞ and n > 9k + 14, then either f(z) =
c1e

cz and g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)
n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1;

(ii) when m = 1, n > 9k + 20 and Θ(∞, f) > 2
n
, then either [fn(f −

1)m](k)[gn(g − 1)m](k) ≡ 1 or f ≡ g;

(iii) when m ≥ 2 and n > 9k + 4m + 16, then either [fn(f − 1)m](k)[gn(g −
1)m](k) ≡ 1 or f ≡ g or f and g satisfy the algebraic equation R(f, g) =
0, where R(x, y) = xn(x − 1)m − yn(y − 1)m. The possibility [fn(f −
1)m](k)[gn(g − 1)m](k) ≡ 1 does not arise for k = 1.

In 2011, J.Xia and Y. Xu [8] proved the following three theorems.

Theorem 1.4. [8] Let n, k and m be three positive integers, and f and g be
two non-constant meromorphic functions such that [fn(f − 1)m](k) and [gn(g −
1)m](k) share 1 CM. If m > k and n > 3k + m + 8, and Θ(∞, f) > 2m(m +
n)/

[

(n+m)2 − 4k2
]

or Θ(∞, g) > 2m(m + n)/
[

(n+m)2 − 4k2
]

, then either



Uniqueness of Meromorphic Functions 943

f ≡ g, or f and g satisfy the algebraic equation R(f, g) = 0, where R(x, y) =
xn(x− 1)m − yn(y − 1)m.

Theorem 1.5. [8] Let n, k and m be three positive integers, and f and g be two
non-constant meromorphic functions such that [fn(f−1)m](k) and [gn(g−1)m](k)

share 1 CM. If m ≤ k and n > 3k +m+ 8, and

Θ(∞, f) + Θ[ k

m
])(1, f) > 1 + 2m(m+ n)/

[

(n+m)2 − 4k2
]

or
Θ(∞, g) + Θ[ k

m
])(1, g) > 1 + 2m(m+ n)/

[

(n+m)2 − 4k2
]

then the conclusion of Theorem 1.4 holds.

Theorem 1.6. [8] Let n, k and m be three positive integers such that n > 3k+m+
8, and f and g be two non-constant meromorphic functions such that [fn(f −
1)m](k) and [gn(g − 1)m](k) share 1 CM. If f and g have the same poles (not
necessary with the same multiplicity) then the conclusion of Theorem 1.4 holds.

In 2011, C. Wu, C.Mu and J.Li [6] proved the following theorem.

Theorem 1.7. [6] Let f and g be two non-constant meromorphic functions, and
let n ≥ 1, k ≥ 1 and m ≥ 0 be three positive integers. Let [fn(f − 1)m](k) and
[gn(g − 1)m](k) share 1 IM. Then one of the following holds:

(i) when m = 0 and n > 9k+14, then either f(z) = c1e
cz and g(z) = c2e

−cz,
where c1, c2 and c are constants satisfying (−1)k(c1c2)

n(nc)2k = 1 or
f ≡ tg for a constant t with tn = 1;

(ii) when m = 1, n > 9k + 18 and Θ(∞, f) > 2
n
, then f ≡ g;

(iii) when m ≥ 2 and n > 9k + 4m + 14, then f ≡ g or f and g satisfy the
algebraic equation R(x, y) = xn(x− 1)m − yn(y − 1)m = 0.

One may ask the following question which is the motivation of the paper: Is
it possible to relax the nature of the sharing value in Theorem 1.7 ?

In this paper, we give positive answers to the above question by establishing
the following two theorems, which improves Theorems 1.1–1.7.

Theorem 1.8. Let f and g be two non-constant meromorphic functions, and let
n ≥ 1, k ≥ 1 and m ≥ 0 be three positive integers. If El)(1; [f

n(f − 1)m](k)) =

El)(1; [g
n(g−1)m](k)) and E1)(1; [f

n(f−1)m](k)) = E1)(1; [g
n(g−1)m](k)), where

l ≥ 3 is an integer. Then one of the following holds:

(i) If m = 0, if f ∕= ∞, g ∕= ∞ and n > 13k+28
3 , then either f(z) =

c1e
cz and g(z) = c2e

−cz, where c1, c2 and c are constants satisfying
(−1)k(c1c2)

n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1;
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(ii) If m = 1, n > 13k+41
3 and Θ(∞, f) > 2

n
, then f ≡ g;

(iii) If m ≥ 2 and n > 13k+5m+36
3 , then either f ≡ g or f and g satisfy the

algebraic equation R(x, y) = xn(x− 1)m − yn(y − 1)m = 0.

Theorem 1.9. Let f and g be two non-constant meromorphic functions, and let
n ≥ k + 1, k ≥ 1 and m ≥ k + 1 be three positive integers. If El)(1; [f

n(f −

1)m](k)) = El)(1; [g
n(g − 1)m](k)) and E2)(1; [f

n(f − 1)m](k)) = E2)(1; [g
n(g −

1)m](k)), where l ≥ 4 is an integer. Then one of the following holds:

(i) If m = 0, if f ∕= ∞, g ∕= ∞ and n > 3k+8
3 , then either f(z) =

c1e
cz and g(z) = c2e

−cz, where c1, c2 and c are constants satisfying
(−1)k(c1c2)

n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1;

(ii) If m = 1, n > 3k+9
3 and Θ(∞, f) > 2

n
, then f ≡ g;

(iii) If m ≥ 2 and n > 3k−m+10
3 , then either f ≡ g or f and g satisfy the

algebraic equation R(x, y) = xn(x− 1)m − yn(y − 1)m = 0.

Remark 1.10. Theorem 1.8 and Theorem 1.9 extend Theorem 1.3 and Theorem
1.7.

Remark 1.11. Theorem 1.9 extends Theorem 1.1 for m = 0 and Theorem 1.2 for
m = 1.

Remark 1.12. Theorem 1.9 extends Theorem 1.4, Theorem 1.5 and Theorem
1.6.

2. Lemmas

In this section, we present some lemmas which are needed in the sequel.

Lemma 2.1. [9] Let f be a nonconstant meromorphic function and P (f) = a0 +
a1f+ ...+anf

n,where a0, a1,...,an are constants and an ∕= 0. Then T (r, P (f)) =
nT (r, f) + S(r, f).

Lemma 2.2. [7] Let El)(1; [F
∗](k)) = El)(1; [G

∗](k)), E1)(1; [F
∗](k)) = E1)(1;

[G∗](k)) and H∗ ∕= 0, where l ≥ 3. Then

T (r, F ∗) ≤

(

8

3
+

2

3
k

)

N(r,∞;F ∗) +
5

3
N(r, 0;F ∗) +

2

3
Nk(r, 0;F

∗)

+ Nk+1(r, 0;F
∗) + (k + 2)N(r,∞;G∗) +N(r, 0;G∗)

+ Nk+1(r, 0;G
∗) + S(r, F ∗) + S(r,G∗)
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where

H∗ ≡

[

(F ∗)(k+2)

(F ∗)(k+1)
−

2(F ∗)(k+1)

(F ∗)(k) − 1

]

−

[

(G∗)(k+2)

(G∗)(k+1)
−

2(G∗)(k+1)

(G∗)(k) − 1

]

.

Lemma 2.3. [7] Let El)(1; [F
∗](k)) = El)(1; [G

∗](k)), E1)(1; [F
∗](k)) = E1)(1;

[G∗](k)), where l ≥ 3. If

Δ1l =

(

8

3
+

2

3
k

)

Θ(∞, F ∗) + (k + 2)Θ(∞, G∗) +
5

3
Θ(0, F ∗) + Θ(0, G∗)

+ �k+1(0, F
∗) + �k+1(0, G

∗) +
2

3
�k(0, F

∗)

>
5

3
k + 9,

then either [F ∗](k)[G∗](k) ≡ 1 or F ∗ ≡ G∗.

Lemma 2.4. [7] Let El)(1; [F
∗](k)) = El)(1; [G

∗](k)), E2)(1; [F
∗](k)) = E2)(1;

[G∗](k)) and H∗ ∕= 0, where l ≥ 4. Then

T (r, F ∗) + T (r,G∗) ≤ (k + 4)N(r,∞;F ∗) + 2N(r, 0;F ∗)

+ 2Nk+1(r, 0;F
∗) + (k + 4)N(r,∞;G∗) + 2N(r, 0;G∗)

+ 2Nk+1(r, 0;G
∗) + S(r, F ∗) + S(r,G∗)

where H∗ is defined as Lemma 2.2.

Lemma 2.5. [7] Let El)(1; [F
∗](k)) = El)(1; [G

∗](k)), E2)(1; [F
∗](k)) = E2)(1;

[G∗](k)), where l ≥ 4. If

Δ2l =
(1

2
k + 2

)

[Θ(∞, F ∗) + Θ(∞, G∗)] + Θ(0, F ∗) + Θ(0, G∗)

+ �k+1(0, F
∗) + �k+1(0, G

∗)

>k + 5,

then either [F ∗](k)[G∗](k) ≡ 1 or F ∗ ≡ G∗.

Lemma 2.6. Let f and g be two non-constant meromorphic functions, and let n ≥
k+1, k ≥ 1 and m ≥ k+1 be a integers. Then [fn(f−1)m](k)[gn(g−1)m](k) ∕≡ 1.

Proof. Let
[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1. (2.1)

Let z0 be a zero of f of order p0. From (2.1) we get z0 is a pole of g. Suppose that
z0 is a pole of g of order q0. Again by (2.1), we obtain np0 − k = nq0 +mq0 + k,
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i.e., n(p0 − q0) = mq0 + 2k. which implies that q0 ≥ n−2k
m

and so we have

p0 ≥ n+m−2k
m

.

Let z1 be a zero of f − 1 of order p1, then z1 is a zero of [fn(f − 1)m](k)

of order p1 − k. Therefore from (2.1) we obtain p1 − k = nq1 + mq1 + k i.e.,
p1 ≥ n+m+ 2k.

Let z2 be a zero of f ′ of order p2 that is not a zero of f(f−1), then from (2.1)
z2 is a pole of g of order q2. Again by (2.1) we get p2 − (k− 1) = nq2 +mq2 + k
i.e., p2 ≥ n+m+ 2k − 1.

In the same manner as above, we have similar results for the zeros of [gn(g−
1)m](k).

On other hand, suppose that z3 is a pole of f . From (2.1), we get that z3 is
the zero of [gn(g − 1)m](k).

Thus

N(r, f) ≤N

(

r,
1

g

)

+N

(

r,
1

g − 1

)

+N

(

r,
1

g′

)

≤
1

p0
N

(

r,
1

g

)

+
1

p1
N

(

r,
1

g − 1

)

+
1

p2
N

(

r,
1

g′

)

≤

[

m

n+m− 2k
+

1

n+m+ 2k
+

2

n+m+ 2k − 1

]

T (r, g)

+ S(r, g).

(2.2)

By second fundamental theorem and equation (2.2), we have

T (r, f) ≤N

(

r,
1

f

)

+N

(

r,
1

f − 1

)

+N(r, f)

≤
m

n+m− 2k
N

(

r,
1

f

)

+
1

n+m+ 2k
N

(

r,
1

f − 1

)

+

[

m

n+m− 2k
+

1

n+m+ 2k
+

2

n+m+ 2k − 1

]

T (r, g)

+ S(r, g) + S(r, f).

T (r, f) ≤

[

m

n+m− 2k
+

1

n+m+ 2k

]

T (r, f)

+

[

m

n+m− 2k
+

1

n+m+ 2k
+

2

n+m+ 2k − 1

]

T (r, g)

+ S(r, g) + S(r, f).

(2.3)

Similarly, we have

T (r, g) ≤

[

m

n+m− 2k
+

1

n+m+ 2k

]

T (r, g)

+

[

m

n+m− 2k
+

1

n+m+ 2k
+

2

n+m+ 2k − 1

]

T (r, f)

+ S(r, g) + S(r, f).

(2.4)
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Adding (2.3) and (2.4) we get

T (r, f) + T (r, g)

≤

[

2m

n+m− 2k
+

2

n+m+ 2k
+

2

n+m+ 2k − 1

]

{T (r, f) + T (r, g)}

+ S(r, g) + S(r, f).

which is a contradiction. Thus Lemma proved.

3. Proof of the Theorem

Proof of Theorem 1.8. Let F ∗ = fn(f − 1)m, G∗ = gn(g − 1)m.

By Lemma 2.1, we get

Θ(0, F ∗) = 1− lim sup
r→∞

N(r, 0;F ∗)

T (r, F ∗)
≥

n+m−m∗ − 1

n+m
(3.1)

where m∗ = {0 if m=0
1 if m≥1

Similarly

Θ(0, G∗) ≥
n+m−m∗ − 1

n+m
(3.2)

Θ(∞, F ∗) = 1− lim sup
r→∞

N(r,∞;F ∗)

T (r, F ∗)
≥

n+m− 1

n+m
(3.3)

Similarly

Θ(∞, G∗) ≥
n+m− 1

n+m
(3.4)

�k+1(0, F
∗) = 1− lim sup

r→∞

Nk+1(r, 0;F
∗)

T (r, F )
≥

n− k − 1

n+m
(3.5)

Similarly

�k+1(0, G
∗) ≥ 1−

n− k − 1

n+m
, �k(0, F

∗) ≥
n− k

n+m
, �k(0, G

∗) ≥
n− k

n+m
(3.6)

From the assumptions of Theorem 1.8, we have El)(1; [f
n(f − 1)m](k)) = El)(1;

[gn(g−1)m](k)) and E1)(1; [f
n(f−1)m](k)) = E1)(1; [g

n(g−1)m](k)), where l ≥ 3.

From (3.1)-(3.6) and Lemma 2.3, we have

Δ1l ≥

(

14

3
+

5

3
k

)

n+m− 1

n+m
+

8

3

n+m−m∗ − 1

n+m
+

2

3

n− k

n+m
+ 2

n− k − 1

n+m
.

It is easily verified that if n > 13k+5m+8m∗+28
3 , then Δ1l >

5
3k + 9. Since

13k + 5m+ 8m∗ + 28

3
=

13k + 28

3
if m = 0

=
13 + 41

3
if m = 1

=
13k + 5m+ 36

3
if m ≥ 2
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by Lemma 2.3, we have F ∗ ≡ G∗ or (F ∗)(k)(G∗)(k) ≡ 1. If (F ∗)(k)(G∗)(k) ≡ 1,
i.e.,

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1

then by Lemma 2.6 we can get a contradiction. Hence, we deduce that F ∗ ≡ G∗,
i.e.,

fn(f − 1)m ≡ gn(g − 1)m. (3.7)

Now we consider following three cases.

Case(i) Let m = 0. Then from (3.7) we get f ≡ tg for a constant t such that
tn = 1

Case (ii) Let m = 1 then from (3.7) we have

fn(f − 1) ≡ gn(g − 1). (3.8)

Suppose f ∕≡ g. Let ℎ = f

g
be a constant. Then from (3.8) it follows that ℎ ∕= 1,

ℎn ∕= 1, ℎn+1 ∕= 1 and g = 1−ℎn

1−ℎn+1 = constant, a contradiction. So we suppose
that ℎ is not a constant. Since f ∕≡ g, we have ℎ ∕≡ 1. From (3.8) we obtain g =
1−ℎn

1−ℎn+1 and f =
(

1−ℎn

1−ℎn+1

)

ℎ. Hence it follows that T (r, f) = nT (r, ℎ) + S(r, f).

Again by second fundamental theorem of Nevanlinna, we have N(r,∞; f) =
∑n

j=1 N(r, �j ;ℎ) ≥ (n − 2)T (r, ℎ) + S(r, f), where �j(∕= 1)(j = 1, 2, ..., n) are

distinct roots of the equation ℎn+1 = 1. So we obtain

Θ(∞, f) = 1− lim sup
r→∞

N(r,∞; f)

T (r, f)
≤

2

n

which contradicts the assumption Θ(∞, f) > 2
n
. Thus f ≡ g.

Case(iii) Let m ≥ 2. Then from (3.7) we obtain

fn[fm + ...+ (−1)iCm
m−if

m−i + ...+ (−1)m]

=gn[gm + ...+ (−1)iCm
m−ig

m−i + ...+ (−1)m].
(3.9)

Let ℎ = f
g
. If h is a constant, then substituting f = gℎ in (3.9) we obtain

gn+m(ℎn+m−1)+...+(−1)iCm
m−ig

n+m−i(ℎn+m−i−1)+...+(−1)mgn(ℎn−1) = 0,

which imply ℎ = 1. Hence f ≡ g. If ℎ is not a constant, then from (3.9) we
can say that f and g satisfy the algebraic equation R(f, g) = 0, where R(x, y) =
xn(x− 1)m − yn(y − 1)m. ■

Proof of Theorem 1.9. From the condition of Theorem 1.9, we have

El)(1; [f
n(f −1)m](k)) = El)(1; [g

n(g−1)m](k)) and E2)(1; [f
n(f −1)m](k)) =

E2)(1; [g
n(g − 1)m](k)), where l ≥ 4.

From (3.1)-(3.6) we have

Δ2l ≥ (k + 4)
n+m− 1

n+m
+ 2

n+m−m∗ − 1

n+m
+ 2

n− k − 1

n+m
.
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It is easily verified that if n > 3k−m+2m∗+8
3 , then Δ2l > k + 5. Since

3k −m+ 2m∗ + 8

3
=

3k + 8

3
if m = 0

=
3k + 9

3
if m = 1

=
3k −m+ 10

3
if m ≥ 2

by Lemma 2.5, we have F ∗ ≡ G∗ or (F ∗)(k)(G∗)(k) ≡ 1. If (F ∗)(k)(G∗)(k) ≡ 1,
i.e.,

[fn(f − 1)m](k)[gn(g − 1)m](k) ≡ 1

then by Lemma 2.6 we can get a contradiction. Hence, we deduce that F ∗ ≡ G∗,
i.e.,

fn(f − 1)m ≡ gn(g − 1)m.

Proceeding as in the proof of Theorem 1.8, we can get the conclusion of Theorem
1.9. ■
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