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A theoretical analysis of thermo-convective instability in a densely packed porous medium is carried

out when the boundary temperatures vary with time in a sinusoidal manner. By performing a weakly

non-linear stability analysis, the Nusselt number is obtained as a function of amplitude of convection

which is governed by a non-autonomous Ginzburg–Landau equation derived for the stationary mode of

convection. The paper succeeds in unifying the modulated Bénard–Darcy, Bénard–Rayleigh, Bénard–

Brinkman and Bénard–Chandrasekhar convection problems and hence precludes the study of these

individual problems in isolation. A new result that shows that asynchronous temperature modulation

may be effectively used to either enhance or reduce heat transport by suitably adjusting the frequency

and phase-difference of the modulated temperature is presented.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Bénard–Rayleigh convection and its porous medium analog,
namely, Bénard–Darcy convection are well-explored problems that
now find mention in excellent books (see [7,19,11,14,17,32,31]). In
these two celebrated problems the quiescent basic state temperature
is time-independent due to the application of uniform temperature at
the boundaries. When time-dependent temperatures are imposed on
the boundaries, in a synchronous or on asynchronous manner, then
the governing equations of both linear and non-linear stability have
time-periodic coefficients. The work of Venezian [33], Rosenblat and
Herbert [25], Rosenblat and Tanaka [24], Davis [9], Homsy [13], Roppo
et al. [23], Ahlers et al. [1], Niemmela and Donnelly [18], Bhadauria
and Bhatia [5], Bhadauria et al. [4], and Raju and Bhattacharya [21] are
some of the reported works that concern the onset of the thermally-
modulated Bénard–Rayleigh convection. The analogous onset pro-
blem in porous media has also been investigated by many researchers
(see [8,16,3,2] and references therein). In addition, there are papers
that address the thermally modulated Bénard–Chandrasekhar pro-
blem (see [30]) in electrically conducting liquids. Restricting attention
to problems involving Newtonian liquids, it is to be noted that the
thermally modulated Bénard–Rayleigh, Bénard–Darcy, Bénard–Brink-
man, and Bénard–Chandrasekhar convection problems are reported
in the literature as independent problems since they were
ll rights reserved.
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investigated at a time when connection between them seems to
have been not recognized. Even to this day many works get reported
on these problems in isolation. In the context of the above observa-
tions the objectives set down in the paper are:
�
 Present the linear matrix differential operator method to find the
Ginzburg–Landau amplitude equation for the modulated problem.

�
 Use the solution of the Ginzburg–Landau equation in quantify-

ing the amount of heat transport.

�
 Unify the four thermally modulated problems of Bénard–Rayleigh,

Bénard–Darcy, Bénard–Brinkman, and Bénard–Chandrasekhar.

�
 Find the condition under which the local acceleration term can

be neglected in the modulation problem.

�
 Present some new results on the Nusselt number whose max-

imum and minimum values depend crucially on the choice of
frequency and phase-difference, rather than on frequency alone.

�
 Explore the possibility of regulating heat transport by a

mechanism that is external to the convective system.

The formulation of the modulated Bénard–Darcy system that has
lower order governing equations than Bénard–Rayleigh, Bénard–
Brinkman and Bénard–Chandrasekhar systems now follows.
2. Problem formulation

An infinite extent horizontal porous layer of thickness d,
whose lower and upper bounding planes are at z¼0 and z¼d
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respectively, is considered (Fig. 1). The porous layer is saturated
by a viscous, Newtonian liquid that is heated from below and
cooled from above in a time-periodic manner. Further, the porous
medium is supposed to be anisotropic, and Darcy law and the
Oberbeck–Boussinesq approximation [20] are taken to be applic-
able. The other assumptions such as local thermal equilibrium, no
heating from viscous dissipation and no radiative effects are also
assumed. The equations which describe this system are [17] the
following.

Conservation of mass

r � q
!
¼ 0: ð1Þ

Conservation of momentum
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@ q
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Conservation of energy
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Equation of state

r¼ r0½1�bðT�T0Þ�, ð4Þ

where q
!

is the velocity, f is the porosity of the porous medium, r
is the density of the fluid, p is hydrodynamic pressure, g

!
¼

ð0,0,�gÞ is the gravitational force, n is the kinematic viscosity, T is
the temperature, K and ke are the permeability and thermal
diffusivity tensors, given by
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where x¼ Kh=Kv and Z¼ kh=kv are the mechanical and thermal
anisotropy parameters.

The externally imposed time-periodic boundary temperatures
are assumed in the following form [33]:

T ¼ T0þ
DT

2
½1þE cosðotÞ� at z¼ 0,

¼ T0�
DT

2
½1�E cosðotþyÞ� at z¼ d, ð5Þ

where E is the small amplitude of modulation, o is the modula-
tion frequency and y is the phase difference.

The basic state is assumed to be quiescent and the quantities
in this state are given by

qb
!
¼ ð0,0,0Þ, r¼ rbðz,tÞ, p¼ pbðz,tÞ, T ¼ Tbðz,tÞ:

These basic state quantities satisfy the following equations:

@pb

@z
¼�rbg, ð6Þ

@Tb

@t
¼ kv

@2Tb

@z2
, ð7Þ

rb ¼ r0½1�bðTb�T0Þ�: ð8Þ

The solution of Eq. (7), subject to the boundary conditions (5),
is given by

Tbðz,tÞ ¼ T0þDT 1�
z

d

� �
þEFðz,tÞ, ð9Þ

where

Fðz,tÞ ¼ 1
2½f ðzÞexpðiotÞþ ~f ðzÞexpð�iotÞ�, ð10Þ

f ðzÞ ¼ AðlÞelz=dþAð�lÞe�lz=d, ð11Þ
AðlÞ ¼
1
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ðel�e�lÞ
, l¼ ð1�iÞ

ffiffiffiffiffi
o
2

r
, ð12Þ

and a tilde over a quantity indicates its conjugate. The perturba-
tions on the basic state are superposed in the form

q
!
¼ q
!

bþ q0
!
; p¼ pbþp0; T ¼ TbþT 0; r¼ rbþr

0, ð13Þ

where the perturbations are of finite amplitude.
Substituting Eq. (13) in Eqs. (1)–(4) and using Eq. (9) in the

resulting equations, the following equations are arrived at

r:q0
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¼ 0, ð14Þ
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r0 ¼ �r0bT 0: ð17Þ

Only two-dimensional disturbances are considered, i.e. v0 ¼ 0,
and we define the stream function c0 as

u0 ¼
@c0

@z
, w0 ¼ �

@c0

@x
: ð18Þ

Eliminating the pressure term from Eq. (15) and then introducing
the stream function the following equation is obtained:
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f
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On substituting Eq. (18) in Eq. (16), the heat transport equation is
got in the form
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where
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Eqs. (18)–(19) are now rendered dimensionless using the follow-
ing scaling:

time-d2=kv, space-coordinates-d,

temperature-DT , streamfunction-fkv:

The dimensionless form of Eqs. (18)–(19) are
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where asterisks denote dimensionless values. In the above equa-
tions, the dimensionless parameters are Vadasz number (Va) and
Darcy–Rayleigh number (Ra) that are respectively given by

Va¼
fnd2

Kvkv
, Ra¼

bDTg dKv

fnkv
:

The boundary conditions for the perturbed quantities are

c0
n
¼ 0 at zn ¼ 0,1

T 0
n
¼ 0 at zn ¼ 0,1

)
: ð23Þ

For the sake of convenience, the asterisks are dropped in what
follows. It is to be noted that the basic state solution influences
the stability problem through the factor @Tb=@z in Eq. (22), which
is given by

@Tb

@z
ðz,tÞ ¼�1þ

E
2
½f 1ðzÞexpðiotÞþ ~f 1 ðzÞexpð�iotÞ�, ð24Þ
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where

f 1ðzÞ ¼ A1ðlÞelzþA1ð�lÞe�lz, ð25Þ

A1ðlÞ ¼
l
2

ðe�iy�e�lÞ

ðel�e�lÞ
, l¼ ð1�iÞ

ffiffiffiffiffi
o
2

r
:

The critical Rayleigh number for the unmodulated case is given
by Epherre [10]

Cð0Þs ¼ A sinðpzÞ, Rað0Þc ¼
a2

1a2
2

k2
c

, ð26Þ

where a2 ¼ k2
c þp2, a2

1 ¼ k2
c þx

�1p2 and a2
2 ¼ Zk2

c þp2.
It can easily be shown that kc ¼ p=ððZxÞ1=4

Þ and hence

Rað0Þc ¼ 1þ

ffiffiffi
Z
x

r� �2

p2:

These are the critical values of wave number and Rayleigh number of
the unmodulated Bénard–Darcy anisotropic system [10].

Having formulated the thermally modulated Bénard–Darcy
system, the heat transport through the lower boundary will be
quantified next. The linear matrix differential operator method
will be used in what follows to transform the non-linear stability
equations into a system of inhomogeneous linear matrix differ-
ential equations. The aim of the next section is to achieve the
objectives mentioned in the Introduction.
3. Weakly non-linear stability analysis

Using the time variations at only the slow time scale, viz.,
t¼ d2t where d is a small quantity, Eqs. (20)–(21) now take the
form
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In writing Eq. (27) it has been assumed that the modulation is of
small amplitude and hence E¼ d2E2. This is in keeping with the
assumption of Govender [12] and Siddheshwar et al. [28,29]. With
the aim of deriving the Ginzburg–Landau equation for the
amplitude of convection, we now use the following asymptotic
O x

 z

 y

 T = T0
T

2
1 cos t

 T = T0
T

2
1 cos t  z = d

 z = 0

g  = - g k Boussinesq-
Newtonian fluid-

saturated
porous medium

Fig. 1. Schematic diagram of the problem. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)
expansion in Eq. (27) [6]

Ra¼ Ra0þd
2Ra2þ � � �

c0ðx,z,tÞ ¼ dc1ðx,z,tÞþd2c2ðz,tÞþ � � �
T 0ðx,z,tÞ ¼ dY1ðx,z,tÞþd2Y2ðz,tÞþ � � �

9>>=
>>;, ð28Þ

where Ra0 is the critical value of the Rayleigh number at which
Bénard–Darcy convection sets in when modulation is absent.
Following Siddheshwar et al. [27], the first- and second-order
solutions may be shown to be the following:
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Using the solutions of the first- and second-order systems, the
third-order system takes the form

r
2
x Ra0

@

@x
@

@x
�r

2
Z

2
664

3
775 c3

Y3

" #
¼
R31

R32

" #
, ð30Þ

where
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The solvability condition [26] for the existence of the third-order
solution yields the Ginzburg–Landau equation for stationary
instability with a time-periodic coefficient in the form

1

a2
2

1þ
a2a2

2

a2
1Va

 !
dAðtÞ

dt �
Ra2
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�2E2LðtÞ
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where

LðtÞ ¼
Z 1

0

@Fðz,tÞ
@z

sinðpzÞ

� �
dz: ð33Þ

As Eq. (32) is non-autonomous, we numerically integrate the
equation using NDSolve of Mathematica 8.0 with the initial
condition Að0Þ ¼ a0. Without loss of generality Ra2¼Ra0 is
assumed in the calculations and this is done to keep the
parameters to a minimum. From Eq. (28), we have for Ra2¼Ra0

Ra

1þd2
¼ Ra0:

This essentially means that the actual Rayleigh number is dimin-
ished as a result of this assumption. In the event of Ra2 becoming
negative it would mean that the actual Rayleigh number is
enhanced.

The heat transport through the lower boundary is now quanti-
fied in the form of the horizontally-averaged Nusselt number, Nu,
defined by

NuðtÞ ¼ 1þ

kc

2p
R 2p=kc

0

dY2

dz
dx

� �
z ¼ 0

kc

2p
R 2p=kc

0

@Tb

@z
dx

� �
z ¼ 0

: ð34Þ

Substituting Y2 and @Tb=@z respectively from Eqs. (28) and (23)
into Eq. (34) and completing the integration, the expression for
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NuðtÞ reads as follows:

NuðtÞ ¼ 1þ
k2

c

4a2
2

A2
ðtÞ: ð35Þ

To have a good understanding of the effect of thermal modulation
on heat transport a representative time interval that allows a clear
comprehension of the modulation effect needs to be chosen. The
interval ½0,2p� seemed an appropriate interval to calculate a mean
Nusselt number and this is decided upon by careful examination of
the results in Figs. 2–3. The time-averaged Nusselt number Nu is
thus defined as

Nu ¼
1

2p

Z 2p

0
NuðtÞ dt: ð36Þ

The amplitude AðtÞ is obtained numerically and hence Nu is also to
be numerically evaluated. An interesting observation that can be
made per se by having a cursory glance at Eq. (32) is that the sign of
LðtÞ determines whether the modulation amplifies or diminishes the
amplitude of convection. In other words depending on the need of an
application LðtÞ, which represents the thermal modulation effect,
may be manipulated upon to either facilitate enhancement or
reduction in heat transport. A discussion of the results now follows
culminating in a listing of conclusions.
4. Results and discussion

The paper is an attempt to bring in the individual effect of
synchronous and asynchronous temperature modulations on the
onset of Bénard–Darcy convection as well as on heat transport in
a non-linear realm of convection. The following two types of
modulations are considered:
1.
Fig
to t
Synchronous temperature modulation, in which case y¼ 0.

2.
 Asynchronous temperature modulation, in which case ya0.

The porous medium is assumed to be closely packed, and hence
the use of the Darcy model in the governing equations. In
addition, the term Va�1@=@t has been brought into the model to
. 2. Effect of y on mean Nusselt number, Nu , for different values of o and Va. (For in

he web version of this article.)
account for the possible importance of time variation of velocity
due to imposed time-periodic boundary temperature. It is one of
the intentions of the paper to find out if the local acceleration
term can be neglected in the modulated Bénard–Darcy convection
problem as done in the case of the unmodulated problem.

A linear stability analysis of Bénard–Brinkman convection has
been performed by Malashetty and Basavaraja [16] to find the
effect of thermal modulation on the onset of convection using
Venezian [33] approach. In the present paper a local non-linear
stability analysis is done using the Ginzburg–Landau equation for
stationary convection. The Nusselt number is calculated by
solving the amplitude equation numerically for different values
of Vadasz number, thermo-mechanical anisotropy parameters,
amplitude and frequency of modulation.

As mentioned earlier, the temperature modulated Bénard–
Darcy problem is approached using the linear matrix differential
operator theory. To make the problem analytically tractable small
amplitude temperature modulation that facilitates the use of a
regular perturbation expansion for the perturbed velocity and
temperature has been assumed. Another reason for choosing
small amplitude temperature modulation is to discount possible
oscillatory convection that might be triggered by large amplitude
temperature modulation. As is the case with perturbation proce-
dures, the time-periodic temperature modulation effect arises as
an inhomogeneity in a higher order equation with the lowest
order equation being homogeneous. The eigenfunction solution of
the lowest order problem comes handy in obtaining the solution
of the second order system. For the purpose of obtaining the
amplitude equation it suffices to know under what condition the
third order solution exists. In a functional analytic setting this
would impose orthogonality condition between the inhomogene-
ity in the second-order equation and the solution of the adjoint of
the zeroth order problem. Such a solvability condition is known as
Fredholm alternative condition and invoking such a condition in
our problem resulted in the Ginzburg–Landau equation. Before
proceeding to make a discussion of the results it is to be observed
that effectively porous medium scales down the Rayleigh number
and scales up the Prandtl number. This aspect is incorporated
in the paper through the use of Rayleigh–Darcy number and
terpretation of the references to color in this figure caption, the reader is referred
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Limiting cases of the present study.
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a P is the coefficient of dA=dt in (32).
b Q is the Chandrasekhar number [28].

0 20 40 60 80 100 120 140

2.9015

2.9020

2.9025

2.9030

Nu

�

 Va = 103

 Va = 104 Va = 105

� = 0

0 20 40 60 80 100 120 140

2.9010

2.9015

2.9020

2.9025

2.9030

2.9035

Nu

�

 Va = 103

 Va = 104 Va = 105

 = /2

 Va = 105

0 20 40 60 80 100 120 140

2.900

2.901

2.902

2.903

Nu

�

 Va = 103

 Va = 104

 =

0 20 40 60 80 100 120 140

2.9010

2.9015

2.9020

2.9025

2.9030

Nu

�

 Va = 103

 Va = 104

 Va = 105

 = 3 /2

�

� �

�

�

�

Fig. 3. Effect of o on Nu , for different values of y and Va.
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Prandtl–Darcy number (or Vadasz number). In effect, it also
means that porous media dampens time-variations of velocity.
Since the porous layer is assumed to be densely packed, moderate
and/or large values of Vadasz number are considered.

The results on heat transport as depicted in Fig. 2 are new.
The plot 2 has been included to highlight the fact that the effect of
modulation on mean Nusselt number depends crucially on both
the phase-difference and frequency rather than on only the choice
of the frequency of small-amplitude modulation. From the
Fig. 2 and 3 it is evident that for a given frequency of modulation
there is a range of y in which Nu increases with increase in y and
another range in which Nu decreases. Thus, the inference that can
be drawn from this is that combination of choices of o and y can
be made depending on the demands on heat transport in an
application situation. Heat transfer can be regulated (enhanced or
reduced) with the external mechanism of temperature modula-
tion. The only thing to be borne in mind in the case of the
temperature modulation is that the boundary temperatures
should not be synchronized. It is to be noted here that the results
in Fig. 2 are compatible with the following results on Rayleigh
number reported by Malashetty and Basavaraja [16]. On choosing
a different set of parameters’ values, especially y, we noticed that
the following can also be true

½Rac�d ¼ 04 ½Rac�da0,

in the case of asymmetric temperature modulation.
Fig. 3 is a conventional Venezian-type plot of Nu versus o.

It basically reiterates what is said in the context of Fig. 2 and
further the results in the figure are compatible with those
reported by Malashetty and Basavaraja [16]. Another useful result
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discernible from Fig. 2 and 3 is that Nu becomes independent of
Va (considering a three digit accuracy) for Va4104.

Using the results of the present study, certain qualitatively
similar results can be obtained for other problems such as
Bénard–Rayleigh, Bénard–Brinkman and Bénard–Chandrasekhar
convection by replacing a2

1, a2
2 and Da�1 in the expression of

Rað0Þc (Eq. (26)) and in the amplitude equation (Eq. (32)) with
appropriate quantities. Table 1 spells out clearly as to how the
results of the above three problems may be extracted from those
of the paper.
5. Conclusions

Weakly non-linear stability analyses pursued in the paper
reveals new results on onset as well as on heat transport.
The following conclusions may be summarized from the figures
documented in the paper:
1.
 ½Nu�d ¼ 0 � ½Nu�da0 for synchronous temperature modulation.
This result suggests that to regulate heat transport synchro-
nous temperature modulation is not suitable.
2.
 ½Nu�d ¼ 04 ½Nu�da0 or ½Nu�d ¼ 0o ½Nu�da0 for asynchronous
temperature modulation, depending on the choice of o and y.
3.
 Computations reveal the following result on the effect of x and
Z on Rac and Nu for all values of o and y:

(a) ½Rac�x ¼ 14 ½Rac�xo1

½Nu�x ¼ 1o ½Nu�xo1
.

(b) ½Rac�Z ¼ 1o ½Rac�Zo1

½Nu�Z ¼ 14 ½Nu�Zo1
.

These conform to reported results of earlier works pertaining
to temperature/gravity modulated Bénard–Darcy convection
[27,28].
4.
 Nu increases with increase in Va, for all values of o and y.

5.
 The inclusion of the local acceleration term is significant only

in the case when Vao104. This is true for both modulated and
unmodulated problems. The importance of this term is more
when the frequency of modulation is not so small.
6.
 Qualitatively, there are similarities between the parameters’
influence on heat transport in modulated and unmodulated
systems. This again is based on an observation of the results of
computation carried out in the paper.
7.
 The results of Bénard–Rayleigh, Bénard–Brinkman and Bénard–
Chandrasekhar convection problems with temperature modula-
tion can be recovered from the present study that uses lower
order equations than the ones used in the above three problems.
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