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The main interest of the present investigation is to generate exact solutions to the steady Navier-Stokes 
equations for the incompressible Newtonian viscous electrically conducting fluid flow motion and stability due to 
disks moving towards each other or in opposite directions with a constant velocity. Making use of the analytic 
solution, the description of possible conditions of motion is based on the exact solutions of the Navier-Stokes 
equations. Both stationary and transient cases have been considered. The stability of motion is analyzed for 
different initial perturbations. Different types of stability were found according to whether the disks moved 
towards or away from each other. 
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1. Introduction 
 

The cases when an exact solution for the Navier-Stokes equations can be obtained are of particular 
interest in investigations to describe fluid motion of the viscous fluid flows. However, since the Navier-
Stokes equations are non-linear in character, there is no known general method to solve the equations in full 
not does the superposition principle for non-linear partial differential equations work. Exact solutions, on the 
other hand, are very important for many reasons. They provide a standard for checking the accuracy of the 
results which can be established only by a comparison with an exact solution 

There is a large class of processes which can be considered from the mathematical point of view as 
the motion of a liquid between two parallel disks, moving towards each other or in opposite directions with a 
constant velocity. These include such processes as the motion of underground water that can also be 
described with a help of the current model. In Fig.1 these two applicases are presented. It should be noted 
that in spite of the different types of hydro dynamical problem at first sight, the mathematical descriptions 
are the same.  
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The purpose of the current work is to present details of some new two dimensional solutions of the 
Navier-stokes equations governing the steady-state stationary viscous flow of an incompressible Newtonian 
electrically conducting fluid associated with the movement of disks. The disks are supposed to be non-
electrically conducting under the influence of an external magnetic field of constant strength applied normal 
to the disks.   

This work deals with a description of the types of possible instability of such motion. Craik and 
Criminale (1986) described a procedure for finding classes of exact solutions of the Navier-Stokes equations. 
These solutions consist of a ‘basic flow’ with spatially uniform rates of strain and a ‘disturbance’ of a planar 
form: the disturbance is continuously distorted by the basic flow but nevertheless remains planar at all times. 
A somewhat similar formulation was given by Lagnado et al. (1984), but was restricted to two-dimensional 
basic flows and the authors were unaware that their liberalized approximation is in fact an exact solution for 
single plane wave modes. 

 

 
 

Fig.1 (a) Moving impermeable disks and (b) Moving permeable disks. 
 
There are two aims of this paper. The first is to generalize the results of Craik (1989) in a case of 

plane-wave superposition. The other is to find the possible forms of the jet solutions which are generated as a 
result of the instability development. 

In the present work, a weakly nonlinear magnetic field is introduced between two disks. The flow of 
a viscous fluid is analysed and the differential equation governing the fluid motion is based on the 
hydromagnetic flow induced in the fluid in the presence of a uniform magnetic field which accounts for the 
drag exerted by the magnetic effect. The governing nonlinear differential equations are solved analytically 
using separation of variables method. Furthermore, an instability analysis has been performed.  
 
2. Mathematical formulation  
 

Consider the motion of a viscous incompressible liquid induced by two parallel disks moving 
towards each other in the case when h<< l  (where h is the distance between the disks, and L is the length of 
the disks). Let us assume that the horizontal velocity does not depend on the vertical coordinate, whereas the 
vertical velocity depends linearly on the distance between the disks. In this case, the Navier-Stokes equations 
have the following form (Craik 1989; Craik and Criminale, 1986; Lagnado et al., 1984) 

 From the continuity equation 0  q    
u v

2q
x y

 
 

 
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 From the momentum equations   ˆ 21
j

t


       

 
q

q q p B q . 

Since we consider the hydromagnetic flow induced in the fluid in the presence of a uniform magnetic 

field 0B  normal to the plate therefore we come across the term ˆ1
j


B  in the momentum equation 

 

,
2 2

2
0 2 2

2 2
2
0 2 2

u u u p u u
u v B u

t x y x x y

v v v p v v
u v B v

t x y x x y

       
                

       
                

 

 

where   ( , , ), ( , , ), , ( , , ) 2 2u u x y t v v x y t w 2qz p p x y t 2q z      . 
 

Further, p is the pressure divided by the liquid density and q is the relative velocity of disks, assumed 
here to be constant. It should be noted also that the equation for the vertical velocity coordinate w  is 
identically equal to zero. We consider the hydromagnetic flow induced in the fluid in the presence of a 
uniform magnetic field 0B  normal to the plate. 

The above equations reduce to  
 

                  
u v

2q
x y

 
 

 
,     (2.1)     

 

                  2
0

u u u p
u v B u u

t x y x

    
      

    
,     (2.2)     

 

                  2
0

v v v p
u v B v v

t x y y

    
      

    
     (2.3)      

 

where   
2 2

2 2x y

 
  

 
. 

 
3. Method of analysis 

 
 For convenience of analysis let us select the potential components from the horizontal components of 
the velocity and introduce the flow function. 
 

  u qx
y


 


,   (3.1)     

 

  v qy
x


 


     (3.2)     
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where  is the stream function. Now Eq.(2.1) is satisfied identically and Eqs (2.2) and (2.3) together, after 

elimination of the pressure and introduction of the vorticity w u  will give the equations of motion in 
the following way. 
 

  
2
0

u v u u v u v v u v u v
u v

t y x x y x x y x y y x y y x

u v u v
B

y x y x

                          
                                               
       

               

 

 

since   
u v

y x

  
       

,     (3.3)      

 

  { , } ( ) ( ) 2
0q x y B

t x y

    
          

    
     (3.4) 

 
where { , }   denotes the Poisson brackets.  
 

  { , }
x y y x

   
   

   
.     (3.5)           

 
 One of the solutions of Eq.(3.4) is 0  , which corresponds to the liquid potential motion, known 

as the motion near the stagnation point (other solutions for   are given below) is used following the work 
of Craik (1989) to investigate the stability of this solution. Let us consider the periodical one-dimensional 
perturbation  . This perturbation is expressed by the following equation. 
 
  ˆ       , 
       (3.6)          

  cos( )2k A kx    ,   
 
substituting all this in Eq.(3.4) we get  
 

  2 2
0

A
2q B k A

t

  
       

,     (3.7)   

 

  
k

qk
t


 


.     (3.8)     

 
 Solving the above equations we get  
 

  ( ) ( ) qtk t k 0 e ,     (3.9)      
 

   ( )
( ) ( )exp

2
2 2qt
0

k 0
A t A 0 2q B t 1 e

2q
   

          
   (3.10)      
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where ( ), ( )k 0 A 0  are free constants, which determine the amplitude and wavelength at the initial point of 

time. The sign of q in Eq.(3.9) determines the stability of the solution 0  . When q 0 , the solution is 

stable, the amplitude A  is decreasing; otherwise, the solution is unstable, the amplitude A  is increasing. 

However, for q 0  the solution is unstable only until ln
( )

2
0

2

2q B
1

t
2q k 0





 
 after which the amplitude 

decreases rapidly, owing to dissipation.  
 

 
 

Fig.2. Variation of amplitude versus time for different values of B0. 
 

4. Results and discussion 
 

4.1. Stability analysis 
 

 Let us consider the case when the flow function perturbation has the following form. 
 

   ( )
cos ( ) ( )

( )

N
i

i1 i22
ii 1

A t
k t x k t y

k t

   ,     (4.1)  

 

provided that 2 2 2
i1 i2k k k i    
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Lemma 1: If 2 2 2
i1 i2k k k i    then Eq.(4.1) is the exact solution of Eq.(3.4), with ( ), ( )k t A t  defined from 

expressions (3.9) and (3.10). 
Proof: The proof is based on the reduction of Eq.(3.4) to a linear equation (where the principle of 
superposition is valid). The property of the Poisson brackets is { , } 0   . We find the vorticity. Since 

2 2 2
i1 i2k k k i   , it is possible to carry out the summation in Eq.(4.1) from  

 

  cos( ( ) ( ) ) ( )
N

2
i i1 i2

i 1

A k t x k t y k t


         ,     (4.2)  

 

( )2k t  does not depend on the spatial coordinate. Therefore 
 

   { , } { , ( ) } ( ){ , }2 2k t k t 0           .                           (4.3)         
 
 This proves the lemma. 
 
Remark 1: If q 0 , the solution is stable with both amplitude and the wave number k  decreasing in the 

course of time. Otherwise, if q 0 , the solution is unstable, however, the amplitude increases until 

ln
( )

2
0

2

2q B
1

t
2q k 0





 
, after which owing to dissipation it decreases rapidly. The wave number k  increases 

in the course of time. A new and interesting fact which has been discovered in the course of this research is 

that the wave number k , corresponding to the time. ln
( )

2
N 0

2
i 1

2q B
1

t
2q k 0

 
  

 
 
 

  is not dependent on the 

initial conditions and is equal to 
2q

k





.  

 It should be noted that in each of the cases investigated q 0  corresponds to the situation when the 

disks are moving towards each other and q 0  to the situation when the disks are moving apart. 

 
Remark 2: Note that if in equation N=1 then the results obtained by Craik (1989) are retrieved. This case 
corresponds to a perturbation in a form of one plane wave. The case when N>1 corresponds to plane-wave 
superposition, which can (for special conditions for the wave number and amplitude (Chandrashekar, 1997)) 
reduce to the appearance of different space structures. 
 
4.2. Stationary solutions in the form of jets 

 
 The solution 0  , corresponding to the liquid motion near a stagnation point, has been considered. 
It is also relevant to find and examine other stationary solutions, such as jets. We consider the flow function 
in the Riabouchinsky type form 
 
  ( , ) ( ) ( )x y xF y y    .                                                             (4.4) 
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 In this case (3.4) takes the following form 
 

  ( ) 2
x y y x y x 0q 2 y x B


            


,     (4.5) 

 
and since  ( ) ( )xF y y     .     (4.6) 
 
 Equation (4.5) reduces to  
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 v
0F y F y F y F y 3qF y qyF y B F y F y

             


,     (4.7) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 v
0F y y y F y 2q y qy y B y y

                  


.                 (4.8)    

 
 We consider the particular case when the analytical solution of Eq.(4.7) is F ay . In this case (4.8) 
will take the following form   
 

         ( ) ( ( ) ( )) ( ) ( )2 v
0ay y q 2 y y y B y y

             


,                           (4.9) 

 
after some mathematical transformations and integrating twice, we obtain the following equation. 
  

  ( ) ( ) ( ) 2
0y q a y y 2q B

       


,         (4.10)    

 
which is the form of Hermite’s differential equation. When the following two conditions are satisfied: 

q a
2





 and 

q
2







 is a non-negative integer, then the solution of this equation has the following form  

  

  exp
( )

n
2

n

d q
A y

3 ndy

  
       

   (4.11) 

 
where the relation between a  and q is  
 

  , [ , ]
1 n

a q n 0
3 n


   


,   (4.12) 

 
thus the solutions of Eq.(3.4) can be written as  
 

  exp
( )

n
2

n

1 n d q
qxy A y

3 n 3 ndy

  
          

,   (4.13) 
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in Eq.(4.13), the first term denotes the liquid motion corresponding to the potential flow component and the 
second term represents the jet behavior (non-potential flow component) since , ,q 0 n 0 0     it can be 

seen that this second term approaches zero for y   . 

 
5. Conclusions 

 
 In this investigation, we came to know that if the disks are moving apart ( q 0 ) the electrically 

conducting viscous fluid is unstable up to a certain time ln
( )

2
N 0

2
i 1

2q B
1

t
2q k 0

 
  

 
 
 

 , then it is stable. This is 

because of the wave number ( )k t  which increases in the course of time. But in case of the disks moving 

towards each other ( q 0 ) the electrically conducting viscous fluid is stable with both the amplitude ( )A t  

and the wave number ( )k t  at all time. 
 The solution for the stream function through Hermit’s differential equation is given by 

exp
( )

n
2

n

1 n d q
qxy A y

3 n 3 ndy

  
          

. In this equation the first term denotes the liquid motion 

corresponding to the potential flow component and the second term denotes the jet behavior. 
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Nomenclature 
 
 A – amplitude 
 0B  – uniform magnetic field 

 h – distance between the disks 
 ĵ  – current density 
 k – wave length 
 l – length of the disks 
 p – pressure 
 q – velocity of disks 
 u – horizontal velocity component along the x-axis 
 v  – horizontal velocity component along the y-axis 
 w – vertical velocity component  
 x, y – horizontal Cartesian coordinates 
   – electric conductivity of the fluid 
   – density 
   – kinematic viscosity 
   – stream function 
   – vorticity 
 
Subscript 
 

 0 – reference 
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