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Summary. The linear and non-linear stability of double diffusive convection in a sparsely packed porous 
layer is studied using the Brinkman model. In the case of linear theory conditions for both simple and 
Hopf bifurcations are obtained. It is found that Hopf bifurcation always occurs at a lower value of the 
Rayleigh number than one obtained for simple bifurcation and noted that an increase in the value of vis- 
cosity ratio is to delay the onset of convection. Non-linear theory is studied in terms of a simplified 
model, which is exact to second order in the amplitude of the motion, and also using modified perturba- 
tion theory with the help of self-adjoint operator technique. It is observed that steady solutions may be 
either subcritical or supercritical depending on the choice of physical parameters. Nusselt numbers are 
calculated for various values of physical parameters and representative streamlines, isotherms and isohali- 
nes are presented. 

1 Introduction 

Double diffusive convection is a type of  instability that occurs in a fluid which possesses two 

density-altering constituents with differing molecular diffusivities, such as certain motions in 
the oceans and some lakes where the two properties are heat and salt. Copious literature is 

available on double diffusive convection in classical fluids and reviewed extensively (see Hup- 

pert and Turner [1]), whereas its counterpart  in porous media has received comparatively little 
attention in spite of  its wide applications in geothermal reservoir, moisture migration in ther- 

mal insulations and stored grain, underground spreading of  chemical pollutants, waste and 

fertiliser migration in saturated soil and so on. 

Nield [2], Rubin [3], Lightfoot and Taunton [4] and Rudraiah et al. [5] have studied double 
diffusive convection in porous media by considering the Darcy flow model which is relevant 

to densely packed, low permeability porous media. However, experiments conducted with 
several combinations of  solids and fluids covering wide ranges of  governing parameters indi- 

cate that most  of  the experimental data do not agree with the theoretical predictions based on 

the Darcy flow model. Hence, non-Darcy effects on double diffusive convection in porous 
media have received a great deal of  attention in recent years. Poulikakos [6] has used the 

Brinkman extended Darcy flow model for the problem to investigate the linear stability analy- 

sis. Nevertheless, the variation in the ratio of  effective viscosity of  the porous medium to the 
fluid dynamic viscosity and transition from oscillatory to direct instability are not studied. 
Recently Givler and Altobelli [7] have demonstrated that for high permeability porous media 

the effective viscosity is about  ten times the fluid viscosity. Therefore, the effect of  viscosities 
on the stability analysis is o f  practical interest. One of  the aims of  this paper is to study these 

aspects. 
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It is known that, when the solute gradient is very stable, steady finite amplitude convective 
motions exist at a value of the Rayleigh number smaller than the value required for the onset of 
infinitesimal perturbations. In such cases the linear theory fails to give information about the 
stability of these finite amplitude solutions. Hence, the study of nonlinear double diffusive 
convection naturally arises, and the chief aim of the present work is to study the same. For this 
purpose, we consider a two-dimensional double diffusive convection in a porous layer and 
contruct a fifth order system of ordinary differential equations which possesses both periodic 
and steady solutions and allows subcritical convection (for details see Da Costa et al. [8] and 
references therein). The condition for the existence of steady finite amplitude solutions is ob- 
tained from this system. Finite amplitude steady solutions are also obtained using modified per- 
turbation theory for the full two-dimensional problem with the help of self-adjoint operator 
technique. It is shown that the results obtained from the truncated system are identical to those 
for the full two-dimensional problem to second order. Only steady finite amplitude solutions 
are discussed, and work is in progress to consider time-dependent finite amplitude motions. 

2 The model 

We consider a two-dimensional double diffusive convection in a horizontally unbounded fluid 
saturated porous layer of thickness d in which the density 0 depends on two different stratify- 
ing agencies (solute concentration and temperature). The model is based on the assumption of 
a Boussinesq fluid with all physical properties being treated as constants except for density in 
the buoyancy term, where ~ is taken as 

0 = ~o{1 - a t ( T -  To) + a ( S -  So)}. 

Here, T is the temperature, S is the solute concentration, a~ is the thermal expansion co-effi- 
cient, c~s is the solute analog of o~t, and 00 is a reference fluid density. We introduce a stream 
function ~ so that the velocity 

O'= ~ , 0 , - ~  . 

It is assumed that at the quiescent state both the temperature and solute concentration vary 
linearly across the depth with values To + AT, So + AS and To, $o at the bottom and top free 
surfaces, respectively. 

We scale length, time, temperature, solute concentration and velocity by d, d2M/~, 
AT, z2S and n/d, respectively. The dimensionless nonlinear perturbation equations following 
Nield and Bejan [9] can be written as 

( A  0 1 ) cO0 cO~ 1 
g ~ + ~  - AV2 V 2 r  ~x+ R~fx + ~  J ( r 1 6 2  (1) 

(o ) 
N -  ~2 0 = - ~ + J(r  0), (2) 

(o ) 
a N - ~V2 x = - ~ + J ( r  2 ) ,  (3) 

where 0 and ~ are dimensionless temperature and solute concentration, R = atgATda/u~, 
Rs = o~sgASd3/uz, D,~ = kid 2 and P~ = ~2 u/~ are  the thermal Rayleigh, solute Rayleigh, 
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Darcy and effective Prandtl  numbers,  respectively, A = ~ / M  and M = ~ + (1 - ~o) 7 are the 
non-dimensional  groups, while A = flip, r = ~ / ~ ,  ~/= (oC) / (~C) f  are the ratios of  viscosi- 
ties, diffusivities and heat capacities, respectively. Here ~, z~, u are the thermal, solutal and 
viscous diffusivities while k is the permeabili ty of  the porous medium, ~ is the porosity, J is 
the Jacobian, ~ is the effective viscosity of  the medium and # is the fluid viscosity. In general 
fi is not equal to # and hence we have taken the ratio of  these two viscosities as an indepen- 
dent parameter  in the present study to know its true effect on the stability of  the system. 
The boundary  conditions are 

02~ 0 = Z = 0  at z = 0 , 1  (4) 
- Oz 2 - 

The non-linear boundary  value problem given by Eqs. (1) - (4)  admits the solution 

2,/5 
= KA(t*) sin cvx sin rcz, (5) 

o~ 

0 - B<) - 2 z, 
- -  K 7r  

E ( t * )  
E = ~ - -  2v/~ D(t*) cos c~x sin ~ rz -  rc sin 2rvz (7) 

provided [A, B, C, D, E] satisfies 

P r (  R c~2 Rs 32 ) 
] t = - ~  rlA +-~g- B - ~ -  D , (8.1) 

f3 = A(C - 1) - B ,  (8.2) 

d = - w ( A B  + C), (8.3) 

D - A ( E - 1 )  r D  
A , (8 .4)  

= - w ( A D  + rE) ,  (8.5) 

where t* = K2t, K 2 = rr 2 + c~ 2 is the total wavenumber,  z~ = 4~r2/K 2, r] = A + 1/D~K 2 and 
the dot above the quantities denotes the differentiation with respect to t*. These equations 
possess two significant properties. First, the divergence of the flow in a five dimensional phase 

space, 

O~ + 0 ~ + ~ + ~ - ~  + ~  = - + 1 + ~ + ~ + ~  

is always negative and so the solutions are attracted to a set of  measure zero in the phase 
space and this may  be a fixed point, a limit cycle or a strange attractor.  Second, the equations 
have an important  symmetry,  for they are invariant under the t ransformation 

(A, B, C, D, E) --+ ( - A ,  - B ,  C, - D ,  E).  

2.1 Bifurcations from the static solution 

Equations (8.1)-(8.5) admit  the trivial solution A = B = C = D = E = 0 that  corresponds 
to pure conduction of  heat and solute with no fluid mot ion present. The linear stability pro- 
perties of  this static solution may  be obtained f rom Eqs. (8.1)-(8.5) upon neglecting all non- 
linear terms and seeking solutions of  the form e ~ where • is the growth rate. Equations 
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(8.1), (8.2) and (8.4) finally yield the dispersion relation 

E~,+~+AK2 (~ + K2) ( ~  + ~ )  K~ : R ~ 2 ( ~  + ~:2)  - R~ ~2(~ + K~). (9) 

We see that  Eq. (9) coincides with that  of  Veronis [10] as Da ---+ oc, A = I and ~o = 1 (classical 

viscous case) and Rudra iah  et al. [5] as D~ ~ 0 (Darcy case) with appropr ia te  scaling, sug- 

gesting that  the results obta ined from the t runcated model  problem will be identical to those 

for the full two dimensional  problem. 

The onset of  instabili ty can be examined by setting the real par t  of  ~ equal to zero so that  

cr = ico. Taking R as a free parameter  (assuming a 2, 7, 1, Pr, D~, A a n d R ~  as given) and 

clearing the complex quantities from the denominator ,  Eq. (9) can be re-written in the form 

co2A + r K  ~ K 6 t 2 
R = R, ~212 + r2K4 F~c~ + 7 ~  - ~ J  + i~K~N, (10) 

where 

Since R is a physical quanti ty,  Eq. (10) implies either co = 0 or N = 0 and accordingly we 

can obtain the condit ions for the occurrence of  simple and H o p f  bifurations.  

10 
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2.2 Simple bifurcation 

Simple bifurcation occurs at R = R a, where 

Rd =/{8 + K s ~ -  7. (11) 

R d attains its minimum value, d /~rnin w h e n  o~ 2 : OLc2~ where 

t< * 
4A 

We see that the critical wavenumber is independent of Rs and r but depends on the viscosity 
ratio and Darcy number. The critical wavenumbers obtained for different values of 
Da -~ and A are shown graphically in Fig. 1. For a fixed value of D~ -I, increasing A decreases 
the critical horizontal wavenumber. However in the classical viscous and Darcy flow limits 
(i.e., D~ 1 << I and D~ -1 >> 1 respectively) the dependence of A on c~J is not noticeable as 
expected. In these two limiting cases crJ attains the value zc2/2 and ~r ~, respectively. Also for a 
fixed value of A, increase in D~-I is to increase the value of c~r 2. 

2.3 Hopfbifurcation (w 7 s O, N = O) 

There is a Hopf bifurcation from the static solution at R = R% where 

Ro = ( Pr firs+ A ~ K6(Tp~c~ 2 + A))  P~r]A+T , (13) 

provided that 

j = R,(A - "~) ~2 _ K4~2 = Pr~-~(Rd -- R~ (14) 

is positive. Thus, from Eq. (14) it is clear that, if a Hopf bifurcation is possible at all, it always 
occurs at a lower value of the thermal Rayleigh number than that of the simple bifurcation. 
Since c~ ~ > 0, a necessary condition for the existence of a Hopf bifurcation is 

T < A ,  R s > R s *  KSr](  T' ) ( + ~ _ ~ )  
- c~ 2 ~ 1 

R ~ attains its minimum value, R~i n at c~ 2 = ag ,  c~J being the root of the polynomial 

aaY 5 + a4Y 4 + aaY 3 + a2Y 2 + a l Y  + ao = 0, (15) 

where 

a s = 2 D ~  A +  r A +  , 

+A r ;~ A 

T 2 A 



118 I.S. Shivakumara and R. Sumithra 

~2- PT(~+A Da D7 -4~D~  A + E  ' 

{ ')  = - 2 7 r  2 R , ( r - A ) + ~  
g i  

g 0 -  + a) 

RsTfl(T - X) and Y = c~ 2 + 7ft. 
a0 P~, 0- + A) 

We see that  ac 2 depends not  only on Da and A but  also on Rs, Pr., ~-and A. As Pr ~ ec, 

Eq.(15) simply reduces to 

( D a A Y  ~ + 1) 2 ( 2 D a A Y  2 + (1 - 3 7 f l D ~ A ) Y  - 27fl) = 0. 

Since ( D a A Y  2 + 1) 2 ~A 0, 

2 D ~ A Y  2 + (1 - 37r~DoA)Y - 2ir 2 = O, 

and on simplification we find that  this equat ion is the same as Eq. (12). 

Figures 2 and 3 summarise the stability regions in the /~ - R~ plane for D~ -1 = 100, 

~- = 0.32 and Da -1 = 1000, ~- = 0.01 respectively with P~ = 7.0 and 7 = 0.2. In the fourth qua- 

drant,  where R is negative and R~ is positive, both  gradients are stabilising, and no instabil i ty 

is possible. In the second quadran t  all points are unstable above the line defined by Eq. (11), 

and the instabili ty sets in the direct mode. In the first quadran t  (R~ > 0, R > 0) the instabili ty 

~-~ = lOO 

= 0.32 
Pr = 7-0 
'/ =0.2 

- - - - -  A=0 .6  
=1-0 
= 1.5 

1.2 

0.8 

lit 
Unstabte 

direct mode 0/~ 

_ II 

0.4 

Fig. 2. Stability boundaries for dif- 
ferent values of A and 
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Unstable 6 Unstabte 
direct mode oscil.tations 

Eq. (13) 

r~ - mnn 

Fig. 3. StabiIity boundaries for differ- 
ent values of~o 

sets in the overstable mode, above the line defined by Eq. (13). At Rs -- R [  the slope of  the 
R - Rs plot changes, as does the preferred mode of instability. F rom these figures it is evident 
that  the increase in the value of A and decrease in the value of  ~o is to increase the region of 
stability. That  is, their effect is to delay the onset of  convection. The line 

R = ~ (16) 

on which OQ/Oz = 0 is also shown in the figure. Below this line the net density gradient is 
statically stable. Focussing on the third quadrant,  where both R and R~ are negative, one sees 
a region in which direct mode instability sets in, even though the net density gradient is 
statically stable. The region extends between the lines defined by Eqs. (11) and (16) and is ana- 

logus to the 'finger regime'. 

2.4 Transition f rom oscillatory fo direct instability 

In the limit Ira(or) ~ 0, the oscillatory ,nodes with zero frequency can be interpreted as con- 
vective modes (Veronis [10]). These occur with Re (0) > 0, and in some cases the correspon- 
ding Rayleigh number,  R ~176 (say) is less than R d. 

To obtain R ~176 i.e., at which the transition from oscillatory to direct instability occurs, let 

us write Eq. (9) as 

~3 + (1 + ? + P ~ )  8 2 + ( (~  - 9) P, + ~ + P,.(1 + ?) 3) 6- + (P~?~ + (~  + ?~)) = 0, (17) 

where 

o- ~ R r s ~2 R s  ~/ T 
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In general ~ has three roots with two of  them being complex conjugates and corresponding 

to oscillatory modes which may grow or decay. The limit of  zero frequency is given by the 
vanishing of  the discriminant of  Eq. (17), i.e., by 

( , )3 
( (~  - ~) ~ + e + P,,(1 + ~:) ~) - 5 (1 + e + ~,~)~ 

+ 3(P~,O~ + ~, - ~:§ = 0. 

This is a cubic equation for ~, and to find R ~176 it has to be solved numerically. We note that 
R ~176 depends on R~, ~-, A, P~, A and D~, and asymptotically R ~176 ~ R~/A as R~ ~ oc. 

The foregoing results of  the linear theory may be summarised as follows: when co e > 0, 

Hopf  bifurcation first sets in at R ~ and there is a transition to overturning convection at R ~176 

and there is no part played by/~d as far as linear solutions are concerned. On the other hand, 
if cu 2 < 0, a leak instability appears first at R d and R ~176 has no physical significance. 

2.5 Subcritical and supercritical bifurcations 

For  the case o f ~  2 < 0, as R is increased, the static solution loses stability at R d where there is 

a bifurcation to a triplet of  steady solutions, one of  which is now an unstable static solution. 
The other two are finite amplitude solutions differing only in the signs of  A, B and D. The 

behaviour of  the two branches of  steady solutions in the neighbourhood of  R a may be investi- 
gated in terms of  the A-mode by setting 

R = R d q- R2dA 2 + 0(A 4) 

for A 2 << 1. Substituting this in Eqs. (8. l) - (8.5) it follows that 

R2 d R~ K ~ R ~ = R d  R~ (18) = - - + V  ~ - ~  ~-a 

This result is identical to that of  the full two-dimensional problem and is shown in the Appen- 

dix. As D~ -1 -+ 0 and A = 1, the above result coincides with that of  Da  Costa et al. [8] and 
Nagata  and Thomas [11]. The sign of  R~ d indicates the directions of  bifurcation; supercritical 

if R2 a > 0 and subcritical if R2 d < 0. Correspondingly the finite-amplitude solution is said to 
be stable and unstable, respectively. Thus R2 d > 0 if 0 < T < 1 and 0 < R~ < R~ = K6r]'r3/ 

(a2(1 _ ~_2)) or 7- > 1, while/~2 d < 0 if 0 < ~- < 1 and Re > / ~ .  Also we note that R~ < R~* 
so that the branch of  convective motions bifurcates subcritically as R increases past R d when 
R ~ < R ~  <R~*. 

For  R2 d < 0, there exists a minimum Rayleigh number for steady convection, and it can 

be determined as follows. The system (8) admits a non-trivial steady solution and is given by 

A A 2 TA A 2 
B -  C -  D -  E - - -  

A 2 + 1 ' A 2 + 1 ' A S +,r2 ' A 2 +~-2, 

where A satisfies the equation 

~ I A 4 + ( f l ( I + ' r 2 ) - R + R . ~ - ) A 2 + ' r 2 ( f I - R + ~ )  = 0  (19) 
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or A = 0 (pure conduction), with ~ = r lK6 /a  2. The condition that must be satisfied is that the 

discriminant of  Eq. (19) is non-negative. Hence the limiting condition for real A 2 is 

( ~ ( l + r  2 ) - R + R ~ r ) 2 - 4 ~ / r 2 @ - R + @  0 )  = 0 .  

The solution for this equation for _R is denoted by/~f  and is given by 

= )2 •J (,/VSs  + . (20) 

The second solution for R leads to negative values for R f and is therefore omitted. Equa- 

tion (20) gives meaningful results provided R, > 0 and r < 1. We note that Rfmin, the mini- 
mum value o f  R I at which a steady finite amplitude solution can exist, occurs at the same 

value of  ~2 = c~c2 at which R~inexists. For  a single component  (i.e., no solute concentration) 
fluid, we find that R f  = R d and hence subcritical motions are not possible. To see the possibi- 

lity of  occurring finite amplitude instability, the values of  R~mi~, R~ R~176 n and R f ~  are plot- 
ted as functions of  R,, for different values of  Da -1 and are shown in Fig. 4. From this figure 

we note that an increase in Da -* is to increase the value of  R and thus makes the system more 
o o  o o o  stable. The values of  Rmi ~ > Rmi n SO that the oscillatory motions will occur first and Rmi n 

stands as a correction to R~i~. It is also evident that, although the onset of  convection occurs 

as time periodic motion according to the linear theory, the finite amplitude steady motions 

can exist for values of  the Rayleigh number even smaller than R~ . Thus once the system 

becomes unstable, whether it is to infinitesimal perturbations at R = R~ or to finite ampli- 
tude perturbations at /~ < R~ the developed state of  convection will be steady. 

Asymptotically, R d --+ Rs/7-, ]~o __, R~(P~rl + r)/A(P~rl  + k), R ~176 --+ R , / A ,  R / ~ R , r  as 

f~s --+CO. 
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2.6 Convective heat and mass transport 

The vigour of double diffusive convection can be measured in terms of Nusselt numbers Nu 
(thermal) and Nu~ (solutal). In the steady state, the vertical heat (or solute concentration) flux 

is independent of the vertical coordinate, z, and it can be evaluated as Hr  = -x<OT/Oz>z=o, 

where the angular brackets correspond to a horizontal average. Since OT/Oz is composed of 
the constant gradient plus the change in the meanfield, the Nusselt number is calculated as 

HTd 2 
Nu--  - I + 2 C = I + - -  

x A T  1 ' 
I + - -  

A 2 

where A 2 can be evaluated from Eq. (19). 
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2 
Similarly, Nus = 1 + 2E = 1 + ~_2 �9 

I + A ~  

A t R = / ~ d ,  A 2 = 0  or A 2 R ~ ( 1 - ~ - 2 ) _ T  2. 

A 2 = 0 corresponds to tile conduction state and in this case both Nu and Nu, will be unity. 

At  R =/~.f ,  A 2 - X/R*(1 - ~-2~_ ~_2. 

As R~ -+ oc, A --+ ec, we see that Nu and Nu, will approximate 3. In Figs. 5a, 5b and 5c 

the values of  Nu and Nu~ vs .  -,q/Rdin are exhibited in the form of graphs for different values 

~ / R m i  n the Nusselt num- of  physical parameters. Figure 5a reveals that at any given value of  d 
ber decreases with an increase in Da -1 because the resistance offered to the flow by the fluid 

element in unit volume is sufficiently large so that the system becomes more stable. Figures 5b 

and 5c depict the effect of  ~- and A on heat and mass transport. F rom Fig. 5b we note that as 
~- decreases the values of  Nu and Nu~ increase, but the change in the effect of  A on heat trans- 

port  is noticeable only for moderate values of  Da (i.e., Brinkman regime). For  large values of  

D~-I the heat transport is almost the same for all the values of  A considered (see Fig. 5c). 

2.7 Streamlines, isotherms and isohalines 

The stream function ~ is antisymmetric with respect to the line z = 7r/c~ as it involves a Sine 

term in z and hence it is sufficient to consider only a half-cell. For  a given set of  physical para- 

meters, the cell-scale c~ is fixed, and therefore we confine our attention to the rectangular 

region 0 < z < 7r/o~ and 0 < z < 1. The streamlines drawn corresponding to D~ -~ = 100 and 

1000 with two different values of  A = 1.0 and 2.5 are shown in Figs. 6a and 6b, respectively. 

F rom these figures it is clear that the decrease in the value of  A is to push the volume trans- 

port  towards the boundaries of  the cell. Also as %) decreases, the circular stream lines pattern 

gets deformed into a rectangle and this deformation is more for D~ t = 100 as compared to 
Da 1 = 1000. 
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Fig. 8. Isohalines for 1~ = 103, ~- = 0.32, Pr = 1.0. a/~ = 10000, Da -i = 102, b R = 45000, Da -1 = 103 

The contours of  isotherms and isohalines are shown in Figs. 7a, 7b and 8a, 8b, respec- 

tively, for two values D~ 1 (= 100~ 1000) and A(= 1.0, 2.5). From these figures it is evident 
that isotherms and isohalines in the centre of  the cell are more or less vertical (i.e., anvil- 

shaped) for Da 1 = 100. But an increase in the value of  Da -1 and A is to inhibit the anvil 

shaped plumes, and this inhibition is found to be more for isotherms as compared to iso- 
halines. Also these contours are horizontal near the upper and lower boundaries, where con- 

duction is important, and they are flat near z = 0 and z -- 7r/c~. 

3 Resul ts  

The results of  the present investigation may be summarised as follows: 

(i) Increase in viscosity ratio and decrease in porosity and Darcy number is to delay the 
onset of  convection. 

(ii) Hopf  bifurcation is possible for a certain choice of  physical parameters, and it always 
occurs at a lower value of  the Rayleigh number than the one obtained for simple bifur- 
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cation. Also, the condition for the transition from oscillatory to direct instability is ob- 
tained. 

Off) Self-adjoint operator technique is used to find the eigenvalues of the problem. The finite 
amplitude steady motions can exist for a certain choice of physical parameters. That is, 
subcritical steady convection is possible for values of the Rayleigh number even smaller 

than R~ 
(iv) Decrease in diffusivity and viscosity ratios and increase in Darcy number is to increase 

the heat and mass transfer. Also, increase in viscosity ratio and decrease in Darcy number 
is to push the volume transport towards the centre of the convective cell and to inhibit 
the anvil shaped plumes, and this inhibition is more pronounced in isotherms than in iso- 
halines. 

Appendix 

A.1  Fini te  - ampl i tude  direct  modes  

Modified perturbation theory is employed to investigate steady solutions in the neighbour- 
hood of the simple bifurcation at /~d Accordingly, we expand the dependent variables (i.e., 
~b, 0 and E) and one of the Rayleigh numbers R in terms of a small parameter e, such that 

'~ =s  +e2~2 + " " ,  

0 : s -I- s -}- " '" , (A1) 

E = s +s + . - .  

and 

R = R d + s d + e2R2 d + . . . .  (A2) 

At each stage in the expansion, we may define a column vector, 

g,,~- [~b~, 0~, s (A3) 

Substituting Eq. (A1) and Eq. (A2) into Eqs. (1) - (3) and setting time derivatives to zero 
then at leading order in e the equations are linear homogeneous and can be written in the ope- 
rator form 

Lgq = O, (A4) 

where L is a self-adjoint differential operator and is given by 

"(D~-I - AV2) ~72 0~ 0 

--rd ~ ~'d~ 72 0 
0x 

0 
rs Ozz 0 - r s r V  2 

L = 

Here r d = R d / R o ,  r~ = R f f  Ro and Ro = K 6  / a  2. 

(A5) 
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This is just the two dimensional form of the eigenvalue problem and has been already dis- 
cussed where we have r d r ~ / v  + rh and the eigenfunction is 

sin cex sin ~rz 

(A6) 

The normalisat ion chosen above is for subsequent convenience. The operator  L is self-adjoint, 
and hence we have the identity 

(~Yl T Ll f f  n} = (tfZn T L k ~ I )  = 0 (A7) 

for all n. Here the angular brackets denote averages over the domain 0 < x < 27r/c~ and 
0 < z < l .  

To second order in ~, the equations are linear inhomogeneous and are given by 

Lg12 = - / J ( g ~ l ,  0~) (A8) 

r s J ( ~ l ,  2 ~ )  

From Eq. (A6) it follows that J (gq ,  V2tpl) = 0, and the solvability condition on the inhomo- 
geneous Eq. (A8) is obtained by applying Eqs. (A7) and (A6). Then it follows that rl d = 0. I f  
we impose the orthogonali ty condition 

<r e~) = 0, (n =/= 1) (A9) 

then the solution of Eq. (A8) is found to be 

1 I 1 sin - - 2rcz 
tf-t 2 z 79 

1 sin 2~rz 
T371 - 

Now, at third order, we have 

L~P3 = 

(901 
--7"2 d C~ x 

- / J ( g q ,  02) 

r s J ( ~ l ,  ~ 2 )  

(A10) 

As before the solvability condition yields, f rom Eqs. (A7) and (A10), 

r2 d = r d -- r s / T  3 , i.e. R2 d = R d -- R s / T  3 , 

a result which is identical to the one obtained from the truncated system (cf. Eq. (18)). 
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