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Abstract

We present here both one- and two-dimensional models for turbulent flow through heterogeneous unbounded fluid saturated porous media
using non-linear Forchheimer extended Darcy (DF) equation in the presence of gravitational field. The fluid is initially at rest and sets in motion
due to a uniform horizontal density gradient. It is shown that a purely horizontal motion develops satisfying non-linear DF equation. Analytical
solutions of this non-linear Initial Value Problem are obtained and limiting solutions valid for the Darcy regime in the case of laminar flow
are derived. A measure of the stability of the flow is discussed briefly using Richardson number. The comparison between the nature of the
solutions satisfying the non-linear and linear initial value problems are made. We found that even in the case of turbulent flow the vertical
density gradient varies continuously both with space z and time t but the horizontal density gradient remains unchanged. The existence and
uniqueness theorem of the Initial Value Problem is proved. The stability of these solutions are discussed and it is shown that the solutions are
qualitatively and quantitatively different for z < 1

4 and z > 1
4 in the upper and lower half of the region. In particular, we have shown that the

solution which is stable for infinitesimal perturbations is also stable for arbitrary perturbations both in time and space.
In the case of two-dimensional motion, a piecewise initial density gradient with continuous distribution of density, stream function formulation

is used and the solutions are obtained using time-series analysis. In this case solution shows crowding of the density profiles in the lower-half
of the channel reflecting an increase in density gradient and incipient of frontogenesis there, because of the increase in circulation of the flow
due to piecewise initial density gradient.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A proper understanding of the fundamental mechanisms
affecting contaminant transport in a porous medium is of
paramount importance in the study of many contemporary
groundwater problems. The contaminations may be due to mu-
nicipal, agricultural, industrial or nuclear wastes particularly
radio active waste and other volatile organic substances such
as gasoline leaked into the groundwater which can pose a
long-term threat to the quality of groundwater. These waste
materials are often sufficiently solvable leading to the variation
of density in the fluid saturated porous rocks making not only
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the groundwater undrinkable but also pose a threat to certain
agricultural crops, aquaculture, chemical and food processing
industries. The presence of a density gradient due to the mix-
ture of these contaminants normal to the direction of a vertical
gravitational field in a porous matrix generates the velocity
instantaneously no matter how small the density gradient. The
resulting motion advects fluid in a porous rock matrix where
the effects of Darcy resistance and Forchheimer quadratic drag
may either decrease or increase the density gradient. In the
extreme case the density gradient may increase to such an
extent that an effective discontinuity or front may develop as in a
non-viscous fluid in the absence of a porous medium discussed
by Simpson [1], Linden and Simpson [2] (hereafter called LS),
Simpson and Linden [3] (hereafter referred to as SL) and in the
presence of a porous medium discussed by Rudraiah [4] under
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the assumption of laminar flow. Rudraiah [4] has defined fronts
as regions in a heterogeneous fluid-saturated porous rock ma-
trix where the mixing of the contaminant transport is observed
to occur. Such a mixing process in a porous rock matrix having
velocity produce turbulent flow due to quadratic drag result-
ing from the curvature of the complicate geometry and large
length scales involved in porous rock matrix. Recently Rudra-
iah [4] has investigated this effect of mixing process on front in
a porous medium using laminar flow approximation. However,
the mixing process in contaminated ground water in porous
rocks, laminar flow approximation is very restrictive because
of large velocities, large length scales and complicated geom-
etry of the flow that prevails in such a high porosity and less
permeability porous rock. Such length scales and complicated
geometry lead to high Reynolds number R =VD/� of the order
of 4 for length scale based on average grain diameter ranging
from 1 to 5 mm and having porosity � of 38% (see [5]). Here V

is the specific discharge, � the kinematic viscosity of the fluid
and D is the average grain diameter. Lindquist [5] in his ex-
periments also found that for this medium the upper limit of
R, above which there is always turbulence, (called R critical)
was greater than 180. At that high Reynolds number the flow in
the porous media, generated instantaneously by horizontal den-
sity gradient, is turbulent no matter how small it is. Hence one
has to study the mixing process using turbulent flow because
the turbulent motion affects the velocity of fluid in the porous
media, while the Darcy resistance and Forchheimer drag may
either increase or decrease the density gradient. In the extreme
case the density gradient may increase to such an extent that an
effective discontinuity (see [4]) or front, may develop. We note
that fronts are regions in heterogeneous turbulent fluid-saturated
large porosity porous media where mixing occurs. Such a mix-
ing process in turbulent flow through a large porosity porous
medium is important not only in ground water pollution but
also in many industrial problems, particularly in the chemical,
food processing and paper industries. It is also of importance
in the manufacture of polymer materials, involving heteroge-
neous fluid, by solidification process. This process produces a
mushy layer namely solid–fluid mixture region regarded as a
porous layer. To manufacture such polymer materials free from
impurities it is important to understand the nature of fronts. The
fronts in a turbulent fluid flow through a porous medium has
not been given much attention to our knowledge, in spite of its
importance in many applications discussed above. The study of
it is the main object of this paper. We concentrate on the study
of the effect of turbulence on the heterogeneous fluid saturated
porous layer with the objective of knowing whether frontoge-
nesis occurs in a densely packed heterogeneous fluid saturated
porous medium using Reynolds averaging procedure. The tur-
bulent flow in the absence of porous media has been extensively
investigated both analytically and numerically using direct in-
tegration of Navier–Stokes equations. The work on turbulent
flow in a porous medium is very sparse. Recently Rudraiah et
al. [6–8] and Takatsu and Masuoka [9] have studied the turbu-
lent flow in a porous medium using Darcy–Lapwood equation.
We note that the use of Darcy–Lapwood equation to study flow
through a porous medium poses the problem of under specified

system (see [10]) when the basic flow is non-quiescent. This
problem can be overcomed by using Darcy–Forchheimer (here-
after called DF) equation (see [11]). Therefore, the objective
of this paper is to use the DF equation to know the existence
of frontogenesis in turbulent flow through a porous medium.
To achieve the objective of this paper we follow the following
plan of work.

In Section 2 on formulation of the problem, the basic equa-
tions including the non-Darcian effects are considered. The
effects of constant horizontal density gradient on a heteroge-
neous fluid through an unbounded porous medium governed
by DF equation is considered. In this section the Reynolds de-
composition is used to predict the effect of turbulence. In the
closure problem we use the gradient diffusion model together
with the volume average procedure. The calculations show that
the effect of Darcy resistance is to make the vertical shear uni-
form in space but decaying exponentially with time. Physically
this implies that velocity attenuates due to viscosity, eddy vis-
cosity and permeability and varies with the vertical height z as
t → ∞. On the other hand the effect of Forchheimer inertia
is to make the vertical shear non-uniform and decays exponen-
tially both with space and time. Sections 3 and 4 are devoted to
study the effect of a constant horizontal density gradient and in
Section 5 a measure of stability of flow is discussed using the
gradient Richardson’s number. In Section 6 the existence and
uniqueness theorems of the non-linear initial value problem are
discussed. The evolution of a piecewise constant density gradi-
ent is calculated using the DF equation and the conditions for
the existence of front are discussed in Section 8. Some impor-
tant conclusions are drawn in the final section.

2. Formulation of the problem

We consider a two-dimensional turbulent motion of an un-
bounded fluid saturated porous medium in the (x, z)-plane
with x-axis horizontal having the velocity u and z-axis verti-
cal, anti-parallel to gravity g, having the velocity w. The basic
equations for this incompressible heterogeneous Boussinesq
two-dimensional fluid through a porous medium are the DF
equations

�qi

�t
+ Cb√

k
|qi|qi = − 1

�0

�p

�xi
− �

�0
g�i3 − �

k
qi, (2.1)

and the equation of continuity for heterogeneous fluid

�qi

�xi
= 0, (2.2)

��

�t
+ qi

��

�xi
= 0. (2.3)

Here qi is the Darcian velocity, �, p and g are density, pressure
and gravitational constant, � is the kinematic viscosity of fluid,
k and Cb are the permeability and the drag coefficients of a
porous medium. We derive the equations for turbulent flow
using Reynolds decomposition, where the velocity, density and
pressure are expressed as the sums of the mean and fluctuations
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of the form

qi = qi + q′
i, � = � + �′, p = p + p′, (2.4)

where the bar denotes the mean and prime denotes the fluctu-
ation.

Now,

|qi|qi = |qi + q′
i|(qi + q′

i). (2.5)

We know, from triangular inequality, that

|qi + q′
i|� |qi| + |q′

i|. (2.6)

In this paper, following Rudraiah et al. [12] we force equality
which will be valid when |q′

i| = �iqi where �i > 0 or when q′
i

and qi both have the same sign.
Then, Eq. (2.5) becomes

|qi|qi = {|qi| + |q′
i|}(qi + q′

i),

i.e.

|qi|qi = |qi|qi + |qi|q′
i + |q′

i|qi + |q′
i|q′

i. (2.7)

Applying Reynolds averaging on this we get

|qi|qi = |qi|qi + |qi|q′
i + |q′

i|qi + |q′
i|q′

i

= |qi|qi + |qi|q′
i + |q′

i|qi + |q′
i|q′

i. (2.8)

By definition qi = qi, and q′
i = qi − qi = qi − qi = qi − qi = 0,

so that Eq. (2.8) becomes

|qi|qi = |qi|qi + |q′
i|q′

i. (2.9)

For the Closure problem, we use the Gradient Diffusion Model
namely

|q′
i|q′

i = −km∇qi. (2.10)

This, after using volume average, becomes

|q′
i|q′

i = km√
k

qi, (2.11)

where km is the eddy viscosity and k is the effective perme-
ability of a porous medium.

The positive sign on the right-hand side of Eq. (2.11) is taken
to ensure that turbulence increases the flow.

Then Eq. (2.9), using Eq. (2.11), becomes

|qi|qi = |qi|qi + km√
k

qi. (2.12)

3. Solutions for uniform horizontal density gradient

We consider a two-dimensional turbulent motion of a het-
erogeneous fluid saturated unbounded porous medium in the
(x, z)-plane with the x-axis horizontal and the z-axis vertical
and parallel to gravity �g. The fluid is initially at rest so that

qi = (u, w) = (0, 0) and the initial density is given by

� = �0[1 − �x − �z], � > 0, � > 0, (3.1)

where � > 0 implies the fluid is heavy to the left and � > 0
ensures static stability. The initial value of 	, the angle that the
isopyenals make with the vertical, is given by

tan 	 = �

�
. (3.2)

The equations governing the Boussinesq heterogeneous tur-
bulent fluid saturated with high porosity and low permeability
(for example porous rock matrix in the interior of the earth)
from Eqs. (2.1) to (2.2), under the assumption of unidirectional
horizontal flow (i.e. w = 0) because a constant horizontal den-
sity gradient sets up a horizontal flow and using Reynolds rule
of averages, are

�u

�t
+ �

k
u + Cb√

k
|u|u = −1

�0

�p

�x
, (3.3)

− 1

�0

�p

�z
− �

�0
g = 0, (3.4)

��

�t
= −u

�p

�x
, (3.5)

�u

�x
= 0, (3.6)

where � = �[1 + Cb(km/�)] is the modified viscosity due to
turbulence.

Eliminating the pressure p between Eqs. (3.3) and (3.4) and
integrating the resulting expression with respect to z and using
the constant horizontal density gradient namely −��0 together
with

u = �u

�x
= 0, (3.7)

we obtain

�u

�t
+ �

k
u + Cb√

k
|u|u = −�gz. (3.8)

Eq. (3.8) is made dimensionless using

t = kt ′

�
, u = �

Cb

√
k

u′, z = �2z′

�gCbk
3/2 , (3.9)

and obtain

�u

�t
+ u + |u|u = −z. (3.10)

Eq. (3.10) is solved for the following two cases:
Case 1: When

|u| = −u, z > 0. (3.11)

Case 2: When

|u| = u, z < 0. (3.12)



N. Rudraiah, C.V. Vinay / International Journal of Non-Linear Mechanics 42 (2007) 422–431 425

In case 1, the exact solution of non-linear Eq. (3.10), using
u = 0 at t = 0 is

u(t) = a−(1 − e−bt )

1 + |a−/a+|e−bt
for t → ∞ (3.13)

and

u(t) = a+(1 − ebt )

1 + |a+/a−|ebt
for t → −∞, (3.14)

where a+ = (1 + b)/2, a− = (1 − b)/2, b = √
1 + 4z are the

roots of the equation a2 − a − z = 0. Here a+ corresponds to
t → ∞ and a− corresponds to t → −∞.

We note that in obtaining the solutions (3.13) and (3.14) we
have used the equilibrium (i.e. �u/�t = 0) solution u = a of
Eq. (3.10).

In case 2, the solution of non-linear Eq. (3.10), using
Eq. (3.12), is given by

u(t) = d+(1 − e−ct )

1 + |d+/d−|e−ct
for t → ∞ (3.15)

and

u(t) = d−(1 − ect )

1 + |d−/d+|ect
for t → −∞, (3.16)

where d+ = (c − 1)/2, d− = −(c + 1)/2, c = √
1 − 4z are the

roots of the equation d2 + d + z = 0. Here d+ corresponds to
t → −∞ and d− corresponds to t → ∞.

4. Solution for Darcy regime

In this case, Eq. (3.8), using Cb → 0 and � → �, reduces to
the time-dependent linear Darcy equation

�u

�t
+ u = −z. (4.1)

Solving this we get

u = z(e−1 − 1). (4.2)

If we transform this to dimensional form, using Eq. (3.9) and
taking, � → � we get

u = �gkz

�

(
e

�t
k − 1)

)
. (4.3)

This coincides with the solution of Rudraiah [4] for lami-
nar case. We note that in contrast to solution (4.3), solutions
(3.13)–(3.16) reveal that the effect of turbulence is to generate
non-uniform vertical shear that decays exponentially with time.

Solving Eq. (3.5) after making it dimensionless and using
Eq. (3.14) we get

� = 1 − x


∗
1

− zy


∗
1

+ 
a+t − 
 log
[
1 + a+

b
(ebt − 1)

]
, (4.4)

where 
 = �
√

k/Cb, 
∗
1 = gCbk

3/2/�2, � = �/�, a+ =
(1 + b)/2, b = √

1 + 4z, we note that for Darcy regime,

−
 log[1+ a+
b

(ebt −1)]−
z(e−t −1), so that Eq. (4.4) tends to

� = 1 − x


∗
1

−
(

�


∗
1

)
z + 
z(1 − t − e−t ), (4.5)

which is the density distribution for Darcy regime. It is easily
seen that � given by Eq. (4.5) coincides with the laminar case
given by Rudraiah [4] in the limit Cb → 0. Further, the isopy-
enals in the Darcy regime rotate towards the horizontal with an
angle 	 given by

tan 	 = � + 
∗
2(e

−t + t − 1), (4.6)

where


∗
2 = �gk2

�2 .

We note that as � → �, and Cb → 0, Eq. (4.6) tends to laminar
case given by

tan 	 = � + 
2(e
−t + t − 1). (4.7)

Here 
2 is the value of 
∗
2 for � → � and Cb → 0.

5. Stability analysis

In the case of heterogeneous fluids, a measure of the stability
of the flow is provided by the gradient Richardson number, Ri ,
defined by

Ri = g(��/�z)

�0(�u/�z)2 . (5.1)

This, using Eqs. (4.2) and (4.5), becomes

Ri = �/
∗
2 + t − (1 − e−t )

(1 − e−t )2 . (5.2)

This equation, valid for Darcy regime (Cb → 0) shows that
Ri decreases exponentially with time (at the initial instant it is
infinite) and approaches to 1

2 as t → ∞. This result suggests,
as in the case of laminar flow discussed by Rudraiah [4], that
the flow will be linearly stable.

Even in this non-linear case, the horizontal density gradient
remains at its original value −�0� while the vertical stratifica-
tion varies continuously because a+ and hence b are non-linear
in z and decays exponentially both in space and time. In this
non-linear variation in z, the angle at which isopyenals rotate
towards the horizontal, is given by

tan 	 = � − 
∗
2t

b
+ 
∗

2[1 + ebt (tb2 + tb − 1)]
b3 + a+b2(ebt − 1)

.

Even in the non-linear case frontogenesis does not occur
because of uniform initial horizontal density gradient.

In this non-linear case Ri , defined in Eq. (5.1), takes the form

Ri = f1

f 2
2

, (5.3)
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f1 = − �


∗
2

b + 2

b
+ t + [1 + (1 + 2a+t)ebt ]

a(ebt − 1) + b
,

f2 = 1 + (b + 2a+ + 2a+bt)ebt

(a+ − b − a+ebt )

+ a+b[1 + (1 − 2a+t)ebt ]ebt

(a+ − b − a+ebt )2 .

In contrast to the linear case given by Eq. (5.2), the gradient
Richardson number given by Eq. (5.3) reveals that it decays
exponentially with both space and time and approaches a con-
stant value as t → ∞.

6. Existence and uniqueness theorems of non-linear initial
value problem

In Section 3 we have obtained analytical solutions for the
non-linear Eq. (3.3) using the condition (3.7). It is important to
know under what conditions these solutions exist. If they exist
then we should know under what conditions they are unique.
These conditions are established in the following theorems. For
convenience, the over bar on the physical quantities are omitted.

Existence theorem: A necessary condition for the existence
of a solution of non-linear Eqs. (3.3)–(3.5), is

�2�

�x2 = 0.

Proof. Eliminating the pressure p between Eqs. (3.3) and (3.4)
and differentiating the resulting equation with respect to x and
using the continuity i.e. Eq. (3.6), we obtain

�2�

�x2 = 0. (6.1)

Hence the theorem. From this theorem, it follows that even in
the case of turbulent flow through porous media the frontogen-
esis is associated with the presence of a velocity and transverse
circulation. This also implies that � must be linear for w = 0
to be a valid assumption.

Uniqueness theorem: Let z ∈ R and consider the differential
equation

�u

�t
+ u + u|u| = −z, with the initial condition u(0) = 0.

(6.2)

Then the following uniqueness theorem holds:
Eq. (6.2) admits a unique real solution for all fixed z and is

stated as follows:
Case (i): z > 0, |u| = −u.
In this case let{
a− = 1 − √

1 + 4z

2
, a+ = 1 + √

1 + 4z

2
,

b = √
1 + 4z, (6.3)

then

u(t) = a−(1 − e−bt )

1 + |a−/a+|e−bt
. (6.4)

Case (ii): z < 0, |u| = u.
In this case let{
d− = −1 − √

1 + 4z

2
, d+ = −1 + √

1 − 4z

2
,

c = √
1 − 4z, (6.5)

then

u(t) = d+(1 − e−ct )

(1 + |d−/d+|e−ct )
. (6.6)

Case (iii): z = 0, then u = 0.

Proof. It is enough to prove case (i). The other cases follow in
the same manner. Hence, we assume z > 0. From Eq. (6.2), and
by continuity, there exists T0 > 0 such that −z − u(t)|u(t)| < 0
∀t ∈ [0, T0]. This implies that �u/�t < 0 in [0, T0] and hence
u is decreasing. Therefore, u(t)�u(0) = 0 for all t ∈ [0, T0].

Let T1 = max{T ; u is decreasing in [0, T ](i.e. �u/�t < 0)}.
Next, we allow T1 → ∞. Now in [0, T1], �u(t)/�t < 0 and

hence Eq. (6.2) becomes

�u

�t
= −z − u + u2 = (u − a+)(u − a−),

where a± are the roots of the equation X2 − X − Z = 0 and
are given by Eq. (6.3).

Since a− < 0 < a+ and �u/�t < 0 in [0, T1], hence
a− �u�0. Therefore,

du

(u − a−)(u − a+)
= dt .

That is

−1

b

[
1

a+ − u
+ 1

u − a−

]
du = dt .

Integrating this, we obtain for some c1 ∈ R.

Log

(
u − a−
a+ − u

)
= −bt + c1.

That is(
u − a−
a+ − u

)
= −c2e−bt , c2 = ec1 .

Now u(0) = 0 implies that∣∣∣∣a−
a+

∣∣∣∣ = −a−
a+

= c2

and u is given by

u(t) = a−(1 − e−bt )

1 + |a−/a+|e−bt
.
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This equation is valid for all t ∈ R and hence valid as T1 →
∞ and is the unique solution of (6.2). The other cases can be
proved similarly. �

7. Stability of solution of non-linear equation

In the earlier sections we have obtained the analytical solu-
tion (3.13) of non-linear initial value problem (3.10) valid for
|u|=−u. We, however, note that this solution (3.13) is also valid
for |u|=u when b in Eq. (3.13) is replaced by b=√

1 − 4z. In
otherwords the behaviour of the solution of (3.10) with |u|=−u

in the upper half of the porous region (i.e. z > 0) is the same as
the solution of Eq. (3.10) with |u| = u in the lower-half of the
porous region (i.e. z < 0). The solution (3.13) is quantitatively
and qualitatively different for z� 1

4 and z > 1
4 in the upper half

of the region (i.e. z > 0). It is also different from the linear so-
lution (4.2) of Eq. (4.1) valid for Darcy regime as well as the
solution (4.3) valid for laminar flow in the presence of a porous
medium.

It is of interest to note that the solution (4.3) of linear
Eq. (4.1) obtained by Rudraiah [4] for laminar flow in the
presence of a porous medium is real and establishes a uniform
shear which accelerates at a constant rate. In contrast to this,
the solution (4.2) of linear Eq. (4.1) valid for Darcy regime
Cb → 0 although real and establishes a uniform shear but
decreases exponentially with time. However, the solution (3.15)
of non-linear Eq. (3.10) behaves differently from the other two
solutions (4.2) and (4.3) in the sense that the solutions (4.2)
and (4.3) are always real, where as the solution (3.15) may be
real or complex depending on z < 1

4 or z > 1
4 , respectively. For

(z > 0) solution (3.13) is real for z < 1
4 and decreases with in-

creasing z. We note that for z = 1
4 , b = 0 and Eq. (3.13) (which

is also valid for |u| = u when b in Eq. (3.13) is replaced by√
1 − 4z) becomes indeterminant and takes the form

u = −t

2(2 + t)
. (7.1)

This tends to − 1
2 as t → ∞ representing stable solution. We

note that z = 1
4 is a stable solution. For z > 1

4 solution (3.13)
becomes complex conjugate. The stability of the equilibrium
solution of Eq. (3.10) subject to infinitesimal disturbances is
important here because of the oscillatory nature of the solution
(3.13) and is discussed below.

The equilibrium solution of (3.10) is a steady solution u= a

for which �u/�t = 0 where

a = −1

2
+

√
1 − 4z

2
= −1 + b

2
, b = √

1 − 4z. (7.2)

Note that the steady solution is always real and is positive
for positive sign and negative for negative sign in Eq. (3.10)
in the lower half of the region (z < 0). In the upper half of the
region (z > 0), there are two negative real steady solution for
z < 1

4 . No real solution exist for z > 1
4 . To examine the stability

of the steady solution, we write Eq. (3.10) as

du′

dt
= −(b + u′)u′, (7.3)

where u′ is a perturbation without approximation on the equi-
librium solution u = a and written as u = a + u′. To study the
stability of the solution u = a for b > 0, we assume u′ be in-
finitesimally small, so that linearising (7.3) we get

du′

dt
= −bu′. (7.4)

This equation has the solution

u′ = −ae−bt , (7.5)

where −a is the given initial condition of u′. If b > 0, u′ → 0
as t → ∞ for all a. Therefore, all infinitesimal perturbations
about the equilibrium point u = a remain infinitesimal for all
time and hence the solution is stable. Similarly we can see that
for b < 0 (i.e. negative root in b = (1 + 2a)) the equilibrium
solution is unstable because as infinitesimal disturbance, u′,
grows until it becomes no longer small.

In general, it may not be sufficient to conclude the stability of
the solution of the non-linear equation from the stability of the
solution corresponding to linear equation because the arbitrary
perturbations may make the solution unstable even the solution
of linear equation is stable. This is not so in the present problem.
The solution which was stable for infinitesimal perturbations is
also stable for arbitrary perturbations as shown below. At the
critical point z = 1

4 ; b = 0 and hence Eq. (7.3) becomes

du′

dt
= −u′2, (7.6)

satisfying the initial condition u′(0)= 1
2 because a=− 1

2 in this
case. The solution of (7.6) satisfying this initial condition is

u′(t) = 1

2 + t
, (7.7)

which tends to zero as t → ∞. Therefore, even in the non-
linear case the equilibrium solution is stable.

8. Frontogenesis

The results of Section 3 reveal that frontogenesis does not
occur when the initial horizontal density gradient is constant. A
non-uniform initial horizontal density gradient sets up vertical
motion denoted by w in addition to horizontal motion. In this
case the governing Eqs. (2.1)–(2.3) under the assumptions de-
scribed in the previous section and making dimensionless using
Eq. (3.9) take the form

�u

�t
+ 
∗

2u
�u

�x
+ 
∗

2w
�u

�z
= −
∗

2
�p

�x
− u − |�q|u, (8.1)

�w

�t
+ 
∗

2u
�w

�x
+ 
∗

2w
�w

�z
= −
∗

2
�p

�x
− w − |�q|w − 
∗

1�,

(8.2)
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�u

�x
+ �w

�z
= 0, (8.3)

��

�t
+ 
∗

2u
��

�x
+ 
∗

2w
��

�z
= 0, (8.4)

where |�q| = √
u2 + w2,


∗
2 = �gk2

�2 = 

∗
1,

using Eq. (8.3), we define a stream function � as

u = −��

�z
= −�z and w = ��

�x
= �x . (8.5)

Substituting Eq. (8.5) into Eqs. (8.1) and (8.2) and eliminating
the pressure we get

− ∇2�t + 
∗
2�z∇2�x − 
∗

2�x∇2�z − ∇2�

− (�2
x� + �2

z)
1/2∇2� − (�2

x + �2
z)

−1/2

× [2�x�z�xz + �2
x�xx + �2

z�zz] − 
∗
1
��

�x
= 0, (8.6)

where ∇2� = �xx + �zz.
We consider the time evolution of this system by writing the

solution as a power series in t in the form

� = �0 + �1t + �2t
2 + �3t

3 + · · · , (8.7)

� = �0 + �1t + �2t
2 + �3t

3 + · · · . (8.8)

Since the fluid is at rest initially, we have �0 = 0 and �0 =
�0(x, z) which is the initially specified density distribution.

We substitute Eqs. (8.7) and (8.8) into Eq. (8.6) and equate
the coefficients of t under the assumption that w>u so that
|�q|u = u2 and |�q|w = uw to obtain the following governing
equations without the effect of inertia. The terms of order t2

will give the effect of inertia.
At O(t0) we have

∇2�1 = −
∗
1�0x , (8.9)

�1 = 0. (8.10)

At O(t1), we have

2∇2�2 + ∇2�1 + 
∗
1�1x = 0.

This, using Eqs. (8.9) and (8.10), becomes

∇2�2 = 
∗
1�0x

2
. (8.11)

From Eq. (8.10) we see that, the derivative in Eq. (8.4) may
be approximated by

�xt = −
∗
2(u�x)x . (8.12)

This implies that the time evolution of the density gradient
is determined by the sign of (u�x)x . From this it follows that
an increase in the horizontal density gradient, and hence the
frontogenesis, will occur only when the horizontal motion in
the region of stronger density gradient is towards the region of
the weaker density gradient.

To know the effect of inertia we have to go up to third
order, namely up to the term involving t2. Then from Eq. (8.6),
equating term of order t2 to zero, we get

∇2�3 = 1
3 [−
∗

2�1x∇2�1z + 
∗
2�1z∇2�1x − ∇2�2 − 
1�2x

+ 2�1z�1zz + �1z�1xx + �1x�1xz]. (8.13)

Further, from Eq. (8.4), we have

�1 = 0, �2 = 1
2 (�1z�0x − �1x�0z),

�3 = 1
3 (�2z�0x − �2z�0z) (8.14)

and hence

� = �0 + 1
2 (�1z�0x − �1x�0z)t

2

+ 1
3 (�2z�0x − �2x�0z)t

3 + · · · . (8.15)

Section 3 revealed that frontogenesis cannot occur for uni-
form horizontal initial density gradient. Hence, as in the case of
laminar flow discussed by Rudraiah [4], we have to consider a
non-uniform horizontal density gradient to show whether fron-
togenesis occurs or not. Therefore, we assume, for simplicity
the piecewise initial density gradient of the form

� =
{1 − �1


∗
1x, x < 0,

1 − �2

∗
1x, x > 0,

(8.16)

where �1 = �1/�, �2 = �2/�, �1 and �2 are the values of � in
x < 0 and x > 0, respectively. This shows a discontinuity in the
density gradient at x = 0 even though the density is continuous
there. Substituting Eq. (8.16) into Eqs. (8.9), (8.11) and (8.13),
we have

∇2�1

{�1, x < 0,

�2, x > 0,
(8.17)

∇2�2

⎧⎨
⎩

−�1

2
, x < 0,

−�2

2
, x > 0,

(8.18)

∇2�3 = �1

6
[1 + �1zx
2] + 1

3
[2�1z�1zz

+ �1z�1xx + �1x�1xz] for x < 0 (8.19)
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and

∇2�3 = �2

6
[1 + �1zx
2] + 1

3
[2�1z�1zz

+ �1z�1xx + �1x�1xz] for x > 0. (8.20)

Eqs. (8.17)–(8.20) are the system of Poisson equations which
are of elliptic type. Solving them, we get

�1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
�1z

2 + 1

8
�2h

2 + 2
(�1 − �2)h

2


3

∞∑
i=0

ai, x < 0,

1

2
�2z

2 + 1

8
�1h

2 − 2
(�1 − �2)h

2


3

∞∑
i=0

bi, x < 0,

(8.21)

�2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4
�1z

2 + 1

16
�2h

2 + 2
(�1 − �2)h

2


3

∞∑
i=0

ai, x < 0,

1

4
�2z

2 + 1

16
�1h

2 − 2
(�1 − �2)h

2


3

∞∑
i=0

bi, x < 0.

(8.22)

Similarly the solution of (8.19) is determined and the ex-
pression is avoided here as it is lengthy. In computing � =
�1t +�2t

2 +�3t
3 the effects �3 is included and the results are

represented graphically and discussed in the final section. In
Eqs. (8.21) and (8.22), ai and bi are given by

ai = (−1)i

(2i + 1)3 cos[(2i + 1)
z]e(2i+1)
x (x < 0),

bi = (−1)i

(2i + 1)3 cos[(2i + 1)
z]e−(2i+1)
x (x > 0).

From Eqs. (8.21) and (8.22) it follows that in the absence of
horizontal discontinuity, that is, for a uniform horizontal den-
sity gradient for x < 0 and x > 0, the terms multiplying the
summations (�) become zero and � will be a pure function
of z. Therefore, wi = 0 (i = 1, 2) and u1 = −�1z (x > 0) and
u2 =�2z (x < 0) as found in Eq. (4.2) of Section 3. In the pres-
ence of the discontinuity in the density gradient i.e. �1 �= �2,
it produces an additional circulation expressed as the sum in
Eqs. (8.21) and (8.22). We also see that the effect of increase
in the eddy viscosity � of the fluid is to increase this circula-
tion while the effect of an increase in effective permeability k

of the medium is to decrease this circulation. We also note that
u is positive, and increases with a decrease in effective per-
meability k and is greater if �1 > �2 for x < 0 than for x > 0.
This is the result of effective permeability of the medium and
the steeper density gradient on the left-hand side of the chan-
nel. The excess flux at x = 0 from x < 0 result in developing
upward velocity as seen from Eq. (8.22). This upward velocity
provides the maximum flux towards x → −∞ required in the
upper half of the channel. If �2 > �1 the sense of circulation is
reversed.
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Fig. 1. (a), (b) Velocity profiles for z = 1, 5, 10.

The advection of density � is given by Eq. (8.15). From this,
we get

� = (1 − �1

∗
1x) − (1 + t)t2

[
1

2
�2

1z − (�1 − �2)�1h


2

]

×
∞∑
i=0

Ciedix (x < 0)

� = (1 − �2

∗
2x) − (1 + t)t2

[
1

2
�2

1z − (�1 − �2)�2


2

]

×
∞∑
i=0

Ciedix (x > 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(8.23)

where

Ci = (−1)i
3

d2
i

sin diz, di = (2i + 1)
.

Frontogenesis occurs when there is an increase in �x . The
maximum value of �x occurs at x=0 and from (8.23) it follows
that as x → 0:

�x = −
∗
1�2 + (1 + t)t2

2
(�1 − �2)�2
 log

[
tan

(


4
(1 + 2z)

)]
.

(8.24)
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Fig. 2. Streamlines for �1 = 1.05 and �2 = 0.06.

Since �1 > �2, it is clear from Eq. (8.24) that �x increases
with time for z < 0 and decreases for z > 0. This implies that
Frontogenesis occurs along the lower portion of the channel.
This can also be established from the stream function profiles
and isopyenal deformation drawn in Figs. 2 and 3.

9. Conclusions

The effects of Darcy resistance, Forchheimer inertia and the
variation of initial density both in the horizontal and vertical
directions on a turbulent motion of a heterogeneous fluid sat-
urated porous medium are investigated analytically. The main
conclusions are as follows.

1. In the case of a uniform horizontal density gradient, dis-
cussed in Section 3, a purely horizontal motion develops
where the inertial effect comes through the Forchheimer
quadratic drag term |�q|�q satisfying the non-linear partial
differential Eq. (3.10). This non-linear initial value prob-
lem is solved for both |u| = u and |u| = −u. Its solution
for |u| = −u is given by Eq. (3.13). We note that the solu-
tion for |u| = u is the same as Eq. (3.13) with b given by
b=√

1 − 4z with z < 0. The solution given by Eq. (3.13) is

computed and the results are drawn in Fig. 1 valid for t →
±∞. For t → ∞ the velocity decreases and approaches a
constant value −2z/(1 + b) for a fixed z and for t → −∞
the velocity increases initially and approaches a constant
value 2z/(b − 1) for a fixed z. Further, the non-linear so-
lution (3.13) is different from the linear solution (4.2) in
the sense that the solution (4.2) establishes a uniform shear
which decreases exponentially with time whereas the so-
lution (3.13) establishes a non-uniform shear varying both
with space z and time t as seen in Fig. 1.

2. Instantaneous streamlines for the flow with �1 > �2 and for
different values of t are drawn in Fig. 2. We see that the
streamlines are closer together on the left (x < 0) than on the
right (x > 0) as a result of the more intensive flow produced
by the larger density gradient there. The time evolution of
the density field given by Eq. (8.23) is shown in Fig. 3
for different dimensionless time t . From this it is clear that
the density profiles are crowded at the lower region show-
ing the increase in density gradient and beginning of fron-
togenesis there. We also see that the density profiles no
longer remain straight and curvature develops near x = 0.
This curvature sets up a circulation in the transverse plane
and hence the magnitude of the density gradient increases
with dimensionless time.
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Fig. 3. Isopyenals for t = 1.4, �1 = 1.05, �2 = 0.06 and 
∗
1 = 4.
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