
April 29, 2006 10:30 WSPC/157-IJCIA 00173

International Journal of Computational Intelligence and Applications
Vol. 5, No. 4 (2005) 471–493
c© Imperial College Press

SAGAXSEARCH: AN XML INFORMATION RETRIEVAL
MECHANISM USING SELF ADAPTIVE GENETIC

ALGORITHMS

K. G. SRINIVASA∗, S. SHARATH† and K. R. VENUGOPAL‡

Department of Computer Science and Engineering
University Visvesvaraya College of Engineering

Bangalore University, Bangalore — 560001, India
∗kgsrinivas@msrit.edu
†sharaths@infosys.com

‡venugopalkr@gmail.com

M. PATNAIK

Microprocessor Applications Laboratory
Indian Institute of Science
Bangalore — 560012, India

lalit@micro.iisc.ernet.in

Received 19 June 2005
Revised 14 October 2005

The XML technology, with its self-describing and extensible tags, is significantly con-
tributing to the next generation semantic web. The present search techniques used for
HTML and text documents are not efficient when retrieving relevant XML documents.
In this paper, Self Adaptive Genetic Algorithms are presented to learn about the tags,
which are useful in indexing. The indices and relationship strength metric are used to
extract fast and accurate semantically related elements in the XML documents. The
Experiments are conducted on the DataBase systems and Logic Programming (DBLP)
XML corpus and are evaluated for precision and recall. The proposed SAGAXsearch out-
performs XSEarch3 and XRank20 with respect to accuracy and query execution time.

Keywords: Self-Adaptive Genetic Algorithms; indexing; XML search; proximity metric.

1. Introduction

Extensible Markup Language (XML) has been recognized as a standard for describ-
ing the data format and its meaning. The user defined tags associate the semantics
with the contents of XML documents. Hence XML is a medium for interoperability
over the Internet. With these advantages, the amount of data that is being pub-
lished on the Web in the form of XML is growing enormously and many näıve users
find the need to search over large XML document collections. The keyword query
is a search technique that does not require the users to know the structure of the
underlying data. There is no need to learn complex query languages to discover

471

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72802172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


April 29, 2006 10:30 WSPC/157-IJCIA 00173

472 K. G. Srinivasa et al.

knowledge. Thus, the keyword search over XML documents in the present context
is of significant importance.

Keyword search over large document collections has been extensively used for
text and HTML documents1 and it has two main drawbacks. First, search engines
are not as intelligent as their users. For example, a keyword search “Kevin Database
Technology ” will retrieve documents in which Kevin is the author and also docu-
ments in which Kevin is mentioned in the references with equal priority, though
the former is more semantically relevant to the user. The second drawback is that
keyword queries are inherently flexible in nature and can produce large number of
results. The results are of varying relevance to the user and they need to be ranked.
The time taken to rank the results should be a small portion of the total query
execution time. In contrast, a structured query language will retrieve only the most
relevant results, but the complex query syntax makes it unsuitable for näıve users.
Thus an approach which has the flexibility of keyword queries that still retains
the accuracy of a query language would be most suitable. The keyword search over
XML documents pose many new challenges.2 First, the result of a search over XML
documents is not the document in its entirety, but only relevant document frag-
ments. As an illustration, consider a keyword search query “operating system” over
the XML document in Fig. 1. The keyword is associated with the <inproceedings>
tag (line 19) and is a relevant result, but returning only the elements related to the
<inproceedings> tag (line 19) would be more intuitive than returning the whole
document. Thus, granularity of the search terms must be refined when searching
over XML document corpus.3

Second, the result of a keyword search over XML documents must be seman-
tically interconnected document fragments. Consider the keyword search “Ananth
Synchronization mechanism” over the XML document shown in Fig. 1. Though, the
keywords exist independently in the XML document (line 4, 15), they belong to
different <inproceedings> tags. The author “Ananth” is not semantically inter-
connected to the title “synchronization mechanism”. Thus, only semantically
interconnected document fragments should contribute to the search results.

Finally, XML documents include large amounts of textual information and part
of this is rarely searched. Building a single index for the whole document will make
the index bulky and difficult to manage. Thus, there is a prospect of improving the
search accuracy and query execution time by separating the frequently searched
tags from the occasionally searched ones and building separate indices for both, and
this is explored by the use of a Self-Adaptive Migration Model Genetic Algorithm
(SAMGA).5 A search over the XML documents in the decreasing order of the
importance of the tags is accurate and efficient.

Genetic algorithms (GA)4,6 is an extremely effective technique for searching
enormous, possibly unstructured solution spaces. The solutions are represented
by chromosomes which are strings of alleles. The recombination of chromosomes
creates new strings with alleles taken from the parent chromosomes. Since solutions
are evolved by trying out answers and combining the answers that work best, the

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 473

1) <dblp>

2) <inproceedings>

3) <author>I.S. Vipin</author>

4) <author>C.G. Ananth</author>
5) <author>G. Sarah</author>

6) <title>Land Use: Problems and Experiences.</title>

7) <pages>135-172</pages>

8) <year>1979</year>

9) <crossref>conf/ibm/1979</crossref>

10) <booktitle>Data Base Techniques </booktitle>

11) <url>db/conf/ibm/db79.htm#zaGM79</url>

12) < /inproceedings>

13) <inproceedings>

14) <author> A. N. Ravi</author>

15) <title>Synchronization mechanisms</title>

16) <pages>2-22</pages>

17) <year>1980</year>

18) <crossref>conf/ibm/1980</crossref>
19) <booktitle>Operating Systems </booktitle>

20) <url>db/conf/ibm/80.html#Saito80</url>

21) </inproceedings>

22) </dblp>

Fig. 1. Example of a XML document.

technique is particularly well-suited to solving problems where the solution space
is large. In island or migration model of Genetic Algorithms instead of a single
population, a set of populations are considered.7 Regular migration of individuals
between the populations ensures that the best offsprings are retained and less fit
individuals are eliminated.

The human search strategy which is efficient for small documents, is not viable
when performing search over enormous amounts of data. Hence, making search
engines cognizant of the search strategy using GA, can perform fast and accurate
search over large document collections.

Contributions: We have explored the possibility of retrieval and ranking of XML
fragments based on keyword queries. Self adaptive and real coded Genetic Algo-
rithms are used for learning tag information. A measure of distance metric between
the keywords among the XML documents is proposed. Genetically learned tag infor-
mation is used to retrieve semantically interconnected document fragments.

The rest of the paper is organized as follows. Section 2, describes the motivation
behind the proposed technique with an example. The related work in the field of
information retrieval from XML documents is presented in Sec. 3. The XML data

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

474 K. G. Srinivasa et al.

model is discussed in Sec. 4. The genetic learning of tag information is explained
in Sec. 5. In Sec. 6, we discuss the XML identification schemes and the search
technique. Section 7 presents the experimental results and finally, Sec. 8 concludes
the paper with directions for future work.

2. Motivation

Consider the XML document fragments, an excerpt from a health-care record. Con-
sider a keyword search “Vinu salbutamol ” over the XML document in Fig. 2. A
standard HTML search engine would consider the whole document in Fig. 2 as a
suitable response, due to the presence of both the terms in the search query. How-
ever, in XML environment the two search terms occur as totally unrelated elements
in the document as they belong to the medical records of different patients.

In the XML document of Fig. 2 the keyword “penicillin” appears in two dif-
ferent contexts; first it is associated with the <administer> tag and then with
the <drug allergy> tag and the tag name precisely categorizes between the two
occurrences. Additional information like name, record identifiers are also explicitly
captured using application specific self explanatory tags. This is useful in keyword
search over XML documents. Thus exploiting the tagged and nested structure of
XML can help in effective knowledge discovery. We describe in this paper, an archi-
tecture, implementation and evaluation of a search engine for retrieving relevant
XML document fragments in real time.

3. Related Work

Search engines for XML can be classified into two general categories: database-
oriented and information retrieval-oriented. In the database approach,11 the XML

<medical records>

<patient>

<name> Vinu Krishnan </name>

<record id> 4312</record id>

<administer> penicillin </title>

<drug allergy>none</allergies>

</patient>

<patient>

<name> Victor James </name>

<record id> 4313</record id>

<administer>salbutamol </administer>
<drug allergy>penicillin</drug allergy>

</patient>

</medical records>

Fig. 2. Example health-care record.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 475

documents are decomposed and stored in relational database. However, query pro-
cessing becomes expensive since, in many cases, an excessive number of joins
is required to recover information from the fragmented data. Object-oriented
databases have been associated with XML document collections.9 In this case,
retrieval of information from XML documents is considered as an object view
problem.

Extensive research has been done on structured declarative queries over XML
documents. A structured declarative query is supported by XQuery,12 which is
analogous to SQL queries over relational databases. Though XQuery can achieve
perfect precision and recall, they require user to learn query semantics and in cases
where the user is unaware of the document structure, a search cannot be performed.
An improvement over XQuery that has elegant syntax and semantics is developed
in Ref. 13.

Information retrieval techniques can consider XML documents as normal text
documents, with additional markup overhead. There are several ways of handling
the tags. For simplicity, the tags can simply be ignored but the document loses
its semantics, leading to lower retrieval performance. When tags are taken into
consideration, search can retrieve documents containing certain tags, or certain
words. Keyword search over XML documents falls under this category.

In information retrieval, Genetic Algorithms have been used in several ways14

but in a different context. Genetic Algorithms have been used to modify user
queries15,16 and for automatic retrieval of keywords from documents. In Ref. 17,
GA is applied to adapt multiple matching functions obtained from the combination
of scores using individual matching functions. This is used to rank and retrieve
documents. In Ref. 18, GA has been used for mining of HTML structures. The
algorithm learns the important factors of HTML tags through a series of queries.

Keyword search over XML documents is supported by XKeyword,19 XRANK,20

and XSEarch.3 All these keyword search techniques have elaborate ranking schemes.
The simplicity of the search queries, i.e. keywords, make these techniques suitable
for näıve users. But, precision and recall values tend to suffer and the extensive
ranking function employed acts as an overhead during query execution.

In XRANK,20 the hierarchical and hyperlinked structure of XML documents
are taken into account while computing the ranks for the search results. A ranking
technique at the granularity of XML elements is considered here. XRANK can query
over a mix of XML and HTML documents.

XSEarch3 introduces a concept known as interconnected relationship. However,
checking for the interconnected relationship is a huge overhead during runtime.
Moreover, XSEarch suffers from drawbacks similar to other keyword search engines:
unimpressive precision and recall values. In our proposed SAGAXsearch algorithm,
the association of Self Adaptive Genetic Algorithms with keyword queries ensures
high accuracy, i.e. very few non-relevant fragments (high precision) and most of the
relevant fragments (high recall) will be selected as results. This is indicated by the
experimentation results in Sec. 7.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

476 K. G. Srinivasa et al.

4. XML Data Model and Query Semantics

In this section, we briefly describe the XML data model and the keyword query
semantics for search over XML documents.

4.1. Data model

The Extensible Markup Language (XML) is a human readable, machine under-
standable, general syntax for describing hierarchical data, applicable to a wide
range of applications. XML allows users to bring multiple files together to form a
compound document. The XML document consists of nested elements starting from
the root and corresponding associated values. Figure 1 shows a sample XML docu-
ment, an excerpt from the XML version of DBLP. The <dblp> is the root element,
and it has <author>, <title>, <pages>, <year> as its sub-elements. The XML
document can be considered as a directed, node-labeled data graph G = (X, E).
Each node in X corresponds to an XML element in the document and is character-
ized by a unique object identifier, a label that captures the semantics of the element
and leaf nodes are associated with a sequence of keywords. E is the set of edges
which define the relationships between nodes in X . The edge (l, k) ∈ E, if there
exists a directed edge from node l to node k in G. The edge (l, k) ∈ E also denotes
that node l is the parent of node k in G. Node l is also the ancestor of node k if a
sequence of directed edges from node l leads to node k. The document tree for the
XML document in Fig. 1 is shown in Fig. 3.

4.2. Query semantics and results

Let the XML document tree in Fig. 3 be called τ . Let x be an interior node in
this tree. We say that x directly satisfies a search term k if x has a leaf child that
contains the keyword k and x indirectly satisfies a keyword k if some descendent of x

directly satisfies the search term k. A search query q = {k1, k2, . . . , km} is satisfied

dblp
(0)

inproceedings
(1)

inproceedings
(2)

author
(3)

year
(5)

author
(6)

title
(7)

year
(8)

title
(4)

I.S. Vipin Land
use...

1979 A.N. Ravi synchronization... 1980

Fig. 3. Part of the XML document tree.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 477

by a node x iff x satisfies each of k1, k2, . . . , km either directly or indirectly. For
example, in the XML tree shown in Fig. 3, inproceedings (1) satisfies the search
term “Vipin” and the search term “Vipin 1979 ” but not the term “Vipin 1980 ”.

We say that R = {x1, x2, . . . , xl} is a search result consisting of l nodes if:

(i) Each node in the set {x1, x2, . . . , xl} satisfies at least one term from
{k1, k2, . . . , km}.

(ii) {x1, x2, . . . , xl} ∈ τ .
(iii) The set of nodes {x1, x2, . . . , xl} shall be semantically relevant.

Semantically related nodes are nodes that appear in the same context; for example,
an author and the title of his book having the inproceedings ancestor node. A
mathematical measure of semantic relationship is given in Sec. 6. The various steps
in the working of SAGAXsearch are enlisted below:

1. A representative training set is chosen to assist the genetic learning of tags.
2. The keyword queries and the relevant search results are collected from the user.
3. The genetic algorithm retrieves the tag combination, which can answer a maxi-

mum number of training queries.
4. Separate indices are built for the frequently used and occasionally used tag

combinations.
5. A search over the XML documents in the decreasing order of importance of tags

is performed.
6. The search produces only semantically related results.

5. Genetic Learning of Tags

XML documents include extensible tags for formatting the data. The tags represent
the semantics of the data and thus can contribute to improve the accuracy of
keyword search. Making use of Genetic Algorithms to learn the tag information
has two advantages. First, separate indices can be built for both the frequently
and less frequently searched tags. The problem space in such an operation is large,
as the XML document corpuses are usually huge. Hence, Genetic Algorithms are
used because of their ability to find accurate solutions in large problem spaces.
Second, when the same keyword appears more than once in the XML document
with different semantics (different tags), the knowledge learnt from the GA is used
to rank the search results. Hence, the results that are more relevant to the user
queries are better ranked than the other results. The architecture of the genetic
learning system is illustrated in Fig. 4.

GA is an evolutionary process where at each generation, from a set of feasible
solutions, individuals are selected such that those with higher fitness value have
a greater possibility of reproduction. At each generation, the chosen individuals
undergo crossover and mutation to produce populations of successive generations.
The selection chooses the best individuals for crossover. With crossover, the char-
acteristics of the parents are inherited by the individuals in the next generation.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

478 K. G. Srinivasa et al.

XML Document
Set

Frequently Used
Tag Combination

Genetic Learning
of Tags

Occasionally Used
Tag Combination

Training
Queries

Tag
Selection

Tag
Selection

Fig. 4. Genetic learning of tags.

Mutation helps in restoring lost or unexplored regions in the search space. These
three operators are inspired from the biological process of evolution and can find
possible solutions even in a large problem space.

In simple GA, the three basic operators of GA namely, selection, crossover and
mutation are fixed a priori. As the individuals evolve through generations, these
operators remain constant. A new breed of GA called adaptive GA4 adjusts the
values of the operators based on the fitness of the individual in the population.
Such an adaptive GA can exploit previously discovered knowledge for a focused
search on parts of the search space which is more likely to yield better results
and at the same time can search over the unexplored regions. In migration model
GA,7 instead of a single population, a set of populations is evolved. The basic
operators of GA are applied independently for each population and at some regu-
lar intervals; individuals are exchanged between populations for a more diversified
search.

In order for the self adaptive real coded GA to learn the tag information, it has
to be adaptive in three aspects. The first parameter that is adaptively changed is
the size of each population. The population size is determined by the fitness of the
best individual in the population compared to the mean fitness of the population.
The number of individuals in the population Pi is updated as,

ni,t+1 = ni,t + (f(Pi)/f̄) − 1,

where t is used to represent the time in generations. With this update, the size of
the population grows when the fitness is greater than the value of the mean fitness
and vice versa. Thus, the algorithm is more explorative in the problem space where
there is more likelihood of finding the solution. Though the number of individuals
in each population varies, the total number of individuals in the ecosystem remains
the same.

The second parameter that is dynamically updated is the mutation rate and is
given by,

pmi,t+1 = pmi,t + (n̄/ni − 1) × 0.0001.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 479

Using this update, we see that, if the number of individuals in a population is less
than the size of the mean population then the mutation rate is increased in order
to make the search more explorative. In contrast, if the size of the mean population
is smaller, then the mutation rate is decreased.

The final parameter that is adaptive in the algorithm is the rate of migration.
Migration refers to copying individuals from one population to another. Migration
helps in discovering new schemas generated by the crossover of two populations. In
the algorithm, migration occurs only when the average fitness of the populations
remains unchanged between two generations. Thus, when populations have attained
a steady state, migration occurs to try and discover a new schema.

The selection operator tries to improve the quality of the future generations by
giving individuals with higher fitness, a greater probability of getting copied into
the next generation. Here the assumption is that parents with higher fitness values
generate better offspring. The purpose of SAMGA is to select from the tag pool,
the tag combinations which are interesting to a user. The user has to first issue
a set of search queries q = {k1, k2, . . . , km}. The documents satisfying the search
terms are retrieved as results. The user has to classify the results relevant to him.
This is the feedback given to the system in order to learn the user interest. The
fitness function used in the GA is given by,

fitness = α ×
(

N∑
i=1

freq(i)/rank(i)

)
+ (1 − α) × N,

where N is the number of documents retrieved with a specific tag configuration,
freq(i) is the frequency of occurrence of the terms of the query q = {k1, k2, . . . , km}
in the ith retrieved document. The retrieved documents are ranked according to
the frequency of occurrence of the terms of the query. The rank(i) denotes the
rank of the ith retrieved document, provided the document is also classified as
relevant by the user; α is a parameter that is used to express the degree of user
preference for accuracy of the search results and the total number of documents that
are retrieved. This fitness value is assigned to each individual of the population.
The reproduction probability of the individuals in the population depends upon
its fitness value and the fitness values of the other individuals in the population.
The selection operator used in the algorithm is stochastic universal sampling. Here
individuals of the population are assigned contiguous segments on a straight line
based on their fitness values. Let b be the total number of individuals selected,
which are placed on equidistant points over a line. The distance between the points
is given by 1/b. Such a selection scheme has a zero bias and minimum spread, and
is found suitable for our algorithm.

The recombination operator used is intermediate recombination, where the vari-
able values of the offspring are around and between the variable values of the par-
ents. Geometrically intermediate recombination produces variables with a slightly
larger hypercube than that defined by the parents but constrained by the values
of ρ. A real valued mutation operation is also applied in the algorithm to explore
new regions and make sure that good genetic material is never lost.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

480 K. G. Srinivasa et al.

Consider a representative training set with n documents on which keyword
search is to be performed. Let q = {q1, q2, . . . , qm} be a collection of typical user
queries where qi represents the ith query and m is the total number of queries.

• E = {P1, P2, . . . , Pnp} be the ecosystem with np sub-populations,
• Pi[j] represents the jth individual of the population Pi,
• ni be the size of the population Pi,
• f̄i be the average fitness of population Pi,
• f(Pi) be the fitness of the best individual of the population Pi,
• f̄ be the average fitness of the ecosystem,
• n̄ be the average number of individuals per population, and
• pmi be the rate of mutation used for population Pi.

Self Adaptive Genetic Algorithms for Learning Tag
Information:

1) for each population Pi in the ecosystem

i. Set ni, number of individuals in the population Pi to some
arbitrary value n0.

ii. Assign random tag weights for every individual of Pi

iii. Set the mutation rate pmi for population Pi, to some arbitrary
value pm0.

2) next
3) for gen = 1 : maximum generation limit, do

a) nsum = 0
b) fsum = 0
c) for each population Pi in the ecosystem

i. Order the tags by their decreasing weights and select the
top k tags for each individual in Pi.

ii. Evaluate the fitness of all individuals in the population Pi

using the top k tags and the training queries q. Evaluate
f(Pi) the best fitness of the population.

iii. nsum = nsum + ni

iv. fsum = fsum + f(pi)

d) prev = f̄

e) f̄ = fsum/np

f) n̄ = nsum/np

g) for each population Pi in the ecosystem

i. pmi = pmi + (n̄/ni − 1) ∗ 0.0001
ii. ni = ni + (f(pi)/f̄) − 1
iii. if (ni == 0) delete population Pi

(Continued )

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 481

(Algorithm Continued )

h) for each population Pi in the ecosystem

i. For the population Pi perform a selection with stochastic
universal sampling as the selection operator and with the
modified population size ni.

ii. Perform discrete recombination on the selected individuals
of population Pi

iii. Perform mutation on the individuals of the population Pi

with the mutation probability pmi.

i) next
j) if prev == f̄ , migrate the best individuals between populations.
l) endif

4) next
5) end

The definition of the chromosome is represented as j = {j1, j2, . . . , jl} where ji, a
real number, denotes the weight of the tag i, l is the total number of distinct tags
appearing in the document corpus which can be determined from the Document
Type Definition (DTD) of the corpus. Thus, a tag weight is associated with each
of the distinct tags appearing in the document collection.

The result of this self adaptive GA is the classification of tags as either fre-
quently used or occasionally used. This precise categorization helps in maintaining
separate indices for the information within the tags. The information within the
frequently used tags is stored in an index called Most Frequently used Index (MFI)
and the information within the occasionally used tags is stored in an index called
Less Frequently used Index (LFI). The problem can be generalized to create many
indices, prioritized according to the frequency of their usage.

6. Search Algorithm

The response to a search over an XML document is not the document in its entirety
but only semantically related and relevant document fragments. In this section we
discuss the identification schemes and semantic relationship between nodes in the
XML tree. An algorithm to retrieve and rank the results is also discussed.

6.1. Identification scheme

The granularity of search over XML documents is not at the document level, but
at the node level in the XML document tree. Hence, an identification scheme for
the nodes in the document tree is required. This is accomplished by encoding the
position of each node in the tree as a data value before storing it in an index. Given
the identification values of the nodes, the scheme must also be able to reconstruct

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

482 K. G. Srinivasa et al.

the original XML tree. An identification scheme called Hierarchical Vector for Iden-
tification (hvi) is derived.

Let x be a node in the XML document tree τ . Then the Hierarchal Vector for
Identification of x is recursively defined as,

hvi(x) = [hvi(parent(x))j] and hvi(root) = τid.

Here, τid is a unique identification number assigned to the XML document tree τ ,
parent(x) is the parent of the node x in the XML document tree τ and j represents
the sibling number of the node x with respect to its parent. With this identification
scheme, each node captures its absolute position within the whole document. The
hvi of a node identifies itself and all its ancestors. The hvi of various nodes in two
XML documents are shown in Figs. 5(a) and (b).

Theorem 1. Let τ1, τ2, . . . , τn represent the XML document trees of the documents
with identification numbers (1, 2, 3, . . . , n), where n is the number of documents.
Then, {∃ xi ∈ {τ1, τ2, . . . , τn} Λ ∃ xj ∈ {τ1, τ2, . . . , τn}xi �= xj,hvi(xi) �= hvi(xj)},
i.e. there exist no two distinct nodes among all the XML documents in the collection,

such that they have the same hvi.

Proof.
Case 1. Consider the two nodes xi and xj are present in different documents.
i.e. xi ∈ τi and xj ∈ τj such that τi �= τj . Since τi �= τj,, τid(xi) �= τid(xj),
hvi(xi) �= hvi(xj).

Case 2. Consider the two nodes xi and xj that are present in the same document.
i.e.{xi, xj} ∈ τ . Since both the nodes are in the same XML document τid(xi) =
τid(xj). But, since xi �= xj (from the statement of the theorem) and {xi, xj} ∈ τ

there exist two possibilities p(xi) = p(xj) or p(xi) �= p(xj). If p(xi) �= p(xj) then
hvi(xi)�= hvi(xj). If p(xi) = p(xj) then xi and xj represent different siblings of
the same parent; therefore hvi(xi) �= hvi(xj). Thus, each element of all the XML
documents in the document collection is assigned a unique identifier. From Figs. 5(a)
and (b), it can be observed that there are no two nodes with the same hvi values.
The same is true for a collection of n documents.

6.2. Relationship strength

Let hvi(xi) and hvi(xj) represent the hvi of two distinct nodes xi and xj , existing in
the XML document tree τ . The length of the longest common prefix (lcp) for both
the hvi is denoted as lcp(xi,xj). Consider two keywords k1, k2. The relationship
strength between these two keywords, denoted as RS(k1, k2) is defined as,

RS(k1, k2) = lcp(xi,xj) | (xi directly satisfies k1, xj directly satisfies k2).

The condition that the node should directly satisfy the keyword ensures that only
those nodes satisfying the keyword and also having the longest length of their identi-
fication vectors (hvi), are selected while evaluating the Relationship Strength (RS).

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 483

This is important because a node and all its ancestors satisfy a keyword, but a true
measure of RS is represented only by the node which directly satisfies the keyword.

Consider two keywords k1 and k2 such that xi directly satisfies k1, xj

directly satisfies k2. If xi ∈ τi and xj ∈ τj such that τi �= τj , then RS(k1, k2) =
lcp(xi,xj) = 0, since they do not share a common prefix. Thus a Relationship
Strength value of zero indicates unrelated keywords (keywords in different docu-
ments). If τi = τj and both the keywords are directly satisfied by the same node
i.e. xi = xj , then RS(k1, k2) = lcp(xi,xj) = length(hvi(xi)) = RSmax. Thus Rela-
tionship Strength values of two keywords can take integer values in the range of
[0:RSmax] based on their occurrence and proximity in the XML document. The
concept of Relationship Strength can be extended to a query q = {k1, k2, . . . , km}
consisting of m terms.

For example, in the document trees in Figs. 5(a) and (b), the nodes A and B

have a common prefix of length two. Thus, they have a RS value of two; similarly
nodes A and C have an RS value of one. Whereas, nodes A and D have an RS
value zero since they belong to different document trees.

6.3. Semantic interconnection

In terms of the XML document tree, two nodes are semantically interconnected if
they share a common ancestor and this ancestor is not the root of the document
tree. As an illustration, consider the XML document tree in Fig 4. The keywords
“Vipin” and “1979” have a common ancestor, inproceedings(1). Thus, they are
semantically interconnected. Whereas the keywords “Vipin” and “1980” have a
common ancestor, dblp(0), which is the root of the document tree. Hence, the two
keywords are not semantically connected.

Theorem 2. Two keywords k1 and k2 are semantically interconnected iff
RS(k1,k2) > leveli + 1, where leveli is the first such level in the document tree
where the degree of the node is greater than one.

000

001

002

00

0

010

011

012

A

B

C

01

1

10

100 101

1000

1001

1002 1010

1011

1012D

(a) (b)

Fig. 5. Semantic interconnection.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

484 K. G. Srinivasa et al.

Proof. Consider leveli = 0. Then the root of the document tree will have a degree
greater than one. The document tree is as shown in Fig. 5(a). Since leveli = 0,
RS(k1, k2) should be greater than one for the two keywords to be semantically
related. If RS(k1, k2) > 1, then there exist two nodes xi,xj that directly satisfy
k1, k2 and with Hierarchical Vectors for Identification hvi(xi) and hvi(xj), such that
lcp(xi, xj) ≥ 2. Thus the two keywords have at least two common ancestors and of
these only one can be the root of the document tree. Hence, the two keywords k1, k2

share at least one common ancestor apart from the root, and they are Semantically
Interconnected. For leveli > 0, the document tree is as shown in Fig. 5(b) and the
same proof given above holds good.

For example, in the XML document tree in Fig. 5(a), since leveli = 0, RS must
be greater than one for the nodes to be semantically relevant. The nodes A and B

have an RS value of two and are semantically relevant. Whereas, nodes A and C

have an RS value of one, and hence are not semantically relevant.
The RS can also be used to rank the semantically interconnected keywords.

The semantically interconnected keywords with higher RS values are the more rel-
evant results and hence are better ranked than those having lesser RS values. The
architecture to compute semantically related results from the Most Frequently used
Index (MFI) and Less Frequently used Index (LFI) is shown in Fig. 6.

Keyword
Queries

Search
Results

User

Keyword Query
Processor

Index Builder

XML Document
Collection

MFI LFI

Genetically
Learned Tag
Information

Fig. 6. Architecture of SAGAXsearch.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 485

(1) if (m = 1)
s = search the MFI with query q

(a) if s = Null;
(b) s = search LFI with query q
(c) search result = s

(2) else if (m > 1)

(2.1) if search with q in MFI is successful

(i) s = semantically interconnected nodes in the search results
(ii) if (s = Null)

no semantically related nodes
(iii) else search result = s

(2.2) else

(i) continue search with q in LFI
(ii) s = semantically interconnected nodes in the search results
(iii) if s = Null

no semantically related nodes
(iv) else search result = s

Fig. 7. Partitioned index search.

Let q = {k1, k2, . . . , km} be the search query where ki represents the ith term
in the query q and m represents the total number of terms in the query. The
algorithm to find the semantically interconnected elements is given in Fig. 7. The
search algorithm first checks the length of the keyword query. If the query consists
of a single term, a search over the MFI is performed. If the search is not successful,
the algorithm continues search over the LFI. A failure to retrieve results from both
MFI and LFI implies that the term is not found. The same technique is extended
when searching with queries having more than one term. The only change is that, at
each stage the semantic interconnection of the results is checked. Only semantically
interconnected nodes are considered as the search results.

7. Experimental Results

In this section, we analyze the efficiency and accuracy of SAGAXsearch, which is
implemented in Java, via experiments on real data. The experiments were carried
out on a Pentium IV, with a CPU of 2GHZ and 512MB of RAM, running the
Windows XP operating system.

Test Set: The test set used in SAGAXsearch is the DBLP XML corpus.10 The
DBLP XML corpus is a collection of 200,000 XML documents and is a repository
for the details of a wide range of scientific articles. The documents in the DBLP
corpus can be classified into two major categories: journal articles and conference
papers. The structure and the elements (nodes) used to represent the two types
of documents are different. The corpus makes use of 36 different elements. The

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

486 K. G. Srinivasa et al.

elements can be unique to a document category or they might be shared by docu-
ment categories.

Genetic Learning of Tags: The Self Adaptive GA used in SAGAXsearch takes
a small number of user queries (10–20 queries) and the documents adjudged as
relevant by the user as inputs. The input documents to the GA are XML frag-
ments from the DBLP XML database. The GA tries to explore all possible tag
combinations from the DBLP database and tries to find the best tag combination
which satisfies the maximum number of queries. The experimental result in Fig. 8
shows the average fitness for the generations of population. Note that the fluctu-
ations in the curve representing Self Adaptive Migration model GA (SAMGA) is
because of the adaptiveness introduced in the migration rate and population size.
For SAMGA the average fitness steadily raises until about the fifteenth genera-
tion and then the fitness increases slowly. As the generation progresses further, the
increment of fitness falls, as most of the individuals have already converged to their
best fitness values. In contrast, a Simple GA (SGA) fails to converge even after
20 generations. Thus, the application of SAMGA helps in faster convergence when
compared to SGA.

As the generation continues, the weights of the tags in the XML document are
adjusted. The adjustments are such that maximum number of relevant results are
retrieved. The DBLP XML database has a large number of distinct tags (>30). The
evolution of these tag weights with the generations of the GA is shown in Fig. 9.
Due to space constraints, the evolution of all the tags cannot be represented; so we
illustrate the evolution in the weights of only six tags: <author>, <title>, <year>,
<pages>, <booktitle>, and <url>. The average tag weight represents the average
of the weights assigned to all the tags in the document.

Fig. 8. Average fitness of the populations.

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 487

(a)

(b)

(c)

Fig. 9. (a) Tag weights at the start of GA. (b) Tag weights after fifteen generations. (c) Tag
weights after termination.

The weight of a tag, when compared to the average weight of all tags in the doc-
ument, is a measure of the importance of the tag within the document. Figure 9(a)
shows the random tag weights assigned to the tags at the start of GA. As the gen-
erations continue, the user queries are evaluated and the tag weights are adjusted
so as to obtain maximum fitness values. Figure 9(b) shows the tag weights after

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

488 K. G. Srinivasa et al.

Table 1. Top four tags and their corresponding weights.

Tag1 Tag2 Tag3 Tag4
Generation Weight Weight Weight Weight

1 month author ee url
7.71 6.67 6.16 4.26

5 author pages school cite
7.63 7.15 6.74 5.23

10 title year cite booktitle
7.72 6.35 5.92 5.87

15 author year title pages
8.1 7.63 7.19 6.53

20 author year title pages
8.03 7.51 6.83 6.60

fifteen generations. The tag weights after the termination of GA are the real mea-
sure of the importance of tags, and are as shown in Fig. 9(c). For the DBLP dataset,
based on randomly sampled user queries, tags like <author>, <title>, <year>, and
<booktitle> are classified as important. The tags like <pages>, <url>, <cite>, and
<ee> failed to classify as important. Table 1 shows the tag weights of the top four
tags with the largest tag weights at the end of every five generations.

8. Analysis and Comparison of Results

We now evaluate the performance of keyword queries over a subset of the DBLP
XML corpus, using SAGAXsearch. Here we compare the performances of a search
using a normal index and a search using MFI and LFI. A normal index is an index
which stores all the XML tag information within a single flat index structure. For
large XML collections, such an index becomes huge and is difficult to manage. In
contrast, the MFI has an index size which is much smaller, but still is capable of
satisfying a majority of the user queries. During experimentation, the normal index
which we built from the subset of the DBLP XML document had a size of 51.8MB.
The same document was indexed into two separate partitions by making use of the
knowledge learnt from GA. The two partitions, MFI and LFI, had sizes of 20.4MB
and 31.6MB respectively. In addition to this, MFI was capable of satisfying about
70% of the user keyword queries and for the remaining 30% of the queries, search
had to be continued with LFI. In the cases where only the MFI was sufficient to
satisfy the search query the query execution time is lesser compared to XSEarch,3

XRank.20 This is because the index over which the search is performed is smaller.
Note that the partitioned index structure that we have proposed can be used with
many of the contemporary XML search techniques.

The query execution time is shown in Figs. 10 and 11. The query execution
time depends upon several factors like the number of terms in the search query, the
desired number of search results and the frequency of occurrence of the keywords.
We experimented with variations in all these factors and found that the frequency

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 489

Fig. 10. Low frequency of occurrence of keywords.

Fig. 11. High frequency of occurrence of keywords.

of occurrence of keywords was the main factor which decided the query execution
time. Terms like “database”, “conference”, “technique” had very high frequency of
occurrence in the DBLP document, and search queries involving these terms took
longer time to execute.

Precision and Recall: Precision of the search results is the proportion of the
retrieved document fragments that are relevant. Relevance is the proportion of
relevant document fragments that are retrieved. Precision and recall can be repre-
sented by a contingency table as shown in Table 2.

For precision and recall, we compare the results of SAGAXsearch with XSEarch,
XRank and the näıve search technique over the DBLP database. A näıve search
technique is one which does not make use of the semantic information present in the
XML documents. Any search technique used for information retrieval over text and
HTML can be classified as a näıve technique. Such a technique is not guaranteed to

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

490 K. G. Srinivasa et al.

Table 2. Evaluation contingency table.

Retrieved Not Retrieved

Relevant a b
Not relevant c d

Recall = a/(a + b), Precision = a/(a + c).

Fig. 12. Comparison of precision values.

retrieve semantically related results, and hence has low precision values. All these
techniques yield perfect recall i.e. all relevant documents are retrieved, but the
precision values vary. This is because of the factor that, apart from the relevant
results, some irrelevant results are also retrieved. The comparison of precision values
of these techniques is shown in Fig. 12.

The precision values of SAGAXsearch are found to be higher than those of
XSEarch, XRank and näıve approaches, when compared over the DBLP XML
dataset. The small loss in precision occurs when the same keywords are present
in both the MFI and LFI and the intention of the user is to retrieve information
from the LFI. In such cases, the algorithm has already retrieved the results from
the MFI, it will not continue search over the LFI. The possibility of such an event
is quite rare, and hence SAGAXsearch manages to exhibit high precision values.

Example: We elaborate the working of SAGAXsearch using examples. The scal-
ability of SAGAXsearch is confirmed by the performance measures on real data as
explained earlier. For simplicity and better understanding, we consider small exam-
ple documents. All the example documents are that of a shopping portal and have
a common structure, which is shown in Fig. 13.

Various XML documents conforming to this structure are considered as train-
ing and test sets. The training set also consists of keyword queries and the results
classified as relevant by the users. During experimentation, the keyword queries
are randomly sampled, from the feedback of relevance given by a large number of
simulated users. Thus, the training set is not biased towards the preference of any
particular user. Training queries like “CD pack India”, “IBM Notebook Rs 50000
Credit card ”, “cartridge for inkjet printer ”, “used car Ford Fusion”, etc. are sam-
pled along with the relevance feedbacks of the results. The relevance feedback is

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 491

<item>

<location></location>

<price range></price range>

<manufacturer></Manufacturer>

<name></name>
<desciption></desciption>

<item id></item id>

<payment></payment>

<condition></condition>

<seller></seller>

< /item>

Fig. 13. Structure of example documents.

a set of XML documents which the users consider as relevant. The genetic algo-
rithm is used to find the tag combinations which can answer the maximum number
of sampled queries. The initial random weights associated with tags in the XML
document are shown in Table 3.

The GA starts with this tag configuration and terminates with the tag com-
bination satisfying the maximum number of queries. The genetically learned tag
configuration which can satisfy the maximum number of queries is found to be
<price range>, <manufacturer>, <name>, <description>. Tags like <item id>,
<payment>, <condition>, <location>, <seller> are less frequently used during
search. The tag weights after the termination of GA are shown in Table 4. With
this information, two separate indices are built. MFI contains the information in
the tags <price range>, <manufacturer>, <name>, <description>. LFI contains
the information in the remaining tags.

Table 3. Initial weights of tags in the example XML doc-
uments.

location price range manufacturer name

7.3 5.6 1.2 7.3

description item id payment condition seller

2.5 4.1 4.5 6.1 1.2

Table 4. Tag weights after termination of GA.

location price range manufacturer name

1.1 6.1 7.2 7.3

description item id payment condition seller

6.5 2.1 3.6 2.1 0.8

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

492 K. G. Srinivasa et al.

Consider a keyword search query like “Motorola mobile GSM ” on the test set
XML documents. The intention of the user is to find Motorola mobile phones with
GSM technology. The indexing of the XML test set documents is performed offline
and the hvi values for the various elements is stored in the index. When a search is
performed, all elements satisfying the search terms are retrieved as results. Consider
the result elements with hvi values [1 2 4], [1 2 7]. They have two prefix 〈1, 2〉 in
common and hence have RS values greater than one. i.e. they share a common
parent apart from the root. Thus, they are semantically interconnected. The search
results with hvi values [1 2 4], [1 3 5] have a common prefix 1. They have an RS value
of one. Such results have a single ancestor in common and hence are semantically
unrelated elements. Note that the query “Motorola mobile GSM ” can be answered
by the MFI alone without the help of LFI and thus the query results are obtained
faster. A modified query like “Motorola mobile Bangalore credit card payment” after
searching over the MFI continues search with LFI, but the system has learnt that
such specific queries are rarely encountered. Hence, even when such specific queries
are encountered there is no loss in precision.

9. Conclusions

We have proposed a framework for information retrieval from XML documents that
uses tag information to improve the retrieval performance. Genetic Algorithms,
which are efficient for search in large problem spaces, are used to learn the signifi-
cance of the tags. A Self Adaptive Real Coded GA is used in particular because of its
ability to perform a rapid exhaustive search over a large problem space. The nota-
tions for relationship strength and semantic relationship help in efficient retrieval of
semantically interconnected results as well as ranking the search results based on the
proximity of the keywords. Experiment on real data show that the SAGAXsearch is
accurate and efficient. It has the flexibility of keyword query search, but the results
obtained maintain accuracy values comparable to that of structured queries over
XML documents.

Acknowledgment

The Project is partially supported by the AICTE, as a part of Career Award for
Young Teachers (AICTE File No.: F. No. 1-51/FD/CA/ (9)/2005-06) to Mr. K. G.
Srinivasa, who is presently working as faculty in Department of Computer Science
and Engineering, M. S. Ramaiah Institute of Technology, Bangalore — 560054,
India.

References

1. S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine,
Proc. Seventh World-Wide Web Conf. (WWW7) (1998).

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 29, 2006 10:30 WSPC/157-IJCIA 00173

SAGAXsearch: An XML Information Retrieval Mechanism 493

2. R. Luk et al., A survey of search engines for XML documents, SIGIR Workshop XML
IR (2000).

3. S. Cohen, J. Mamou, Y. Kanza and Y. Sagiv, XSEarch: A semantic search engine for
XML, VLDB 2003, pp. 45–56.

4. M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey, IEEE Comput. 27(6)
(1994) 17–24.

5. K. G. Srinivasa, K. Sridharan, P. D. Shenoy, K. R. Venugopal and L. M. Patnaik, A
dynamic migration model for self-adaptive genetic algorithm, Proc. Intell. Data Eng.
Automated Learning-IDEAL 2005, Brisbane, Australia (2005), pp. 555–562.

6. W. M. Spears and K. A. De Jong, Using genetic algorithms for supervised concept
learning, Proc. 2nd Int. IEEE Conf. Tools Artif. Intell., Herndon, Virginia, USA
(1990), pp. 335–341.

7. W. N. Martin, J. Lienig and J. P. Cohoon, Population structures — Island (migration)
models: Evolutionary algorithms based on punctuated equilibiria, in Handbook of
Evolutionary Computation, eds. T. Black, D. B. Fugee and Z. Michalewicz (Institute
of Physics Publishing and Oxford University Press, 1997), pp. C6.3:1–C6.3:16.

8. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt and J. F. Naughton,
Relational databases for querying XML documents: Limitations and opportunities,
VLDB (1999), pp. 302–314.

9. S. Abiteboul, On views and XML, SIGMOD Rec. 28(4) (1999) 30–38.
10. DBLP XML Records http://acm.org/sigmoid/dblp/db/index.html (February 2001).
11. J. Shanmugasundaram et al., A general technique for querying XML documents using

a relational database system, SIGMOD Rec. 30(3) (2001) 20–26.
12. World Wide Web Consortium XQUERY: A Query Language for XML W3c Working

Draft, http://www.w3.org/XML/Query.
13. D. Florescu, D. Kossmann and I. Manolescu, Integrating keyword search into

XML query processing, Int. J. Comput. Telecommun. Networking 33(1) (2000)
119–135.

14. M. Gordon, Probabilistic and genetic algorithms for document retrieval, Commun.
ACM 31 (1988) 1208–1218.

15. J. Yang and R. R. Korfhage, Effects of query term weights modification in annual
document retrieval: A study based on a genetic algorithm, Proc. Second Symp. Doc.
Anal. Inf. Retrieval (1993), pp. 271–185.

16. J. Yang, R. R. Korfhage and E. Rasmussen, Query improvement in information
retrieval using genetic algorithms: A report on the experiments of the TREC project,
Proc. First Text Retrieval Conf. (TREC-1) (1993), pp. 31–58.

17. P. Pathak, M. Gordon and W. Fan, Effective information retrieval using genetic algo-
rithms based matching functions adaptation, Proc. 33rd Hawaii Int. Conf. Syst. Sci.
(2000).

18. S. Kim and B. T. Zhang, Genetic mining of HTML structures for effective Web
document retrieval, Appl. Intell. 18 (2003) 243–256.

19. V. Hristidis, Y. Papakonstantinou and A. Balmin, Keyword proximity search on XML
graphs, Int. Conf. Data Eng. (2003).

20. L. Guo et al., XRANK: Ranked keyword search over XML documents, ACM SIG-
MOD (2003).

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

20
05

.0
5:

47
1-

49
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
O

N
A

SH
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/1
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.




