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The paper discusses the boundary layer flow of Walters’ liquid B over a stretching sheet.
The stretching is assumed to be a quadratic function of the coordinate along the direction of
stretching. The study encompasses within its realm bothWalters’ liquid B and second order liquid.
The velocity distribution is obtained by solving the nonlinear governing differential equation.
Analytical expressions are obtained for stream function and velocity components as functions of
the viscoelastic and stretching related parameters. It is shown that the viscoelasticity goes hand in
hand with quadratic stretching in enhancing the lifting of the liquid as we go along the sheet.

1. Introduction

Polymer extrusion, drawing of copper wires, continuous stretching of plastic films, and
artificial fibers, hot rolling, wire drawing, glass-fiber, metal extrusion, and metal spinning
are some of the examples where the problem of a stretching sheet arises. Ever since the
pioneering works of Sakiadis [1, 2], several works have appeared to consider various aspects
of the problem (see Siddheshwar and Mahabaleswar [3, 4], Andersson [5–7], Rollins and
Vajravelu [8], Vleggar [9], Ming-I and Cha’o-Kuang [10], Kelly et al. [11], Vajravelu and
Hadjinicolaou [12], Liao and Pop [13], Magyari et al. [14], Liao [15], and Dandapat and
Gupta [16]). The core assumption in most of the reported problems is that the stretching
is linearly proportional to the axial distance. This is valid provided the stretching process is
delicate and slow, leading to the assumption of constant rate of stretching. It is not difficult
to see that the above assumption is quite idealistic and impractical. In the strictest sense
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Figure 1: Schematic diagram of the stretching sheet problem.

the stretching has to be nonlinearly proportional to the axial distance. In the present paper,
as a first step in the general modelling exercise, we make use of a simple quadratic stretching
model.

2. Mathematical Formulation

We consider a steady state two-dimensional boundary layer flow of an incompressible
isothermal viscoelastic liquid, of the type Walters’ liquid B, over a quadratic stretching sheet
(see Figure 1). The Walters’ liquid B represents an approximation for short or rapidly fading
memory liquids and is thus an approximation to first order in elasticity. The liquid is at rest
and the motion is created by pulling the sheet on both ends with equal forces parallel to
the sheet and with a speed u, which varies quadratically with the distance from the slit as
u = αx + βx2. The resulting motion of the otherwise quiescent liquid is thus caused solely
by the moving sheet. On assuming β, and thereby δ, quite small we can make use of the
boundary layer theory (see Rajagopal et al. [17]).

The steady two-dimensional conservation of mass and the momentum boundary layer
equation for the quadratic stretching sheet problem involvingWalters’ liquid B are (see Beard
and Walters [18]):
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(2.1)

subject to the boundary conditions:

u = αx + βx2 at y = 0,

v = δx at y = 0,

u = 0 as y −→ ∞.

(2.2)

Here, u and v are the components of the liquid velocity in the x and y directions, respectively,
μ is the limiting viscosity at small rates, and k0 is the first moment of the distribution function
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of relaxation times. Further we assume β is quite small, that facilitates the assumption of a
weakly two-dimensional flow as considered in the paper.

As pointed out by Vleggaar [9], in a polymer processing application involving
spinning of filaments without blowing, laminar boundary layer occurs over a relatively small
length of the zone 0.0–0.5m from the die which may be taken as the origin of Figure 1. This
is in fact the zone over which the major part of the stretching takes place. In such a process
the initial velocity is low (about 0.3m/s) but not very low, enough always to assume linear
stretching. Thus a good approximation of the velocity of the sheet is u = α x+ βx2 (at any rate
for the first 10–60 cm of the spinning zone), where α and β are the constants velocity gradients.
We have adopted the quadratic stretching model in our problem. Using the dimensionless
variables
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Equation (2.1) take the form
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(2.4)

where k1 = αk0/μ is the viscoelastic parameter. The parameter k1 represents a measure of
the relative importance of elastic and viscous effects and can thus be identified with the
Weissenberg number.

Introducing the stream function ψ(X,Y ), we get

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
. (2.5)

Using (2.5) in (2.6), we get
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The boundary conditions to be satisfied by ψ can be obtained from (2.2), (2.3), and
(2.5) as follows:

∂ψ
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= X + β∗X2 at Y = 0,

− ∂ψ

∂X
= 2δ∗X at Y = 0,

∂ψ

∂Y
= 0 as Y −→ ∞.

(2.7)
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The similarity solution to (2.6), subject to (2.7), may be taken as

ψ = Xf(Y ) − δ∗X2f ′(Y ), (2.8)

where prime denotes differentiation with respect to Y . Substituting (2.8) into (2.6) and
equating the coefficients of X,X2, and X3, we get the following three ordinary differential
equations:

(
f ′)2 − ff ′′ = f ′′′ − k1

{
2f ′f ′′′ − ff ′′′′ − (

f ′′)2}, (2.9)

f ′f ′′ − ff ′′′ = f ′′′′ − k1
{
f ′f ′′′′ − ff ′′′′′}, (2.10)

(
f ′′)2 − f ′f ′′′ = k1

{
f ′f ′′′′′ − 2f ′′f ′′′′ +

(
f ′′′)2}. (2.11)

Equation (2.10) turns out redundant as it can be obtained by differentiating (2.9) once
with respect to Y . In the subsequent analysis we show that (2.9) can, in fact, be obtained
from (2.11), by a suitable transformation, which in turn implies consistency. The boundary
conditions, for solving (2.9) for f , given by (2.7) can be obtained in the form

f ′(0) = 1, f ′′(0) = − s, (2.12a)

f(0) = 0, (2.12b)

f ′(∞) = 0, f ′′(∞) = 0, (2.12c)

where s = β∗/δ∗. One can easily see that (2.11) is a differential equation for f ′(Y ) and we can
also verify that f ′(Y ) = e−sY is a solution of (2.11), and this satisfies the derivative boundary
conditions in (2.12a)–(2.12c). Thus an appropriate solution of (2.9) is

f(Y ) = A + Be−sY , (2.13)

which satisfies the boundary condition (2.12a)–(2.12c) provided

A =
δ∗

β∗
, B = −δ

∗

β∗
, s =

1
A
. (2.14)

We also note that (2.13) can be a solution of the nonlinear differential equation (2.9) if and
only if

s =
β∗

δ∗
=

1√
1 − k1

. (2.15)

We may now write f(Y ) from (2.13)–(2.15) as

f(Y ) =
√

1 − k1
(
1 − e− Y/

√
1−k1

)
. (2.16)
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Reverting to the symbol “s” we may easily see that

f ′(Y ) = 1 − sf(Y ). (2.17)

Using this in (2.11) we can arrive at (2.9). This proves the “consistency” of the 3 equations
(2.9)–(2.11) forf(Y ).

The expression for the streamline pattern of the flow in the region around the
stretching sheet can be obtained from (2.8) as follows:

ψ = Xf(Y ) − δ∗X2f ′(Y ) = C, (2.18)

where C is a constant. The streamline ψ = C can be written in the functional form as

Y =
1
s
Ln

{
X/s + δ∗X2

X/s − C

}
. (2.19)

Substituting (2.8) into (2.5), we get

U = Xf ′(Y ) − δ∗X2f ′′(Y ),

V = −f(Y ) + 2δ∗Xf ′(Y ).
(2.20)

Having obtained the analytical expression for the stream function ψ and the velocity
componentsU and V , we now move on to discuss the results obtained in the study.

3. Results and Discussion

The problem of a flexible sheet undergoing quadratic stretching is investigated for the flow
it generates in its immediate neighbourhood. The stretching sheet is the sole reason for the
liquid flow, and liquid viscoelasticity significantly influences the flow. The flow is studied
with the help of streamline patterns and also the axial and transverse velocity distributions.
The results are analyzed against the background of the classical linear stretching problem
(δ∗ = 0) involving Newtonian liquids (k1 = 0). Before we discuss the results of the study, we
make some general observations. From (2.15) it is clear that the k1 range of applicability of
the solution is (−∞, 1). This can further be substantiated as follows. Differentiating equation
(2.9) with respect to Y , and subject to condition (2.12a)–(2.12c), one gets

f ′′(0) = (1 − k1)f ′′′′(0). (3.1)

From the above equation, we see that f ′′(0) = 0 for k1 = 1. In conjunction with the condition
f ′′(0) = − s in (2.12a), this would mean

f ′′(0) = − s = 0. (3.2)
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Figure 2: Streamline ψ(X,Y ) = 1 for different values of quadratic stretching parameter δ∗.
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Figure 3: Streamlines ψ(X,Y ) = C for different values of C.

Obviously for k1 = 1, the quadratic stretching problem ceases to exist. For k1 > 1 we note that
s = 1/

√
(1 − k1) is complex. Hence it stands reiterated that the range of applicability of k1

must be (−∞, 1).
We note that negative values of k1 give us the results of a second order liquid and

positive values of k1 those of a Walters’ liquid B model. We now discuss the results of the
study on Walters’ liquid B followed by those on the second order liquid.

Figure 2 is a plot of the streamline ψ(X,Y ) = 1 for different values of δ∗ and k1 = 0.2.
Increasing value of δ∗ indicates the increasing rate of quadratic stretching. We find from the
figure that increasing rate of stretching restricts the dynamics in the axial direction to regions
close to the slit.

Figure 3 is a plot of various stream lines ψ(X,Y ) = C when δ∗ = 0.1 and k1 = 0.2. As is
depicted in the figure, at large axial distances the streamlines converge together and are lifted
up due to quadratic stretching.
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Figure 4: Streamline ψ∗(X,Y ) = 1 for different values of k1.
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Figure 5: Variation of boundary layer thickness δ1 with k1.
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Figure 6: Axial velocityU(X,Y ) for the linear stretching sheet problem of Crane [19].
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Figure 7: Axial velocityU(X,Y ) for the quadratic stretching sheet problem.
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Figure 8: Axial velocityU(X,Y ) for the quadratic stretching sheet problem.

Figure 4 is a plot of the streamline ψ(X,Y ) = 1 for different values of k1 and δ∗ =
0.1. It is evident from the aforementioned 3 figures that the viscoelastic parameter k1 and
the quadratic stretching parameter δ∗ work against each other in the lifting of the liquid as
we go downstream. We now discuss the axial and transverse velocity distributions with an
observation that

U = Xe−sY + δ∗sX2e−sY −→ 0 as Y −→ ∞,

V = − 1 − e−sY
s

+ 2δ∗Xe−sY −→ −1
s

as Y −→ ∞,
(3.3)

that is, the flow outside the boundary layer becomes uniform and is directed perpendicular
to the sheet. The boundary layer thickness δ1, defined as the distance from the sheet at which
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Figure 9: Axial velocityU(X,Y ) for the quadratic stretching sheet problem.
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Figure 10: Transverse velocity V (X,Y ) for the linear stretching sheet problem of Crane [19].

the streamwise velocity U has been reduced to one percent of the velocity X + β∗X2 of the
quadratic stretching surface, can be expressed as

δ1 = Ln
(
100
s

)
= Ln

(
100

δ∗

β∗

)
. (3.4)

Using (2.15) in the above equation, we get

δ1 = Ln
(
100

√
1 − k1

)
. (3.5)
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Figure 11: Transverse velocity V (X,Y ) for the quadratic stretching sheet problem.
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Figure 12: Transverse velocity V (X,Y ) for the quadratic stretching sheet problem.

Thus, we see that the boundary layer thickness δ1 is coordinate-independent for all
permissible values of k1. Figure 5 shows the variation of δ1 with k1. We see from the figure
that the effect of increasing k1 is to decrease δ1.

Figures 6–15 that are three-dimensional plots of the velocity componentsU(X,Y ) and
V (X,Y ) reveal more than the conventional two-dimensional projections on theU-Y and V -Y
planes. Figure 6 is a plot of the Crane [19] profile of the linear stretching problem. One can
easily see from the figure that the horizontal and vertical extent of the dynamics on the
stretching sheet increases as we go along axial direction.

Figure 7 brings out the effect of the quadratic stretching of the sheet as well as
the viscoelasticity of the liquid. Clearly both the above effects give rise to an extended
dynamic region compared to the linear stretching problem of a Newtonian liquid. Comparing
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Figure 13: Transverse velocity V (X,Y ) for the quadratic stretching sheet problem.
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Figure 14: Axial velocityU(X,Y ) for the quadratic stretching sheet problem.

Figures 7 and 8 it is obvious that the quadratic stretching increases the vertical extent of the
dynamic region. Comparing Figures 8 and 9 of quadratic stretching we find that the effect of
viscoelasticity is to initiate lifting of the liquid more closer to the slit compared to that of a
Newtonian liquid.

The transverse velocity profile brings out the fact that quadratic stretching greatly
influences the vertical velocity compared to that in the case of linear stretching. Figure 10
depicts the X-independence of V while Figure 11 spells out that quadratic stretching induces
the X-dependence of the transverse velocity component V . Figures 12 and 13 explain the
nature of the influence of k1 on V for the problem of quadratic stretching. The influence
of k1 on V (X,Y ) is similar to its influence on U(X,Y ) and the same is demonstrated by
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Figures 12 and 13. The influence of quadratic stretching onU(X,Y ) and V (X,Y ) of a second-
order liquid shows that the vertical variation is comparatively less than axial variation.

Figures 14 and 15 are the axial and transverse velocity profiles for the quadratic
stretching sheet problem in a second-order liquid. The corresponding graphs for a Walters’
liquid B model are Figures 7 and 11. It is clear that the lifting is initiated closer to the slit in
the case of a Walters’ liquid B model compared to the second-order liquid. In the case of the
latter the flow is more strongly two dimensional than in the former case. This is clearly seen
on comparing Figures 11 and 15.
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