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This paper is concerned with the study of the Electrorheological Rayleigh–Taylor instability (ERTI) at

the interface between a densely packed saturated poorly conducting couple stress porous layer

accelerated by a lighter poorly conducting couple stress fluid in a thin shell in the presence of a

transverse electric field and laser radiation. A simple theory based on fully developed flow

approximations is used to derive the dispersion relation for the growth rate of ERTI. The cutoff and

the maximum wave numbers and the corresponding maximum frequencies are obtained. It is shown

that the effects of couple stress parameter and the electric field reduce the growth rate considerably

compared to a non-conducting fluid in the absence of an electric field. These are favorable to control the

surface instabilities in many practical applications discussed in this paper.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this era of globalization, liberalization, modernization,
increase in population and industries require more electric power,
particularly an uninterrupted power supply. The depletion of
fossil fuel and hydroelectric power due to atmospheric vagaries
have strained adequate power supply for overall development of a
country. Therefore, there is an urgent need of power supply from
the unconventional sources of energy which are economically
affordable and environmental friendly. Therefore, many uncon-
ventional methods like nuclear power, solar power, wind power
and so on have been proposed to generate electric power. The
United Nations, through International Atomic Energy Agency
(IAEA), is proposing to generate an adequate electric power from
Inertial Fusion Energy (IFE) by fusing the two hydrogen isotopes
Deuterium–Tritium (DT), in Inertial Fusion Target (IFT), which is
also one of the environmental friendly and unconventional
methods of generating electric power. The nuclear picture of DT
is such that there will be a strong repulsive force between them
which prevents the natural fusion of DT. Therefore, there is a need
of external agency like laser radiation to fuse them. The high
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intensity laser radiation is impinged at the ablative surface of IFT
to fuse DT. This radiation no doubt fuses DT but causes
asymmetry in IFT which is one of the causes to reduce the
efficiency of extraction of IFE (see [1,2]). To reduce this
asymmetry of IFE target, there should be mechanisms to control
surface instability. At present, several mechanisms (see [2–6])
have been used to reduce the growth rate of RTI at the interface
between heavy fluid supported by a lighter fluid.

In addition to the study of IFE, we note that the interfacial
instabilities continue to be the frontier area of research in
understanding, control and exploitation of microfluidic devices.
In the literature, the work on ordinary Newtonian poorly
conducting fluid flows in the presence of an electric field, called
Electrohydrodynamics (EHD) (see [7]), flowing through a micro-
channel has been studied because of their applications in Science,
Engineering and Technology, particularly in the effective design of
artificial organs in biomedical engineering, solidification process
in material science, heat transfer across barriers, friction between
surfaces and their mitigation, failure of polymers and so on.
Therefore, in biomedical engineering, for an effective design of
artificial organ like cartilages in synovial joints, endothelium in
Coronary Arteries Disease (CAD) involving poorly conducting
fluids, it is necessary to control the growth rate of surface
instabilities at the interface between cartilages and synovial fluid
in synovial joints (SYJ), at the interface between endothelium and
the body fluid in arteries in CAD, at the ablative surface of IFT in
IFE. The available literature (see [8,2]) on surface instabilities is

https://core.ac.uk/display/72802064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/nlm
dx.doi.org/10.1016/j.ijnonlinmec.2010.07.003
mailto:rudraiahn@hotmail.com
mailto:Kalal@fifi.cvut.cz
mailto:chandrashekarg.4@gmail.com
dx.doi.org/10.1016/j.ijnonlinmec.2010.07.003


N. Rudraiah et al. / International Journal of Non-Linear Mechanics 46 (2011) 57–6458
mainly concerned with the traditional Newtonian fluid approx-
imations. During the degenerative changes either in synovial
joints or in CAD, involving poorly conducting physiological fluids
with suspension of nutrients, hyaluronic acid (HA), red blood cells
(RBC), white blood cells (WBC), platelets and also in the process of
fusing DT in IFE by laser radiation, the Newtonian fluid
approximations cannot precisely describe the characteristics of
the complex poorly conducting fluids described above. These
poorly conducting fluids deform and produce a spin field due to
their microrotation forming micropolar fluid developed by
Eringen [9]. This micropolar fluid will be more effective in
practical problems described above because it takes care of local
effects arising from microstructure and as well as the intrinsic
motions of microfluidics (see [10–13]). According to Eringen [9],
the micropolar fluids may be regarded as non-Newtonian fluids
like suspension of DT in IFE target. The spin field due to
microrotation of these freely suspended particles like DT in IFE,
HA in SYJ and RBC and so on in CAD sets up an antisymmetric
stress known as couple stress and thus forming couple stress fluid
(CSF). It is according to Eringen [9], a particular case of micropolar
fluid, when microrotation balances with the natural vorticity of
fluid. This poorly conducting couple stress fluid in the presence of
an electric field can be regarded as Electrorheological Fluid (ERF).

We note that the DT in IFT, Synovial Fluid (SF) in SYJ and RBC,
WBC and so on in CAD can be regarded as poorly conducting
liquid crystals with conductivity,s, increasing with the difference
in temperature between the higher temperature at the ablative
surface of IFT and lower temperature inside the IFE target. This
difference in temperature causes difference in conductivity, rs.

This rs releases the charges from the nuclei forming distribution

of charge density, re. These charges induce an electric field, E
-

i

called thermal electric field. If there is a need of higher strength of

electric field, we can generate the applied electric field, E
-

a, by

embedding the electrodes of different potentials at the bound-

aries. The total electric field, E
!
ð¼ E
!

iþ E
!

aÞ produces, according

to Ohm’s law, the current density, J
!
¼ sEiþreqi, which is the

sum of conduction current and convective current and also

produces an electric force, f
!
¼ re E
!

. This current, J
!

, acts as

sensing and the force, fe

!
, acts as actuation. These two properties

make a poorly conducting couple stress fluid as smart material.

This fluid in the presence of an electric filed is called ERF

introduced by Winslow [14] and Rajagopal and Wineman [15].

These ERFs have a number of possible technical applications in

the various areas of microelectronics, industrial applications in

addition to effective design of artificial organs in biomedical

engineering and to increase the efficiency of the extraction of IFE

as discussed above. Because of their importance considerable

interest has been evinced, during the last decade, in the study of

their experimental and theoretical point of view (see [15–17]).
The literature on the study of RTI is mainly concerned, as

stated above, with ordinary Newtonian fluid. Recently Rudraiah
and Chandrashekara [18] have studied the effect of hydrodynamic
couple stress fluid, in the absence of electric field, on RTI and
showed that this couple stress is very effective in reducing the
asymmetry in IFE caused by fusing DT due to laser radiation and
in reducing the side effects of haemolysis in biomedical
engineering problems discussed above. So far, to our knowledge,
much work has not been done on the study of ERTI using smart
property of couple stress poorly conducting fluid, regarded as ERF,
to reduce the growth rate of ERTI at the ablative surface of IFE
target and also in the effective design of artificial organs in
biomedical engineering in the presence of an electric filed. The
study of it is the main objective of this paper.
To achieve this objective, this paper is planned as follows.
The required basic equations and the relevant boundary and surface
conditions and the suitable approximations are discussed in
Section 2. The electrical conductivity, the conduction temperature
in the presence of radiation, electric potential, the electric field and
the density of distribution of charges are also obtained in Section 2.
Section 3 is devoted to find the velocity distribution. The dispersion
relation derived analytically using linear stability analysis in
Section 4. The important conclusions are drawn in the final Section 5.
2. Formulation of the Problem

We consider a target shell in the form of a thin film of an
unperturbed thickness, h, filled with an incompressible poorly
electrically conducting light couple stress fluid of uniform density,
rf, called region 1. It is bounded below by a rigid surface and
above by an incompressible, poorly conducting couple stress
heavy fluid saturated in a densely packed pours layer of large
extent H of uniform density, rp, called region 2. To generate an
applied electric field the lower rigid boundary is embedded with
the electrodes of higher potential at y¼0 and at the interface the
electrodes of lower potential are embedded at y¼h. Here the
suffixes f and prefer to the quantities in clear fluid and in porous
layer, respectively. The assumption on densely packed fluid
saturated porous layer with heavy couple stress poorly conduct-
ing fluid is almost static is needed for RTI. The assumption of the
nominal surface as in the experimental work of Beavers and
Joseph [19] and theoretical work of Rudraiah [20] is needed to
maintain laminar flows as well as to use Saffman [21] slip
condition. The fluid in the shell is set in motion by acceleration
normal to the interface and small disturbances are amplified
when the acceleration is directed from the lighter couple stress
poorly conducting fluid in the shell to heavy poorly conducting
couple stress fluid in the pours layer of large extent H compared
to thin film of thickness h. This instability at the interface, by
definition, is RTI. To investigate this RTI, we consider a rectangular
coordinate system (x,y) as shown in Fig. 1 with x-axis parallel to
the film and y-axis normal to it. Here Z(x,t) is the perturbed
interface between the couple stress poorly conducting fluid in the
shell and with the porous layer (see Fig. 1).

For the sake of clarity we first give general form of modified
basic equations for a poorly conducting couple stress two
dimensional incompressible fluid flow, modification in the sense
of addition of electric force to be obtained from the general form
of Maxwell equations.

The rheological properties of physiological fluids like synovial
fluid in synovial joints, blood in arteries reveal that viscosity varies
non-linearly with concentration of suspended particles exhibiting
either shear thinning or shear thickening behavior. This is one
of the non-Newtonian fluid flow properties, which have been
studied in the literature (see [22,23]) but their work is silent
about micromotions, microrotation and deformations. These are
taken into account in this paper using couple stress fluid as a
particular case of ‘‘micropolar fluid theory’’ developed by Eringen
[9] as explained in Section 1 above. The basic equations for this
fluid are:

Conservation of mass for an incompressible fluid:

@qi

@xi
¼ 0 ð1Þ

Conservation of linear momentum:

rf

Dqi

Dt
¼
@tij

@xj
þpiþrf fiþreEi ð2Þ



Fig. 1. Physical Configuration.
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Conservation of angular momentum:
Angular momentum is usually defined as the moment of the
linear moment. If ri is the position vector of the particles and

pi ¼ rqi ð3Þ

is the linear momentum, then the angular momentum Li is

Li ¼ eijk ri pk ð4Þ

where

eijk ¼

1 if i,j,k take values in cyclic order

�1 if i,j,k take values in acyclic order

0 if two or all of i,j,k take the same value

8><
>:

is the Levi–Civita symbol.

The conservation of angular momentum, neglecting the body
couple and contact couples, following Rudraiah [23], can be
obtained by taking the cross product of ri with Eq. (2) and using
Eq. (3) in the form

eijkri
@pk

@t
þeijkri

@qj

@xk
pk ¼ eijkri

@tjk

@xk
þeijkrf rifkþreriEi ð5Þ

In Eqs. (1)–(5), qi(i¼1, 2) is the velocity vector having the
components (u, v), tjk the stress tensor, rf fk the body force, reEi

the electric force, re the distribution of charge density and Ei is the
electric field.

The conservation of charges for incompressible fluid:

@re

@t
þqi

@re

@x i
þ
@Ji

@xi
¼ 0 ð6Þ

where Ji is the conduction current density given by

Ji ¼ sEi ð7Þ

The Maxwell field equations are Gauss law is

@Ei

@xi
¼
re

eo
ð8Þ

where eo is the dielectric constant for free space.
In a poorly conducting fluid the induced magnetic field is

negligible and there is no applied magnetic field, hence the
Faradays law becomes

@Ei

@xj
�
@Ej

@xi
¼ 0 ð9Þ
That is, the electric field is conservative, so that

Ei ¼�
@f
@xi

ð10Þ

where f is the electric potential.
In a poorly conducting fluid since s{1, any perturbation on it

is negligible and increases with the conduction temperature, Tb,
such that

s¼ so 1þah Tb�Toð Þ½ � ð11Þ

where To is the atmospheric temperature, so that of s at T¼To,
and ah is the volumetric expansion coefficient of s.

We note that the limitations encountered in the continuum
theory are the lack of taking into account the microrotation of a
fluid, for example hyaluronic acid (HA) molecules present in
synovial fluid. In that case, the intrinsic motions of the microele-
ments must be taken into account in deriving the required
constitutive equations where the microelement motions and
deformations play a significant role. In such situations, the
Eringen’s [9] ‘‘micropolar fluid theory’’ explained in Section 1
above is useful and he showed that the couple stress theory results
as a special case of micropolar fluid theory if the microrotation
vector is constrained equal to the fluid bulk vorticity throughout
the flow field. Then, the constitute equations for couple stress
fluid, following Stokes [24] as in Rudraiah [23], are:

tij ¼ ð�pþmuekkÞdijþ2meij ð12Þ

tuij ¼�2lOij,kk�
r
2
eijsGs ð13Þ

Mij ¼ 4lOj,iþ4luOi,j ð14Þ

where

eij ¼
1

2

@qi

@xj
þ
@qj

@xi

� �
is the strain tensor ð15Þ

Oi ¼ eijkqk,j ¼
1

2

@qi

@xj
�
@qj

@xi

� �
is the vorticity tensor ð16Þ

Gs is the angular velocity vector and Mij is the body moment. Here
the dimensions of m0 and m are those of viscosity and the couple
stress parameters l and l0 are those of momentum. The ratio ðl=mÞ
has the dimensions of length squared.

For an incompressible fluid, in the absence of the body
moments, the basic equations of motion for couple stress fluid,
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using Eqs. (5), (12)–(14), following Rudraiah [23], are

rf

@qi

@t
þqi

@qi

@xj

� �
¼�

@p

@xi
þm @

2qi

@x2
i

�l
@4qi

@x4
i

þreEi ð17Þ

The conservation of energy, in the presence of laser radiation,
in regions 1 and 2, are:

Region 1: For clear fluid

@Tf

@t
þqi

@Tf

@xj
¼ Kf

@2Tf

@x2
i

þ IoOe�Oy ð18Þ

Region 2: For porous layer

@Tp

@t
þqi

@Tp

@xj
¼ Kp

@2Tp

@x2
i

þ IoOe�Oy ð19Þ

where Tf and Tp are the temperatures in clear fluid and in fluid
saturated porous layer, respectively, O is the absorption fre-
quency, Kf and Kp are the thermal diffusivities of fluid in thin shell
and in porous layer, respectively. In region 2, the poorly
conducting couple stress fluid is very heavy and densely packed
porous layer so that we assume it as almost static and has uniform
density and temperature distribution. From the energy equation,
by assuming the fluid in a porous layer is static and is in thermal
equilibrium, we get

dT2
b

dy2
¼�

IoOe�Oy

K
ð20Þ

The boundaries are assumed to be conducting and isothermal
so that we have the boundary conditions:

Tb ¼ To at y¼ 0 ð21Þ

Tb ¼ T1 at y¼ 1 ð22Þ

Solving Eq. (20) using conditions (21) and (22) and using
Eq. (11) with the assumption that the absorption frequency
(Offi106/m) of laser radiation has to decay in a short distance of
order 1/O, we get,

s¼ s0½1þahDTy�ffis0eay ð23Þ

where

a¼ ahDT and DT ¼ T1�T0 ð24Þ

Further, we assume the frequency of charge distribution is smaller
than the corresponding relaxation frequency of the electric field
so that the convective current reqi and the time derivative of re

are negligible compared to r � (sE), in Eq. (6). Then we get

@2f
@x2
þ
@2f
@y2
þa @f

@y
¼ 0 ð25Þ

Satisfying the boundary conditions,

f¼
Vx

h
at y¼ 0 ð26Þ

f¼
Vðx�xoÞ

h
at y¼ h ð27Þ

These conditions arise due to the embedded electrodes of
different potentials at y¼0 and h as shown in Fig. 1 and permits a
linear variation of f with respect to x.

Solving Eq. (25), using conditions (26) and (27), after making
them dimensionless using the scales V for potential and h for
length, we get

f¼ x�
xoð1�e�ayÞ

ð1�eaÞ
ð28Þ
with this, using Eqs. (7)–(10), we get,

Ex ¼�
@f
@x
¼�1 ð29Þ

Ey ¼�
@f
@y
¼

xoae�ay

1�e�a
ð30Þ

and

re ¼�eo
@2f
@y2
¼�

xoeoa2e�ay

1�e�a
ð31Þ

From these equations we obtain,

reEx ¼
xoeoa2e�ay

1�e�a
ð32Þ

and

reEy ¼�
eox2

oa3
oe�2ay

ð1�e�aÞ2
ð33Þ

3. The solution of the problem

In this section we obtain the velocity and temperature
distributions by using the suitable boundary and surface condi-
tions:

3.1. Velocity Distribution

To study the problem of RTI posed in this paper, we consider
the steady and unidirectional flow of lighter couple stress poorly
conducting fluid in region 1 accelerating the heavy dense couple
stress poorly conducting fluid saturated in densely packed porous
layer in region 2 in the presence of laser radiation with Z(x,t) as
the elevation of the interface at y¼h. To obtain the required
equations, following Rudraiah [23], we use the following
combined lubrication and stokes approximations:
1.
 The thickness h of the film is much smaller than the thickness
H of densely packed fluid saturated porous layer above the
film, that is

h{H ð34Þ
2.
 The non-dimensional Strouhal number, S, which is the
measure of the local acceleration to the inertial acceleration, is

S¼ L=UT{1 ð35Þ

Here U ¼ ðv=LÞ the characteristic velocity, n¼ ðm=rÞ the kine-
matic viscosity, L¼

ffiffiffiffiffiffiffiffi
g=d

p
the characteristic length, g the

surface tension, d¼ gðrp�rf Þ and T ¼ ðmg=h3d2
Þ is the char-

acteristic time scale. These assumptions enabled us to neglect
the local acceleration term @q=@t in Eq. (17).
3.
 We consider high viscous couple stress fluid so that the inertial
acceleration term in Eq. (17) can be neglected compared with
the viscous term.
4.
 The interface elevation Z is assumed to be small compared
with film thickness h, that is

Z
h
{1

These assumptions enabled us to use the creeping flow
approximations which allow us to neglect certain terms in the
perturbation equations to obtain linear equations for the interface
elevation. Under these assumptions, for two dimensional flow, the
basic Eqs. (17) and (1) respectively, using Eqs. (32) and (33) and
making them dimensionless using the scales, h for length, dh for
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pressure, dh2/mf for velocity, mg=h3d2 for time, V/h for electric field,
eoV/h for density of the charges, yf,pTo for temperatures, V for
electric potential, take the form

0¼�b2 @p

@x
þb2 @

2u

@y2
�
@4u

@y4
þ

web
2a2

oxoe�ay

ð1�e�aÞ
ð36Þ

0¼�
@p

@y
�

wex2
oa3e�2ay

ð1�e�aÞ2
ð37Þ

0¼
@u

@x
þ
@v

@y
ð38Þ

where b2
¼ ðmf h2=lÞ is the couple stress parameter,

we ¼ ðeoV2a2xo=dh2Þ is the electric number which represents
physically the measures the electric energy to kinetic energy of
the system.

These equations have to be solved using the following non-
dimensional form of the boundary and surface conditions on
velocity:

The no-slip boundary conditions at the rigid surface are

u¼ 0 and v¼ 0 at y¼ 0 ð39Þ

The Saffman [21] slip condition at the interface between
porous layer and clear fluid layer is

@u

@y
¼�a1spu at y¼ 1 ð40Þ

where sp ¼ h=
ffiffiffi
k
p

is the porous parameter and a1 is the slip
coefficient.

The couple stress boundary conditions are

@2u

@y2
¼ 0 at y¼ 0 and y¼ 1 ð41Þ

The dynamic surface condition, at the interface, is

p¼�Zðdð1Þ�weÞ�
1

B

@2Z
@x2

at y¼ 1 ð42Þ

where B¼dh2/g is the Bond number and d(1)¼yf(1)�yp(1).
The kinematic surface condition, at the interface, is

v¼
@Z
@t
þu

@Z
@x

at y¼ 1 ð43Þ

For the linear case the above condition (43) reduces to the form

v¼
@Z
@t

at y¼ 1 ð44Þ

Solution of Eq. (36), satisfying conditions (39)–(41), is

u¼ C coshbyþDsinhbyþ
y2

2

@p

@x
�

Ay

b2

þ
web

2xoe�ay

ða2�b2
Þð1�e�aÞ

þ
1

b2

@p

@x
�Bo

� �
ð45Þ

where

A¼
b2

ð1þa1spÞ
a1
@p

@x
�

wexoa2a2

ð1�e�aÞða2�b2
Þ
þwexoa1sp

( )
,

a1 ¼
ð2þa1spÞ

2
�
ðcoshb�1Þ

bsinhb
, a2 ¼

bðe�a coshb�1Þ

sinhb
þ
b2e�a

a2
,

Bo ¼
�wexob

2

1�e�a
, C ¼�

1

b2

@p

@x
þ

web
2xoa2

ða2�b2
Þð1�e�aÞ

" #
and

D¼�
1

b2

ð1�coshbÞ
sinhb

@p

@x
þ

web
2xoa2ðe�a�coshbÞ

ða2�b2
Þð1�e�aÞsinhb

" #
3.2. Temperature Distribution

To find the effect of laser radiation on heat transfer in a thin
film past a porous layer, we assume, as in Section 3.1, fully
developed flow with basic state as q

!
¼ ðuðyÞ,0Þ, Tf,p¼Tf,p(y), and

making Eqs. (18) and (19) dimensionless using the scales
mentioned in Section 3.1, we get,

0¼
@2yf

@y2
þsf e�Oy ð46Þ

0¼
@2yp

@y2
�spe�Oy ð47Þ

where sf¼(IoOh3/Tokf) and sp¼(IoOh3/Tokp).
To find the solutions of Eqs. (46) and (47), we consider the

following two cases for a poorly conducting fluid in porous layer.
Case 1: This fluid to be homogeneous.
Case 2: This fluid to be Boussinesq fluid.
For a poorly conducting couple stress homogeneous incom-
pressible fluid in thin-film and in porous layer, we assume that
the temperature, Tp, in the porous layer is uniform. Then Case 1:
The boundary conditions on temperature for this case are:

Set 1:

yf ¼ 1 at y¼ 0 ð48Þ

yf ¼ y1 at y¼ 1 ð49Þ

Set 2:

yf ¼ 1 at y¼ 0 ð49Þ

@yf

@y
¼�Biðyb�1Þ at y¼ 1 ð50Þ

where Bi¼(hch/kf), is the Biot number and yf¼yb at y¼1.
Solving Eq. (46) using set 1 boundary conditions (48) and (49),

we get

yf ¼
sf

O2
ð1�e�OyÞþ

sf ðe
�O�1Þ

O2
yþðy1�1Þyþ1 ð51Þ

In this case

dð1Þ ¼ yb�yp ð52Þ

where yp is the constant temperature of the fluid saturated porous
layer.
Case 2: The boundary conditions on temperature, for Boussinesq
fluid in the thin film as well as in the porous layer, are

yf ¼ 1 at y¼ 0 ð53Þ

@yf

@y
¼�Biðyf�1Þ at y¼ 1 ð54Þ

@yp

@y
¼�Biðyp�1Þ at y¼ 1 ð55Þ

@yp

@y
-0 as y-1 ð56Þ

The solutions of Eqs. (46) and (47) using the this boundary
conditions (53)–(56) are

yf ¼ 1�
sf ðe

�Oy�1Þ

O2
þ

Bisf ðe
�O�1Þ

O2
ðBiþ1Þ

y�
sf e�O

OðBiþ1Þ
y ð57Þ



Table 1

Reduction in growth rate for different values b Couple stress parameter (For

varying electric number we and slip parameter a1).

b we d(1) a1 sp Gm Reduction in

growth rate (%)

0.1 1 0.5 0.001 10 0.00392986 99.607

0.75 0.0116312 98.8369

1.5 0.0399001 96.01

2.25 0.0730293 92.6971

0.1 2 0.5 0.0001 10 0.00230254 99.7697

0.75 0.10476 89.524

1.5 0.361254 63.8746

2.25 0.661414 33.8586

Table 2

Reduction in growth rate for different values b couple stress parameter (for

varying d(1) and porous parameter sp).

b we d(1) a1 sp Gm Reduction in

growth rate (%)

0.1 1 0.5 0.001 5 0.00115059 99.8849

0.75 0.0116228 98.8377

1.5 0.0400291 95.9971

2.25 0.073283 92.6717

0.1 1 0.75 0.001 10 0.000982464 99.9018

0.75 0.00290781 99.7092

1.5 0.00997502 99.0025

2.25 0.0182573 98.1743
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and

yp ¼ 1þ
sp

O2
e�Oyþ

spe�O

O2Bi

ðBi�OÞ ð58Þ

Now using Eqs. (57) and (58), we obtain an expression for d(1)
in the following form:

dð1Þ ¼ yf ð1Þ�ypð1Þ ð59Þ

That is

dð1Þ ¼
sf

O2

1�ð1þOÞe�O

Biþ1

� �
�

spe�Oð2Bi�OÞ
O2Bi

ð60Þ

4. Dispersion Relation

Integrating Eq. (38) over the limits 0 to 1 and using conditions
(39), we get

vð1Þ ¼�

Z 1

0

@u

@x
dy ð61Þ

This, using Eq. (45) and integrating, we get

vð1Þ ¼
1

3
�

4þb2

4b2
�

2ðcoshb�1Þ

b3 sinhb
þ

2ðcoshb�1Þ�bsinhb
4bsinhb 1þa1sp

� �
" #( )

@2p

@x2

ð62Þ

From Eq. (44), using the normal mode solution of the form
Z¼Z0eilx + nt and using Eqs. (42) and (62), we get the dispersion
relation in the form

n¼
1

3
�

4þb2

4b2
�

2ðcoshb�1Þ

b3 sinhb
þ

2ðcoshb�1Þ�bsinhb
4bsinhb 1þa1sp

� �
" #( )

l2 dð1Þ�we�
l2

B

� �

ð63Þ

where n is the growth rate in the presence of couple stress,
electric field and laser radiation. In the absence of electric field,
couple stress, porous layer and laser radiation that is as we-0,
l-0 (b-N), sp-0and d(1)-1, the dispersion relation (63)
reduces to

nb ¼
l2

3
1�

l2

B

� �
ð64Þ

which coincides with the expression given by Babchin et al. [25].
Then Eq. (63) can be written as

n¼ nb�
4þb2

4b2
�

2ðcoshb�1Þ

b3 sinhb
þ

2ðcoshb�1Þ�bsinhb
4bsinhbð1þa1spÞ

" #
l2 dð1Þ�we�

l2

B

� �

ð65Þ

5. Results and Conclusions

The linear ERTI of an incompressible viscous poorly conducting
couple stress fluid in a thin film in the presence of an electric filed
and laser radiation, bounded below by a rigid surface and above
by densely packed porous layer consisting of heavy couple stress
poorly conducting fluid of high density is studied using linear
stability analysis combined with the normal mode solution. The
dispersion relation given by Eq. (65) following [8,2] can be
expressed in the form:

n¼ nb�b
�lva ð66Þ

where

va ¼
4þb2

4
�

2ðcoshb�1Þ

bsinhb
þ

2bðcoshb�1Þ�bsinhb
4sinhbð1þa1spÞ

" #
l dð1Þ�we�

l2

B

� �

ð67Þ
is the transverse velocity at the interface, b� ¼ ð1=b2
Þ, nb is given

by Eq. (64).
Setting n¼0 in the dispersion relation (63), we get the critical

wave number, lct, as

lct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdð1Þ�weÞB

p
ð68Þ

The maximum wave number, lm, obtained from Eq. (63), by
setting (qn/ql)¼0 is

lm ¼
lctffiffiffi

2
p ð69Þ

Relations (68) and (69) are true even in the absence of couple
stress, electric field and laser radiation effects and for convenience
we call them as classical results denoted by suffix b. Substituting
Eq. (69) into Eq. (63), we get the maximum growth rate in the
form

nm ¼
Bðdð1Þ�weÞ

2

4

1

3
�

4þb2

4b2
�

2ðcoshb�1Þ

b3 sinhb
þ

2ðcoshb�1Þ�bsinhb
4bsinhbð1þa1spÞ

" #( )

ð70Þ

Similarly, using Eqs. (64) and (68), we get the classical
maximum growth rate as

nmb
¼

B

12
ð71Þ

The ratio of the growth rates, Gm¼nm/nmb, is obtained from
Eqs. (70) and (71) as

Gm ¼ ðdð1Þ�weÞ
2 1�3

4þb2

4b2
�

2ðcoshb�1Þ

b3 sinhb
þ

2ðcoshb�1Þ�bsinhb
4bsinhbð1þa1spÞ

" #( )

ð72Þ

where d(1) is given by Eq. (60). We note that in the limit l-0
(b2-N), we-0 and d(1)-1, this ratio of growth rates given by
Eq. (72) reduces to

Gm ¼
4þa1sp

4ð1þa1spÞ
ð73Þ
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this coincides with the one given by Rudraiah [2] in the absence of
couple stress and electric field effects, called NR-formula.

This, Gm given by Eq. (72), is computed for different values of
the couple stress parameter b, electric number we, porous
parameter sp and absorption frequency O (expressed in difference
in temperatures d(1) at the interface) at the interface of the laser
radiation and the results are tabulated in Tables 1 and 2.

From these tables, we note that the reduction of growth rate is
99% in the presence of laser radiation; couple stress and electric
field, compared to 45% reduction predicted by Takabe et al. [8]
and 79% by Rudraiah [2] in the absence of these quantities.

Also the growth rate n given by Eq. (63) is always real. This n is
computed for different values of b, we, B and d(1) and the values
are depicted in Figs. 2–5, these Figs. 2–5 represent the dispersion
relation n versus cutoff wave number l.

Fig. 2 represents the graph of the growth rate n versus wave
number l for different values of b and with fixed values of we¼1,
d(1)¼10, B¼0.02 and s¼0.001. This figure shows decrease in b
(increase in l couple stress parameter) the negative growth rate n

decreases. Particularly for b¼0.75 the growth rate n has almost
approaches zero and hence stabilizes the interface elevation.

Fig. 3 represents the graph of the growth rate n versus wave
number l for different values of we and with fixed values of b¼1,
d(1)¼10, B¼0.02 and s¼0.001. This graph shows that for an
increase in we the growth rate n decreases. Particularly for we¼9
the growth rate n is very small and hence stabilizes the interface
elevation.

Fig. 4 represents the graph of the growth rate n versus wave
number l for different values of d(1) and with fixed values of b¼1,
we¼1, B¼0.02 and s¼0.001. This figure shows that for an
increase in d(1) the growth rate n decreases. Particularly for
d(1)¼1 the growth rate n is very small and hence stabilizes the
interface elevation.

Fig. 5 represents the graph of the growth rate n versus wave
number l for different values of Bond number B with fixed values
of b¼1, we¼1, d(1)¼10 and s¼0.001. This figure shows that
decrease in B (increase in surface tension) increases the negative
growth rate. Particularly for B¼0.04 the growth rate n is very
small and hence stabilizes the interface elevation.

Finally, from these graphs, we predict that the reduction of
maximum growth rate in presence of an electric field, laser
radiation and couple stress. Hence, we conclude that the electric
field, laser radiation and couple stress are more effective in
reducing the asymmetry of IFE caused by fusing DT by laser
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radiation compared to classical growth rate in the absence of
electric field and couple stress parameter. This conclusion on the
reduction of growth rate of the ERTI mode is more effective in the
design of a suitable IFT for increasing the efficiency of extraction
of IFE by reducing the asymmetry caused by laser radiation. These
conclusions are also useful in the effective design of artificial
organs in biomedical engineering to prevent the side effects like
heamolysis.
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