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Abstract: Under the effects of electric field and chemical reaction, the problem of dispersion of aerosols in a poorly conducting fluid 
in a channel is solved analytically using the mixture theory together with a regular perturbation technique. It is shown that the 
aerosols are dispersed relative to a plane moving with the mean speed of atmospheric fluid as well as the mean speed of 
agglomeration of aerosol with a relative diffusion coefficient, called the Taylor dispersion coefficient. This coefficient is numerically 
computed and the results reveal that it increases with an increase in the electric number, but decreases with increasing porous
parameter. The physical explanations for the phenomena are given in this article. 
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Introduction 

This article deals with the effects of electric field 
and chemical reaction on the dispersion of deformable 
aerosols in a poorly conducting atmospheric fluid 
flowing in a channel bounded by porous layers using 
Taylor’s model[1].

Electric fields are used extensively in different 
industrial problems, particularly in those concerned 
with chemical, electrical, electronic and drug indu- 
stries for various separation processes. Waterman[2]

reviewed the process of using electric fields to 
improve coalescence and found these techniques to be 
quite effective in the removal of water from oil. 
Williams and Bailey[3] examined coalescence of 
poorly conducting drops in the presence of an elec- 
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trical field both theoretically and experimentally. 
Schmidt[4] performed experiments with different 
aerosols and observed that the application of an 
electric field had the effect of reducing sedimentation 
time. A detailed calculation of the aerosol particles 
and size distribution suggested that this phenomenon 
of reduction of sedimentation time is due to the 
electric field enhancing aerosol particle coalescence.  

Studies of predicting the collision frequencies of 
settling mechanisms have been carried out in the past. 
Also, the deposition of nano-particles under different 
conditions was investigated in the recent numerical 
studies by Sun et al.[5], Gan et al.[6], Yin and Lin[7],
and Liu and Lin[8]. Wang et al.[9] used a trajectory 
analysis for estimating the aggregation rates and found 
that the electric fields can enhance the gravitational 
settling of charged particles.  

Usually, when the Earth’s local weather is fine, 
the electric field is about 180 Vm-1 – 280 Vm-1

depending on the concentration of aerosols (see 
Jayaratne and Verma[10]). When the aerosols are in 
continuous deformation with relative motion resulting 
in particles colliding and coalescing to form larger 
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particles where an electric field induces a dipole in 
uncharged aerosol particles, as explained by Rudraiah 
and Devaraju[11], who showed that the charges 
induced on the closest sides of the neighboring 
particles are of opposite sign. These particles expe- 
rience an attractive force which can eventually lead to 
the particles colliding causing agglomeration or 
coalescence. That is, the difference in number con- 
centration of aerosols causes variation in electrical 
conductivity σ , which releases the charges forming 
distribution of charge density ερ . These charges 
produce an induced electric field, indE , known as 
concentration electric field. In addition, there may be 
an applied electric field, aE , due to embedded 
electrodes of different potentials at the boundaries. 
The total electric field = +t ind aE E E  produces not 
only a current density, J , according to Ohm’s law, 
but also an electric force e tρ E , which is computed 
using Maxwell’s equations.  

The motion of atmospheric fluid is usually tur- 
bulent due to large length scales which result in large 
Reynolds number. Therefore, to derive the required 
basic equations, we use the mechanism of mixture of 
aerosols and atmospheric turbulent fluid taking into 
account the combined effect of electric field, defor- 
mable aerosols and settling of large particles on 
primary as well as secondary admixture using the 
Reynolds averaging procedure supplemented with 
gradient diffusion model. The primary pollutants, 
directly injected into the atmosphere, are assumed to 
satisfy the general equation involving the relative 
velocity between aerosol and atmospheric fluid. The 
aerosol medium is assumed to be homogeneous, 
incompressible and isotropic in the presence of the 
body force. In the literature[11-14], mixture theory has 
been used to derive the basic equations for an ordinary 
fluid in the absence of electric field through assuming 
the mixture of aerosol and atmospheric fluid as 
deformable porous media. The dispersion of aerosols 
and other Suspended Particulate Matter (SPM) in the 
presence of electric field in atmospheric turbulent 
fluid has not been given much attention in the 
literature. The study of it is the main objective of this 
article because of its importance in many applications 
discussed above. To achieve the objectives of this 
article, the required basic equations, relevant boun- 
dary conditions and the dimensionless form are given 
in Section 1 on mathematical formulation of this 
article “space”. Analytical solutions of coupled partial 
differential equations are derived in Section 2 using a 
regular perturbation technique with a perturbation 
parameter ε . The Taylor dispersion coefficients for 
atmospheric fluid and also for aerosols are determined 
in this section. These dispersion coefficients, the velo- 
city for atmospheric fluid fu and for aerosols su  are 

numerically computed and the results are represented 
graphically and important conclusions are given in 
Section 3. 

1. Mathematical formulation 
We consider a two-dimensional geometry as 

shown in Fig.1. It consists of flow through a 
symmetrical channel extended to infinity on both 
directions of the x-axis. The channel is filled with 
poorly conducting fluid saturated porous media 
regarded as a mixture of aerosol and atmospheric fluid 
bounded by permeable layers with embedded elec- 
trodes of different potentials at = 0y  and =y h .
The applied pressure gradient / = ( )p x G t∂ ∂  pro- 
duces an axially directed flow. For an infinite channel, 
we assume fully developed unidirectional flow as in 
Taylor[1] so that there is no x-dependence in any of the 
physical quantities except the pressure, electric poten- 
tial and concentration of aerosols. The unidirectional 
flow is represented with velocities 1 =s sq u  as the 
x-component of aerosol velocity and 1 =f fq u  the 
x-component of atmospheric fluid velocity. Then the 
required momentum equations are given by  

( )+ = + +i i
j p a

j i

q q pq X
t x x

β β
β β βρ φ μ μ∂ ∂ ∂− −

∂ ∂ ∂

] ( )
2

+ +s fi
a e i i e t

j j

q K q q E
x x

β

μ μ ρ∂
−

∂ ∂
(1)

These equations, following Rudraiah and Devaraju[11],
for the mixture of aerosol and atmospheric turbulent 
fluid with the assumptions stated above becomes 

( )
2

2= +
s s

s s s f
s e x

u u G K u u E
t y

ρ μ φ ρ∂ ∂ − − −
∂ ∂

    (2)

( )
2

2= + +
f f

f f s f
f e x

u u G K u u E
t y

ρ μ φ ρ∂ ∂ − −
∂ ∂

(3)

where the superscript, s , represents solid phase (i.e., 
aerosol) and, f , the fluid phase (i.e., atmospheric 
poorly conducting fluid), = +s eμ μ μ  is one of the 
turbulent Lamé constants, = +f a eμ μ μ  the effective 
viscosity (also called the Brinkman viscosity) of 
poorly conducting atmospheric turbulent fluid, μ
the Lamé constant, eμ  the eddy viscosity, K  the 
linear drag coefficient that is the Darcy resistance 
offered by solid to fluid, G  the pressure gradient, 
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sϕ  the aerosol volume fraction and fϕ  the fluid 
volume fraction. We make these equations dimen- 
sionless using 

= y
h

η ,
0

= tt
t

∗ , 2
0

=s ssu u
h G

μ∗

, 2
0

= ff fu u
h G
μ∗

,

0
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EE
V h

∗

/
, 2
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= e
e V h
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ε

∗

/
, =

V
ΦΦ ∗ ,

= ff
f

μ
ν

ρ
, =s s

s

μν
ρ

                        (4)

where h , 0G  , V  and 0t  are the characteristic 
length, pressure gradient, electric potential and time 
respectively and the asterisks ( ∗ ) denote the dimen- 
sionless quantities.  

Fig.1 Physical configuration 

Substituting Eq.(4) into Eqs.(2) and (3), 
simplifying and for simplicity neglecting the asterisks, 
we get  

( )
2

1 1 2 32= +
s s

s s f
e e x

u uR R G R u R u W E
t

φ ρ
η

∂ ∂ − − −
∂ ∂

(5)

( )
2

4 4 2 32= + +
f f

s s f
e e x
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t

φ λ ρ
η

∂ ∂ − −
∂ ∂

(6)

where iR ( = 1i  to 4)  are dimensionless parameters 
defined by 

0
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h

μ
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, 0
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R μ
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The boundary conditions are the Saffman slip condi- 
tions of the form[15] 

1
d =
d

s
s

p
u uα σ
η

± , 2
d
d

f
f

p
u uα σ
η

= ± at = 0η ,

and 1 for 0t > , respectively      (8) 

where = /p h kσ  is the porous parameter, and 1α
and 2α  are the slip parameters. To find the electric 
force, e xEρ , first we have to find the electric field 

xE  and then the charge density eρ  using Maxwell’s 
equations given by 

Gauss’s law:  

0

=i e

i

E
x

ρ
ε

∂
∂

                               (9)

Faraday’s law:  
By neglecting induced magnetic field because 
1σ , and due to the absence of applied magnetic 

field, is 

= 0 =i
ijk i

j i

E E
x x

Φε ∂ ∂−
∂ ∂

              (10)

Ampere’s law:  

= +i
ijk i e i

j

H J q
x

ε ρ∂
∂

                     (11) 

Solenoidal property of magnetic field:  

= 0i

i

H
x

∂
∂

                               (12)

These equations have to be supplemented with the 
equation of continuity of charges 

( )
+ + = 0e ie i

i i

q J
t x x

ρρ ∂∂ ∂
∂ ∂ ∂

                 (13)

and using Ohm’s law for a poorly conducting media 
( 1σ ) and neglecting convection current e iqρ
compared to conduction current, we denote 0=i iD Eε ,

=i iJ Eσ . From these, while using the assumption 
1σ , Eq.(13) becomes 

+ + = 0e i
i

i i

E E
t x x

ρ σσ∂ ∂ ∂
∂ ∂ ∂

 = 0i

i

q
x

∂
∂

      (14)

Furthermore, using Eqs.(9) and (10), and taking 
= ( )σ σ η , we get  

2

2

1+ = 0Φ Φ σ
η σ η η

∂ ∂ ∂
∂ ∂ ∂

                      (15)
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with the boundary conditions due to potentials 
= /Vx hΦ  at = 0y  and 0= ( ) /V x x hΦ −  at 
=y h  due to embedded electrodes as shown in Fig.1. 

Making Φ  dimensionless using V , the boundary 
conditions are 

0= x xΦ −  at = 1η                    (16a)

= xΦ  at = 0η                       (16b)

Since 1σ , perturbation on it is negligible and 
hence σ  depends on the basic concentration bC .
Make σ  dimensionless using 0σ , and use bC  the 
basic concentration obtained by solving 2 2d / d =bC η
0 satisfying 0=bC C  at = 0η  and 1=C C  at 

= 1η , in the form 1 0 0= ( ) +bC C C Cη− . Then σ  is 
given by  

= 1+ eαησ αη ≈  (since 1α )              (17) 

where = h Cα α Δ , 1 0=C C CΔ − . Eq.(15), using 
Eq.(17), becomes 

2

2

d d+ = 0
d d

Φ Φα
η η

                       (18)

The solution of Eq.(18), using the boundary 
condition given in Eq.(16), is  

( )0 1 e
=

1 e

x
x

αη

αΦ
−

−

−
−

−
                   (19)

Substituting Eq.(19) into xE  and eρ , we get  

= = 1xE
x
Φ∂− −

∂
 and 

22
0

2

e
= =

1 ee
x αη

α

αΦρ
η

−

−

∂−
∂ −

   (20) 

If C  is the concentration of aerosols in the 
atmosphere, and diffuses in the atmospheric turbulent 
fluid of unidirectional flow given by Eqs.(2) and (3), 
then C , with the first-order chemical reaction, 
satisfies the equation 

2 2

12 2+ = +e
C C C Cu D k C
t x x y

β∂ ∂ ∂ ∂ −
∂ ∂ ∂ ∂

          (21) 

We study the electrohydrodynamic dispersion of 
aerosols by the atmospheric fluid and vice versa using 
Taylor’s model, in the next section.  

2. Electrohydrodynamic dispersion of aerosols 
The required basic equations and the corre- 

sponding boundary conditions are given by Eqs.(5) to 
(16). These equations are coupled linear Partial 
Differential Equations (PDE). Although it is possible 
to decouple these equations using a suitable operator, 
the resulting PDE becomes higher order and cumber- 
some and the required boundary conditions have to be 
extrapolated. Therefore, we avoid this process and use 
a regular perturbation technique choosing 2 3= R Rε
( 0= /( )s

s fK tμ ρ μ ) to be small as a perturbation 

parameter. This assumption 0/ /s
s fK tμ ρ μ  is 

valid in our study of quasi-steady flow obtained 
following Taylor[1], where 0t  is very large and fμ ,
the viscosity of atmospheric fluid, is small. In this 
technique, we look for solutions of Eqs.(5) and (6) in 
the form  

0 1= + +f f fu u uε ... , 0 1= + +s s su u uε ...          (22) 

Substituting Eqs.(22) and (20) into Eqs.(5) and (6) and 
assuming the normal mode solutions of the form  

{ } { }0( ) ( ) ( ) = ( ) ( ) ef s f s nt
i i i iu y t u y t G t u y u y G −, , , , , , (23)

where = 0  1,  i , ... , and on simplifying them, we get  

2
20
0 02

1

d
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d

s
s s eu Wa u

R
αηφ

η
−− −               (24) 

2
20 2
0 0 02

4 4

d
+ = e

d

f
f f s eu WRb u u

R R
αηλφ

η
−− −        (25)

2
2 01
0 12

1

d =
d

fs
s uu a u

Rη
− −                      (26)

2
21 2
0 1 0 12

4 4

d + =
d

f
f f su Rb u u u

R R
λλ

η
−             (27)

where 2
0 2 1= ( ) /a R n R−  and 2

0 4= /b n R . The boun- 
dary conditions are the Saffman slip conditions[14] as 
given in Eq.(8), which become  

1
d

=
d

s
si

p i
u uα σ
η

± , 2
d
d

f
fi

p i
u uα σ
η

= ±  at = 0η ,

and 1 for 0t > , respectively        (28)
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Similarly we can get equations for 1i > , but we 
restrict only to = 0i  and 1. The solutions of Eqs.(24) 
to (27), satisfying the condition given by Eq.(28), are 

( )0 1 0 2 0 22 2
01 0

e
= cosh + sinh

s
s eWu c a c a

aR a

αη φη η
α

−

− −
−

(29)

0 11 0 12 0 13 0= cos + sin + cosh +fu b b aη η ηΔ Δ Δ

14 0 15 16sinh + e +a αηη −Δ Δ Δ            (30)

( ) ( )1 17 18 0 19 20= + sinh + + cosh +su aη η η ηΔ Δ Δ Δ

21 0 22 0 23 24sin + cos + e +b b αηη η −Δ Δ Δ Δ      (31) 

( ) ( )1 25 26 0 27 28 0= + cos + + sin +fu b bη η η ηΔ Δ Δ Δ

( ) ( )29 30 0 31 32 0+ cosh + + sinh +a aη η η ηΔ Δ Δ Δ

33 34e +αη−Δ Δ                          (32) 

where the coefficients, 1 ( = 1 9)j jΔ ,..., , 2 ( =j jΔ

0 9),..., , 3 ( = 0 4)j jΔ ,..., , are given in the appendix 
of this article.  

From Eq.(22), using Eqs.(29) to (32), we get  

( ) ( )0 1 11 12 0 13 14= + = + cosh +s s su u u a a a a aε η η η+

0 15 0 16 0 17 18sinh + sin + cos + e +a a b a b a aαηη η η −

(33)

( ) ( )0 1 11 12 0 13 14= = + cos + +f f fu u u b b b b bε η η η+

( ) ( )0 15 16 0 17 18sin + + cosh + +b b b a b bη η η η

0 19 20sinh + e +a b bαηη −          (34)

where the coefficients 1 ( = 1 8)ja i ,...,  and 1 ( =jb i

1 9),..., , 20b  are given in the appendix. 
To find the concentration distribution, we assume, 

following Taylor[1], the longitudinal diffusion is much 
less than the transverse diffusion, which implies 

2 2 2 2/ /C x C y∂ ∂ ∂ ∂ . Furthermore, we assume that 
though there is a small longitudinal gradient of C
along the flow, advection generates a small amount of 
aerosol across a section of the flow which moves with 
the mean speed. In other words, this small transport 
and the small longitudinal concentration gradient must 
be proportional to one another. Thus the combined 

effect of longitudinal advection and transverse 
diffusion is to disperse the aerosol longitudinally 
relative to a frame moving at the mean speed of flow 
by a mechanism which obeys the same law as an 
ordinary one-dimensional diffusion relative to fluid at 
rest. Then Eq.(19) takes the form 

2

12+ = e
C C Cu D k C
t x y

β∂ ∂ ∂ −
∂ ∂ ∂

              (35)

In this article, we consider two situations, one is for 
the advection of aerosols by the atmospheric fluid, and 
the other for the advection of atmospheric fluid by 
agglomeration, the solid phase of aerosol. These are 
discussed as follows.  
2.1 Advection by atmospheric fluid

In this case, by denoting = fβ , Eq.(35) takes 
the form  

2

12+ =f
e

C C Cu D k C
t x y

∂ ∂ ∂ −
∂ ∂ ∂

              (36)

Making this equation dimensionless using the scales  

0

= CC
C

∗ ,
0

= tt
t

∗ , = y
h

η , =
fx u t

L
ξ − , =

f
f uu

U
∗

(37)

where 0c  is the initial slug, L  is the characteristic 
length along this flow direction, 2

0= / fU h G μ  is the 
characteristic velocity and all other scales are the 
same as those defined in Eq.(4) and  

1

0
= d =f fu u Fη                       (38)

is the average fluid velocity, where  

13 1411 12 14 12
02 2

0 0 0 0

++= sinh
b bb b b bF a

a a a a
− − −

15 16 18
0 02

0 0

+
cosh + sin

b b ba b
b b

− −

17 18 16 13 1612
02 2 2

0 0 0 0 0

+
cos + + +

b b b b bbb
b b a a b

− −

17
19

0

+
b b
a

                      (39)

and for simplicity neglecting the asterisks, we get  
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2

12 2
0

1 + =
fC w C D C k C

t t L hξ η
∂ ∂ ∂ −
∂ ∂ ∂

         (40)

where

( ) ( )11 12 0 13 14= = + cosh + +f f fw u u b b a b bη η η−

( ) ( )0 15 16 0 17 18sinh + + cos + +a b b b b bη η η η

0 0sin b fη −                       (41)

where 0 19=f F b− , and 1 ( = 1 9)jb i ,...,  are constants 
given in the appendix.  

Following Taylor[1], we assume the partial 
equilibrium at any cross-section of the layer and 
obtain concentration as a function of y by appro- 
ximating Eq.(36) in the form  

2
2

1 12 = fC C D wβ
η

∂ −
∂

                     (42)

where 2
1 = ( / )( / )D h DL C ξ∂ ∂  and 2 2

1 = / eh k Dβ  is 
the reaction rate parameter. For compatibility with the 
atmospheric layer we solve this equation for perme- 
able to concentration given by  

= 1C  at = 0η , = 0C
η

∂
∂

 at = 1η        (43)

The solution of Eq.(42), after using Eqs.(41) and (43), 
is

( )( )1 1 2 1 1 11 12= cosh + sinh + +C c c D e eβ η β η η

( ) ( )0 13 14 0 15 16cosh + + sinh +a e e a e eη η η η−

( ) 0
0 17 18 0 2

1

cos + sin + fb e e bη η η
β

−         (44) 

where 1c , 2c  and 1 ( = 1 7)ie i ,...,  are constants and 
are given in the appendix. The volumetric rate at 
which the aerosol is transported across a section of a 
layer of unit breadth is 

1

0
= dfM Cw η                         (45)

Hence, using Eqs.(44) and (45), performing the 
integration and simplifying the result, we get  

2
1= +1
f

e

N h CM
LD ξ

∂
∂

                       (46)

where ( )1 1
1 10

= 1 df fN D C w η− − . Following Taylor[1],

we assume that the variation of C  with y  is small 
compared to the longitudinal direction and if mC  is 
the mean concentration over a section, then /C ξ∂ ∂
is indistinguishable from /mC ξ∂ ∂  so that Eq.(46) 
can be written as 

2
1= +1
f

m

e

CN hM
LD ξ

∂
∂

                      (47)

This shows that mC  will be dispersed relative to 
plane moving with the mean velocity fu  exactly as 
though it is being diffused by a process which obeys 
the same law as molecular diffusion but with a relative 
diffusion coefficient  

1= =
f

f f f f

e

huD N N Pe
D

−                (48)

called the Taylor diffusion coefficient for the mixture 
of deformable agglomeration and atmospheric fluid, 

1= /f fPe hu D  is the Peclet number and 

1

1 0
1

1= = df f fCN N w
D

η−− −            (49)

and fw  is given in Eq.(41). This is integrated using 
Eqs.(44) and (41).  The fact that no material is lost in 
the process is expressed by the continuity equation for 

mC  namely 

1= mCM
L tξ

∂∂ −
∂ ∂

                       (50)

where the time derivative pertains to a point at which 
ξ  is fixed. Equation (47), using Eqs.(49) and (50), 
takes the form  

2

2= fm mC CD
t ξ

∂ ∂
∂ ∂

                       (51)

This equation represents the longitudinal dispersion of 
deformable agglomeration in the atmospheric fluid, 
dispersed with the dispersion coefficient fD  given 
by Eq.(48). This is computed for different values of  
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the electric number eW , Reynolds number Re ,
Peclet number Pe  and reaction rate parameter 1β ,
and the results are depicted graphically and are 
discussed in Section 3.  
2.2 Advection by agglomeration of aerosol

We also note that the advection of atmospheric 
fluid by agglomeration can also be discussed through 
the similar analysis in Section 2.1 by substituting 

= sβ  in Eq.(35). Following the same procedure as 
explained in Subsection 2.1, we get  

=s s sD Pe N                              (52) 

where = /s s
mPe hu D  and  

1

0
1

1= ds sCN w
D

η−−                   (53)

As in Eq.(49), this is integrated using sw  and 1C − ,
and sD  is computed for different values of the 
electric number eW , Reynolds number Re , Peclet 
number Pe  and the reaction rate parameter 1β , the 
results are depicted graphically and are discussed in 
the next section.  

Fig.2 Velocity profile for atmospheric fluid for different values 
of electric number eW

Fig.3 Velocity profiles of aerosols for different values of 
electric number eW

3. Results and discussions 
One of the necessary tasks associated with 

industrialization is to achieve progress in the removal 
of solid or liquid particles from gases discharged to 
the environment. Design of optimized pollution 
control devices becomes increasingly important 
towards achieving that goal. Fibrous filters are effec- 
tive in the removal of submicrometer aerosol particles 
but their application is limited to low concentrations 
of aerosol dust in air. On the other hand, cyclones are 
efficient only at high gas flow rates and for larger 
particles. Cyclones, very common devices though, are 
still objects of intensive research because of their wide 
range of applications. In the case of smaller aerosol 
particulates an increase in the collection efficiency of 
particles in the turbulent flow is necessary. An 
application of an externally applied electric field in a 
turbulent flow assisting the inertial removal effect 
should result in increased cleaning effectiveness, in 
particular for small particles of poorly conducting 
materials. A standard design cyclone, with a tangential 
inlet in which an electric field is generated in the 
space between an external wall and the central outlet 
channel is considered. The dispersion of large size 
deformable aerosols mixed with a poorly conducting 
atmospheric fluid is discussed in this article analy- 
tically using Taylor’s model valid asymptotically for 
large time with the objective of understanding the 
effect of electric field on the dispersion of atmos- 
pheric aerosols because of its importance in the 
applications mentioned above. The dispersion of 
deformable agglomeration in quasi-steady flow is 
discussed in Section 2. The equations governing the 
flow for atmospheric fluid, poorly conducting fluid 
and for deformable agglomeration obtained under the 
assumption of fully developed flow are the coupled 
partial differential Eqs.(5) and (6). These equations 
are solved analytically using the regular perturbation 
technique given by Eq.(22) with 0= /sK tε μ
( ) 1s

fρ μ . This assumption is valid in our study of 
quasi-steady flow as considered in Rudraiah and 
Ng[16]. Using these approximations and following the 
analysis of Taylor we obtained the solutions 
analytically. Using these solutions the dispersion 
coefficient Dβ  is determined as given by Eq.(48) for 
advection by atmospheric fluid ( = )fβ  and by 
Eq.(52) for advection by agglomeration ( = )sβ . The 
results are represented graphically. Figures 2 and 3 
represent the effect of electric number on the velocity 
profiles of atmospheric fluid and aerosols. From these 
figures we find that fu  increases with eW , because 
electric field induces a small scale turbulence but 
decreases with an increase in pσ  because the 
permeability dampens the velocity profile. Figure 4 
represents the effect of porous parameter on the 
dispersion of aerosols in an atmospheric poorly  
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Fig.4 Dispersion coefficient fD  versus porous parameter for 
different Re

Fig.5 Dispersion coefficient sD  versus deformation para- 
meter for different Re

Fig.6 Dispersion coefficient sD  versus deformation para- 
meter for different Pe

Fig.7 Dispersion coefficient fD versus deformation parameter 
for different Pe

conducting fluid for different values of the Reynolds 
number Re  and it shows that the dispersion 

coefficient fD  decreases with an increase in porous 
parameter because of its dampening effect but 
increases with an increase in the Reynolds number. 
Figures 5 and 6 show the effect of deformation 
parameter on the dispersion coefficient sD  for 
different values of the Reynolds number and this 
figure shows that the sD  decreases for small values 
of 1R  up to 0.2 and for higher values from 0.25 it 
remains uniform. It also reveals that increase in Re
slightly increases for the values of 1R  up to 0.5 and 

fD  remains uniform for 1 0.5R > , Figure 7 shows 
that fD  decreases with an increase in 1R  up to 0.5 
and also decreases with an increase in Pe  up to 

1 = 0.5R  and then remain uniform with respect to 
increase in 1R  and Pe . Figure 6 shows that sD
decreases with an increase in 1R  and for 1 0.7R >  it 
tends to unity. However, sD  decreases with an 
increase in Pe  up to 100 and tends to 2110  at 

1 = 1R  and for 100Pe >  it increases. Figure 8 shows 
that the fD  increases with an increase in eW  for 

= 150Pe . Similarly, Fig.9 shows that fD  increases 
with an increase in reaction rate parameter 1β  for 

= 50eW  and 3= 10Re and reaches the maximum 
value 4.5×1024 for 1 = 40β .

Fig.8 Dispersion coefficient fD  versus electric number eW

Fig.9 Dispersion coefficient fD  versus reaction rate para- 
meter 
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4. Conclusion
In this article we have investigated the effect of 

electric field and the first-order chemical reaction on 
the dispersion of aerosols in a channel bounded by 
porous layers using Taylor’s model. Analytical 
solutions for velocities and concentration distributions 
are obtained using a regular perturbation technique. It 
is shown that the aerosols are dispersed relative to a 
plane moving with the mean speed of atmospheric 
fluid as well as the mean speed of agglomeration of 
aerosol with a relative diffusion coefficient, called 
Taylor dispersion coefficient. This dispersion coeffi- 
cient is numerically computed and the results reveal 
that the electric field and chemical reaction enhances 
the transport (dispersion) of aerosols, i.e., the electric 
field removes efficiently the solid or liquid particles 
from gases discharged to the environment. Therefore, 
the results throw a light on aerosol removal mecha- 
nisms. Also, it is found that the transport of aerosols 
decreases with an increase in the porous parameter. 
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