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Abstract

In the present paper some properties involving curvature tensor,
conformal curvature tensor, Ricci tensor and scalar curvature, on weakly
symmetric, weakly conformally symmetric and pseudo symmetric spaces
are obtained.
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1 Introduction

L.Tamassy and T.Q.Binh [3] have introduced the notion of weakly symmetric
and weakly projective symmetric spaces. Based on this work, U.C.De and
S.Bandyopadhyaa [7] introduced the notion of weakly conformally symmetric
spaces and investigated some properties of such spaces. We consider these
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spaces admitting Veblen identities and conformal Veblen identities [4] and
determine some other properties.

Let M, be a Riemannian n-dimensional space covered by system of co-
ordinate neighbourhoods (U, z;). Suppose g;;, Rpijr and R;; denote the local
components of the metric tensor, the curvature tensor and the Ricci tensor,
respectively, and let R denote the scalar curvature. The non-flat Riemannian
space M, (n > 2) is called weakly symmetric space if the curvature tensor
Ryji, satisfies the condition [3]

(1.1) Ryijig = a1 Rpiji + bu R + diRuiji + € Rpak + fullniji

where a,b,d, e, f are 1-forms (non-zero simultaneously) and the ‘,” denotes
the covariant differentiation with respect to the metric tensor of the space.
An n-dimensional weakly symmetric space M, is denoted by (WS),. Such
spaces are studied by M.Pranovic [5], T.Q.Binh [6] and others. U.C.De and
S.Bandyopadhyay [8] proved that the associated 1-forms d and f in (1.1) are
identical with b and e, respectively. Hence the condition (1.1) of (W.S), be-
comes

(1.2) Rpijig = aiRpijr + bn Rigji + biRuiji + €5 Rpak + exRyiji -
Further, the space M, is called pseudo symmetric if
Rpijiy = 2aiRpiji + apRyji + a; Rpgji + a3 Rpag + agRpijp -

An n-dimensional non conformally flat Riemannian space M,, (n > 3) is called
weakly conformally symmetric if its conformal curvature tensor Cp;j;i, given by

1

(1.3) Chijk = Rniji + ﬁ(ghkRij — gnjRik + 9ijRii — 9irRnj)
+ R ( R .. )
(77/ _ 1)(n _ 2) 9nk9ij 9n;igik ),
satisfies the condition
(1.4) Chijki = @Chijk + buCliji + diChiji + €;Chike + [kChiji

where a, b, d, e, f are associated 1-forms (non zero simultaneously). A weakly
conformally symmetric space M, is denoted by (WCYS), . As in case of (W.S),
it is proved that d and f are identical with b and e respectively. So, (1.4)
reduces to

(1.5) Chijiey = @ Chiji + bpCijre + 0;Chijre + €Chitk + €xChiji



Weakly symmetric and weakly conformally symmetric spaces 2329

for weakly conformally symmetric spaces. The space M, is called pseudo
conformally symmetric if

Chijieg = 20:Chiji + anCiiji + aiChijr + a;Chire + apChiji -

The conformal curvature tensor satisfies the conditions:

(1.7) rik = Cirre = Cijr = 0,
and
(1.8) Chijk = —Chirj = Cinkj = Chjin -

A space is said to be quasi conformally flat if

(1.9) ;Lijk =0,
where
(1.10) Chijk = @ Znije + b (gniGij — 9k Gix + 9i;Gnr — 9inGhy) »

with a, b as arbitrary constants and

R
) (ghkgij - gkighj) ) Gij = Rij - ggij-

hijk hijk n(n—l

The Veblen identities and conformal Veblen identities in M,, are given by [4]:

h h h h h
(1.11) Vi = Bijrq + R j + Ry + Ry =0

and

(112) Wl = C‘};‘k,l + Ol?z’l,j + Ol];cj,i + Chlzk

17 7 J

1
(n—3)

hm
9" {(9imCrip + IemCip + GimCijp + 9mCli )

—(9iChjp T 9i5Cp + I0Crjipy + 91iChi )} = 0.
If the Ricci tensor satisfies the condition

R
(1.13) R;; = i

then M, is called Einstein space.
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2 Weakly symmetric space (WW.S), .

By using (1.2) in the Bianchi identity,

(2.1) Rhyijrg + Rpirj + Rpije =0,
we get
(2.2) BiRniji + B Ruikt + BeRyaj = 0,

where we have put
(23) ﬁl =a; — 26l

and used the relations

(2.4) Rhpijr + Rpjri + Rprij = 0
and
(2.5) Ryijie = —Rinjr = Rink;j

satisfied by the curvature tensor field. By transvecting (2.2) by ¢'* and using
(2.5), we get

(2.6) BBy, = Bk Rji — B R
Now transvection of (2.6) with g% gives

(2.7) ByRl = @“TR.

If M, is an Einstein space, then (2.7) reduces to

(2.8) (n—2)BxR=0.

Now write the Veblen identity (1.11) in the form

(2.9) Rpijig + Rukirj + Rukji + Brjiie =0
and use (1.2) to get

(2.10) a; Rpigj + o Rk + apRpjii + cq Ry = 0,
where we have put

(211) o = a; — (bz + 61‘) s
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and used the results (2.4) and (2.5) . Transvecting (2.10) by g*"and using
(2.5), we get
(212) Oéth = Ozile - OZ[RZ']'.

jli

Now by transvecting (2.12) with g and using that M, is an Einstein space,we
get

(2.13) (n—2)a; R =0.
In view of (2.8) and (2.13) we have

Theorem 2.1 The scalar curvature of weakly symmetric Einstein Rieman-
nian space M, is zero provided the 1-form a in (1.2) is neither 2e nor b+ e

Remark 2.2 As per G.Herglotz [1] the scalar curvature of Finstein space
M, is constant. But that constant is necessarily zero if M, is weakly symmetric
in which a # 2e, b+ e for the 1-forms a, b , e used in (1.2).

Suppose R # 0 in M, then from (2.8) and (2.13) we see that §; = 0 and
a; = 0, which in turn indicate a = 2e,a = b + e and hence b = e. Hence M,,
reduces to pseudosymmetric. So, we state the following:

Theorem 2.3 A weakly symmetric Einstein space with non zero scalar cur-
vature 18 pseudo symmetric.

3 Weakly conformally symmetric space (WCYS), .

By using (1.5) in (1.12), we get

@ Chiji + brCliji + biChiji. + €;Chitk + exChiji
+a;Chit + 0n.Cjrit + bipChjir + €;Chiji + €Chiij
+a;Chikj + 0nCitgj + 0iChikj + €xChiij + €;Chigi

+aiChjii + buCljii + 0;Chiti + €1Chjki + €:Chjik

a,+b
- ( 0 3p) {omChx + 9inCha + 9inChi; + 9 Chi}
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—{guChji + 95Ch0 + 95:Chi + 9ixChyi}l = 0 .

In view of (1.6), (1.7) and (1.8) above result reduces to

a, + by
n—3

(3.1) uChijk + Chii + 0;Crirj + axChjti — ( ) {9nCii. + 9inChi
+gihClz;cj + gkhcfu} - {gle}IZji + 91;Chis + 9i5Chm + gikoglj}] =0,

where oy = a; — (b + ¢;). Contracting (3.1) by ¢" and using (1.6), (1.7) and
(1.8), we get

(3.2) ApClij = 0, where A\, = 20, + ¢, .

Transvecting (3.1) by A! and using (1.7), (1.8) and (3.2), we get
a;+b

(3.3) (M) Chije = ( 7; — 31) P\thjk + /\kCIlu‘j + )‘jCllzki] :

Transvecting (3.3) with A" and using (3.2), we get

+b
() (455) Gl =0

and hence
(3.4) (a4 b) Cly =0
Now the equation (3.3), in view of (3.4), reduces to
(M) Chije = 0.
So we state the following:
Theorem 3.1 A weakly conformally symmetric space (WCS), , (n > 3),

is conformally flat if the 1-forms a,b,c satisfy the condition Moy # 0, where
AN =2b+ e and ap = a; — (b + ).

Suppose Aoy = 0. Then Ch;jx # 0. Now, by using

Proposition A:[2] A quasi-conformally flat space is either conformally flat
or Einstein.

We state the following:
Theorem 3.2 A quasi conformally flat weakly conformally symmetric space
(WCS)y, (n>3) with Nay =0 is Einstein space.
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