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Abstract

In the present paper some properties involving curvature tensor,
conformal curvature tensor, Ricci tensor and scalar curvature, on weakly
symmetric, weakly conformally symmetric and pseudo symmetric spaces
are obtained.
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1 Introduction

L.Tamassy and T.Q.Binh [3] have introduced the notion of weakly symmetric
and weakly projective symmetric spaces. Based on this work, U.C.De and
S.Bandyopadhyaa [7] introduced the notion of weakly conformally symmetric
spaces and investigated some properties of such spaces. We consider these
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spaces admitting Veblen identities and conformal Veblen identities [4] and
determine some other properties.

Let Mn be a Riemannian n-dimensional space covered by system of co-
ordinate neighbourhoods (U, xi). Suppose gij, Rhijk and Rij denote the local
components of the metric tensor, the curvature tensor and the Ricci tensor,
respectively, and let R denote the scalar curvature. The non-flat Riemannian
space Mn (n > 2) is called weakly symmetric space if the curvature tensor
Rhijk satisfies the condition [3]

Rhijk,l = a1Rhijk + bhRlijk + diRhljk + ejRhilk + fkRhijl ,(1.1)

where a, b, d, e, f are 1-forms (non-zero simultaneously) and the ‘,’ denotes
the covariant differentiation with respect to the metric tensor of the space.
An n-dimensional weakly symmetric space Mn is denoted by (WS)n. Such
spaces are studied by M.Pranovic [5], T.Q.Binh [6] and others. U.C.De and
S.Bandyopadhyay [8] proved that the associated 1-forms d and f in (1.1) are
identical with b and e, respectively. Hence the condition (1.1) of (WS)n be-
comes

Rhijk,l = alRhijk + bhRlijk + biRhljk + ejRhilk + ekRhijl .(1.2)

Further, the space Mn is called pseudo symmetric if

Rhijk,l = 2alRhijk + ahRlijk + aiRhljk + ajRhilk + akRhijl .

An n-dimensional non conformally flat Riemannian space Mn (n > 3) is called
weakly conformally symmetric if its conformal curvature tensor Chijk, given by

Chijk = Rhijk +
1

n − 2
(ghkRij − ghjRik + gijRhk − gikRhj)(1.3)

+
R

(n − 1)(n − 2)
(ghkgij − ghjgik),

satisfies the condition

Chijk,l = alChijk + bhClijk + diChljk + ejChilk + fkChijl(1.4)

where a, b, d, e, f are associated 1-forms (non zero simultaneously). A weakly
conformally symmetric space Mn is denoted by (WCS)n. As in case of (WS)n

it is proved that d and f are identical with b and e respectively. So, (1.4)
reduces to

Chijk,l = alChijk + bhClijk + biChljk + ejChilk + ekChijl(1.5)
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for weakly conformally symmetric spaces. The space Mn is called pseudo
conformally symmetric if

Chijk,l = 2alChijk + ahClijk + aiChljk + ajChilk + akChijl .

The conformal curvature tensor satisfies the conditions:

Ch
ijk + Ch

jki + Ch
kij = 0 ,(1.6)

Cr
rjk = Cr

irk = Cr
ijr = 0 ,(1.7)

and

Chijk = −Chikj = Cihkj = Ckjih .(1.8)

A space is said to be quasi conformally flat if

C ′
hijk = 0,(1.9)

where

C ′
hijk = aZhijk + b (ghkGij − gjkGik + gijGhk − gikGhj) ,(1.10)

with a, b as arbitrary constants and

Zhijk = Khijk − R

n (n − 1)
(ghkgij − gkighj) , Gij = Rij − R

n
gij.

The Veblen identities and conformal Veblen identities in Mn are given by [4]:

V h
ijkl = Rh

ijk,l + Rh
kil,j + Rh

lkj,i + Rh
jli,k = 0(1.11)

and

W h
ijkl = Ch

ijk,l + Ch
kil,j + Ch

lkj,i + Ch
jli,k(1.12)

− 1

(n − 3)
ghm{(gjmCp

kil,p + gkmCp
jli,p + gimCp

lkj,p + glmCp
ijk,p)

−(gikC
p
mlj,p + gijC

p
mkl,p + gklC

p
mji,p + gljC

p
mil,p)} = 0 .

If the Ricci tensor satisfies the condition

Rij =
R

n
gij ,(1.13)

then Mn is called Einstein space.
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2 Weakly symmetric space (WS)n.

By using (1.2) in the Bianchi identity,

Rhijk,l + Rhikl,j + Rhilj,k = 0 ,(2.1)

we get

βlRhijk + βjRhikl + βkRhilj = 0 ,(2.2)

where we have put

βl = al − 2el(2.3)

and used the relations

Rhijk + Rhjki + Rhkij = 0(2.4)

and

Rhijk = −Rihjk = Rihkj(2.5)

satisfied by the curvature tensor field. By transvecting (2.2) by glh and using
(2.5), we get

βhR
h
ijk = βkRji − βjRki.(2.6)

Now transvection of (2.6) with gij gives

βhR
h
k =

βkR

2
.(2.7)

If Mn is an Einstein space, then (2.7) reduces to

(n − 2)βkR = 0.(2.8)

Now write the Veblen identity (1.11) in the form

Rhijk,l + Rhkil,j + Rhlkj,i + Rhjli,k = 0(2.9)

and use (1.2) to get

αiRhlkj + αjRhkil + αkRhjli + αlRhijk = 0,(2.10)

where we have put

αi = ai − (bi + ei) ,(2.11)
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and used the results (2.4) and (2.5) . Transvecting (2.10) by gkhand using
(2.5), we get

αhR
h
jli = αiRlj − αlRij.(2.12)

Now by transvecting (2.12) with gil and using that Mn is an Einstein space,we
get

(n − 2)αiR = 0.(2.13)

In view of (2.8) and (2.13) we have

Theorem 2.1 The scalar curvature of weakly symmetric Einstein Rieman-
nian space Mn is zero provided the 1-form a in (1.2) is neither 2e nor b + e

Remark 2.2 As per G.Herglotz [1] the scalar curvature of Einstein space
Mn is constant. But that constant is necessarily zero if Mn is weakly symmetric
in which a �= 2e, b + e for the 1-forms a, b , e used in (1.2).

Suppose R �= 0 in Mn, then from (2.8) and (2.13) we see that βi = 0 and
αi = 0, which in turn indicate a = 2e,a = b + e and hence b = e. Hence Mn

reduces to pseudosymmetric. So, we state the following:

Theorem 2.3 A weakly symmetric Einstein space with non zero scalar cur-
vature is pseudo symmetric.

3 Weakly conformally symmetric space (WCS)n.

By using (1.5) in (1.12), we get

alChijk + bhClijk + biChljk + ejChilk + ekChijl

+ajChkil + bhCjkil + bkChjil + eiChkjl + elChkij

+aiChlkj + bhCilkj + blChikj + ekChlij + ejChlki

+akChjli + bhCkjli + bjChkli + elChjki + eiChjlk

−
(

ap + bp

n − 3

)
[{glhC

p
ijk + gjhC

p
kil + gihC

p
lkj + gkhC

p
jli}
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− {gklC
p
hji + gljC

p
hik + gjiC

p
hkl + gikC

p
hlj}] = 0 .

In view of (1.6), (1.7) and (1.8) above result reduces to

αlChijk + αjChkil + αiChlkj + αkChjli −
(

ap + bp

n − 3

)
[{glhC

p
ijk + gjhC

p
kil(3.1)

+gihC
p
lkj + gkhC

p
jli} − {gklC

p
hji + gljC

p
hik + gijC

p
hkl + gikC

p
hlj}] = 0 ,

where αl = al − (bl + el). Contracting (3.1) by ghi and using (1.6), (1.7) and
(1.8), we get

λpC
p
lkj = 0, where λp = 2bp + ep .(3.2)

Transvecting (3.1) by λl and using (1.7), (1.8) and (3.2), we get

(
λlαl

)
Chijk =

(
al + bl

n − 3

) [
λhC

l
ijk + λkC

l
hij + λjC

l
hki

]
.(3.3)

Transvecting (3.3) with λh and using (3.2), we get

(
λhλh

) (
al + bl

n − 3

)
C l

ijk = 0

and hence

(al + bl)C l
ijk = 0 .(3.4)

Now the equation (3.3), in view of (3.4), reduces to(
λlαl

)
Chijk = 0.

So we state the following:

Theorem 3.1 A weakly conformally symmetric space (WCS)n , (n > 3),
is conformally flat if the 1-forms a, b, c satisfy the condition λlαl �= 0, where
λl = 2bl + el and αl = al − (bl + el).

Suppose λlαl = 0. Then Chijk �= 0. Now, by using

Proposition A:[2] A quasi-conformally flat space is either conformally flat
or Einstein.

We state the following:
Theorem 3.2 A quasi conformally flat weakly conformally symmetric space

(WCS)n, (n > 3) with λlαl = 0 is Einstein space.
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