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A study of the hydromagnetic flow due to a stretching sheet and heat transfer in an incom-
pressible micropolar liquid is made. Temperature-dependent thermal conductivity and a
non-uniform heat source/sink render the problem analytically intractable and hence a
numerical study is made using the shooting method based on Runge–Kutta and
Newton–Raphson methods. The two problems of horizontal and vertical stretching are
considered to implement the numerical method. The former problem involves one-way
coupling between linear momentum and heat transport equations and the latter involves
two-way coupling. Further, both the problems involve two-way coupling between the non-
linear equations of conservation of linear and angular momentums. A similarity transfor-
mation arrived at for the problem using the Lie group method facilitates the reduction of
coupled, non-linear partial differential equations into coupled, non-linear ordinary differ-
ential equations. The algorithm for solving the resulting coupled, two-point, non-linear
boundary value problem is presented in great detail in the paper. Extensive computation
on velocity and temperature profiles is presented for a wide range of values of the param-
eters, for prescribed surface temperature (PST) and prescribed heat flux (PHF) boundary
conditions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The problems in the non-linear regime of free or forced or mixed convection involving micropolar liquids are quite for-
midable to solve analytically or numerically. The reason for the challenging nature of these problems is the two-way cou-
pling between the non-linear equations of conservation of linear and angular momentums. Further, there is a one-way
coupling or two-way coupling between the conservations of linear momentum and energy depending on whether gravity
effects are unimportant or important. The stretching sheet problem involving a micropolar liquid is one of those problems
in this class of formidable problems. The problem is a prototype of many practical problems like polymer-extrusion pro-
cesses and such others (see [40,1–3] and the references therein). In the problem a micropolar liquid is representative of
the cooling liquid surrounding the stretching sheet that serves the purpose of a controlled cooling system in the presence
of a magnetic field. The carrier liquid with the micron-sized suspended particles circumscribes to a micropolar description
(see [15,16]). This liquid description is non-Newtonian in the sense that the stress tensor is asymmetric. The suspended
. All rights reserved.
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particles assist the carrier liquid in quenching the heat in the sheet in such a way that the sheet has a desirable property
required for the application in which it is sought. The suspended particles are electrically inert but the carrier liquid is as-
sumed to have weak electrical conductivity. In the presence of a magnetic field, the distribution of the suspended particles is
unaffected where as the carrier liquid is significantly influenced. The magnetohydrodynamic formulation of a problem is
done in the following two ways:

(i) Chandrasekhar formulation or
(ii) Hartmann formulation

The Chandrasekhar formulation (see [10]) is used when the liquid has finite electrical conductivity and in this case one
will have to take all of the Maxwell equations involving a magnetic field. Generally the appropriate Maxwell equations are in
this case combined into a single equation known as the magnetic induction equation. The Hartmann formulation is used
when the liquid has weak electrical conductivity and in this case the Lorentz force gives rise to a linear drag similar to Darcy
friction seen in porous media (see [40,2,3]).

In view of the importance of the stretching sheet problem involving a micropolar liquid several investigators have focused
their attention on this problem [5–9,11–14,17–35,37,38,43]. The above investigators have considered the horizontal stretch-
ing sheet problem in a uniform property micropolar liquid. It is the intension of the paper to examine and present the imple-
mentation of the shooting method in a problem that involves coupling, non-linearity, variable coefficients and also boundary
conditions of the Dirichlet’s and third-type. The intrinsic difficulty in handling a complex problem like this by the shooting
method using a scientific procedure to estimate the missing initial values is presented in a great detail in the paper. The fore-
most objective of this paper is to lay bare all the nuances of the shooting method to help the reader get used to the method
and apply the same to his/her problems with least difficulty. In our considered opinion the horizontal and vertical stretching
sheet problems involving micropolar liquids are the best serving examples for demonstration of the shooting method. Work
is in progress amongst our research group to apply the shooting method to eigen boundary value problems involving a
micropolar liquid.

In the next two sections we take up the mathematical formulation of the horizontal and vertical stretching sheet
problems.

2. Mathematical formulation for a horizontal stretching sheet

We consider a steady, two-dimensional, coerced flow due to an impermeable stretching sheet, of an incompressible, elec-
trically conducting, micropolar liquid. The flow is generated by the action of two equal and opposite forces along the x-axis
with the y-axis being normal to the flow. The sheet is stretched with a velocity uw(x) which is proportional to the distance
from the origin (Fig. 1a) and it is assumed to be warmer than the ambient liquid, i.e., tw(x) > t1. The flow field is further
Fig. 1. Schematic of a polymer extrusion process in absence/presence of gravity effects.
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subjected to an external transverse uniform magnetic field of strength H0 (along y-axis). The induced magnetic field can be
neglected in the present study as we are restricting our attention to low magnetic Reynolds number flows.

The description of the boundary layers in the case of the horizontal and vertical stretching sheets are shown schematically
in Fig. 2. The boundary layer equations governing the flow and heat transfer in a micropolar liquid over a stretching sheet are
as follows:
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where u and v are the velocity components along x and y directions respectively, t is the temperature of the liquid, q is the
density, t is the kinematic viscosity, r is the electrical conductivity of the liquid, lm is the magnetic viscosity coefficient, k1 is
the microrotation diffusivity parameter, G1 is the microrotation coupling parameter and Cp is the specific heat at constant
pressure.

The thermal conductivity k(t) is assumed to vary linearly with temperature in the form
kðtÞ ¼ k1 1þ e
Dt
ðt � t1Þ

h i
; ð5Þ
where k1 is the thermal conductivity of the liquid far away from the sheet, Dt = tw � t1 is the sheet-liquid temperature dif-
ference and e is a small parameter. We note that e is a scalar and signifies variation of the thermal conductivity with tem-
perature. If the above expression is viewed as a truncated Taylor series expansion then e ¼ Dt
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� ���
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.
The non-uniform heat source/sink q000 is modeled as (see [4])
q000 ¼ kuwðxÞ
xt

A�ðtw � t1Þf 0 þ ðt � t1ÞB�½ �; ð6Þ
where A⁄ and B⁄ are the coefficients of flow and temperature dependent heat source/sink, respectively. Here we make a note
that the case A⁄ > 0, B⁄ > 0 corresponds to internal heat generation and that A⁄ < 0, B⁄ < 0 corresponds to internal heat
absorption.

We have adopted the following boundary conditions for solving Eqs. (1)–(4):
uðx;0Þ ¼ cx; vðx; 0Þ ¼ 0; xðx;0Þ ¼ s xðx; 0Þ þ 1
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where tw is the temperature of the sheet, t1 is the temperature of the liquid far away from the sheet, qw is the wall heat flux,
A and D are positive constants, k is the wall temperature parameter, L ¼

ffiffit
c

p
is the characteristic length and s is the parameter

relating the microrotation to the asymmetric part of the stress with 0 6 s <1. The condition on x(x,0) mentioned in (7) re-
duces to no relative spin and no asymmetric part of the stress on the boundary in the limits s ? 0 and s ?1, respectively.

We now introduce the following dimensionless variables:
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where tw � t1 ¼ A x
L

� �
in PST case and tw � t1 ¼ DL

k1
x
L

� �
in PHF case.

The boundary layer Eqs. (1)–(4) on using 5,6,8 take the following form:
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where Q ¼ rl2
mH2

0
qc is the Chandrasekhar number,
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Pr ¼ lCp

k1
is the Prandtl number,

k2 ¼ k1
t is the microrotation diffusivity parameter and

G2 ¼ cG1
t is the microrotation coupling parameter.

Thermodynamic restrictions dictate a finite range of values for k2 and G2 (see [41,42] and the references therein). The typ-
ical values of Q are those traditionally chosen in MHD problems involving Newtonian electrically conduction liquids (see [39]
and the references therein).

The boundary conditions given by (7) now take the form
UðX;0Þ ¼ Uw ¼ X; VðX;0Þ ¼ 0; NðX;0Þ ¼ s NðX;0Þ þ 1
2
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The discussion on the new boundary condition ð1þ eTðX;0ÞÞ @T
@Y ðX;0Þ ¼ �1 arising due to variable thermal conductivity is gi-

ven in Abel et al. [2]. It is appropriate to mention here that T(X,0) as seen in condition (13) (i.e., the thermal boundary con-
dition in case of PHF) was inadvertently missed, while typing, in the paper by Abel et al. [2].

Introducing the stream function w(X,Y) that satisfies the continuity equation in the dimensionless form (9), we obtain
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: ð14Þ
Using (14), Eqs. (10)–(13) can be written as
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where S ¼ s
2ðs�1Þ and 0 6 S 6 1

2.
In order to convert the partial differential Eqs. (15)–(17) into ordinary differential equations the following similarity

transformations, obtained by Lie-group-theoretic method, are adopted:
wðX;YÞ ¼ Xf ðYÞ;
NðX;YÞ ¼ XhðYÞ;

TðX;YÞ ¼
hðYÞ; ðfor PSTÞ;
/ðYÞ; ðfor PHFÞ;


 ð19Þ
where two different symbols are used for the temperature in the PST and PHF cases, for convenience in handling the two
cases.

Using (19) in (15)–(18) we obtain the following boundary value problems:
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)
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(ii) PHF:
f 000 þ ff 00 � f 02 þ k2h0 � Qf 0 ¼ 0; ð24Þ
G2h00 � 2h� f 00 ¼ 0; ð25Þ
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f 0ð1Þ ! 0; hð1Þ ! 0; /ð1Þ ! 0

)
: ð27Þ
Here the primes denote differentiation with respect to Y. We now move onto present the mathematical formulation for the
vertical stretching sheet.
3. Mathematical formulation for vertical stretching sheet

We consider a steady, two-dimensional flow of an incompressible, electrically conducting, micropolar liquid driven by an
impermeable vertical stretching sheet. The flow is generated by the action of two equal and opposite forces along the direc-
tion of gravity which is taken as the x-axis, and y-axis is taken in a direction normal to the flow. The sheet is stretched with a
velocity uw(x) which is proportional to the distance from the origin (Fig. 1b) and it is assumed to be warmer than the ambient
liquid, i.e., tw(x) > t1. The flow field is further subjected to an external, transverse, uniform, magnetic field of strength H0

(along y-axis). The induced magnetic field can be neglected in the present study as we restrict our attention to the case
of low magnetic Reynolds number.

The description of the boundary layers in the case of the horizontal and vertical stretching sheets are shown schematically
in Fig. 2. The boundary layer equations governing the flow and heat transfer, due to a vertical stretching sheet, in a micro-
polar liquid are as follows:
@u
@x
þ @v
@y
¼ 0; ð28Þ

u
@u
@x
þ v @u

@y
¼ t

@2u
@y2 þ k1

@x
@y
� rl2

mH2
0u

q
þ gbðt � t1Þ; ð29Þ

G1
@2x
@y2 � 2x� @u

@y
¼ 0; ð30Þ

u
@t
@x
þ v @t

@y
¼ 1

qCp

@

@y
kðtÞ @t

@y

� �
þ q000

qCp
; ð31Þ
Fig. 2. Schematic of boundary layers induced by horizontal and vertical stretching sheets.
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where the parameters have their usual meaning as defined in Section 2 with g representing the acceleration due to gravity
and b representing the coefficient of thermal expansion. It is appropriate to note here that in the absence of gravity, Eqs.
(28)–(31) reduce to Eqs. (1)–(4).

The assumed boundary conditions for solving Eqs. (28)–(31) are:
uðx;0Þ ¼ cx; vðx; 0Þ ¼ 0; xðx;0Þ ¼ s xðx;0Þ þ 1
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where the various quantities continue to have their meaning as explained in the previous section. Following the procedure of
Section 2, for non-dimensionalization and introduction of the stream function, we get the governing equations and boundary
conditions for the vertical stretching sheet problem as:
@3w

@Y3 þ
@ðw;wYÞ
@ðX;YÞ þ k2

@N
@Y
� Q

@w
@Y
þ GrT ¼ 0; ð33Þ

G2
@2N

@Y2 � 2N � @
2w

@Y2 ¼ 0; ð34Þ

ð1þ eTÞ @
2T

@Y2 þ e
@T
@Y

� �2
( )

þ Pr
@ðw; TÞ
@ðX;YÞ �

T
X
@w
@Y


 �
þ ð1þ eTÞðA�f 0 þ B�TÞ ¼ 0; ð35Þ
where Gr is the Grashof number defined as Gr ¼ gb�A
c2L in case of PST; Gr ¼ gb�D

c2k1
in case of PHF and the other parameters have

their earlier meaning.
The boundary conditions in (32) in terms of w now take the following form,
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Using the similarity transformation (19), Eqs. (33)–(36) result in the following boundary value problems:

(i) PST:
f 000 þ ff 00 � f 02 þ k2h0 � Qf 0 þ Grh ¼ 0; ð37Þ
G2h00 � 2h� f 00 ¼ 0; ð38Þ
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)
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We note here that in the horizontal stretching sheet problem there is a one-way coupling between the momentum and heat
transfer while it is both ways in the vertical stretching sheet problem. In what follows we present the method of solving the
non-dimensional governing equations for the two problems formulated in Sections 2 and 3.
4. Method of solution

We now discuss the following two important matters pertaining to the implementation of the shooting method used for
solving the boundary value problem arising in the horizontal stretching sheet:
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(a) Decision on ‘1’ and
(b) Choice of f00(0), h0(0), h0(0) and /(0) required for the solution of initial value problem by the classical, explicit Runge–

Kutta method of four slopes.

The decision on an appropriate ‘1’ for the problem depends on the parameters’ value chosen. In view of this for each
parameter combination the appropriate value of ‘1’ has to be decided. In each combination we take a range of values for
‘1’ starting from the ‘1’ of the Newtonian problem. If the solution of two successive ‘1’s matches to a desired accuracy,
then we take this to be the appropriate ‘1’ for a given parameter combination.

The choice of the guess value for the unavailable initial values in the boundary value problem are obtained in a systematic
manner using the qualitative analytical results from the hydromagnetic Newtonian problem for velocity and temperature,
and from the present problem we get information on h0(0). In the Newtonian, MHD stretching sheet problem studied by
Pavlov [36], f(Y) was obtained in the form:
f ðYÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q
p 1� e�

ffiffiffiffiffiffiffi
1þQ
p� �
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� �
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Using this, we get f 00ð0Þ ¼ �
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p

. The Kummer’s solution of the heat transport equation in the Pavlov problem was arrived
at by us in the form:
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where K ¼ Pr
1þQ. Using these, we get
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Now we are left with the choice of h0(0). Eq. (20) gives us
h0ð0Þ ¼ 1
k2

Qf 0 þ f 02 � f 000 � ff 00
� �

: ð50Þ
Since f(0) = 0, f0(0) = 1, f 00ð0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q
p

and f
000
(0) = 1 + Q for the Pavlov problem, we get
h0ð0Þ ¼ 1
k2
ðQ þ 1� 1� Q � 0Þ ¼ 0:
We know that due to micropolar effects h0(0) will be non-zero. Thus, we have to decide whether h0(0) > 0 or h0(0) < 0. It is
obvious from the boundary conditions (Eqs. (23) or (27) or (40) or (44)) that h(Y) varies from �Sf00(0) at the wall to 0 at
‘1’. This being a decreasing function, as f00(0) < 0, we found that h0(0) < 0 and hence decided to take a small negative value
of h0(0) to solve the initial value problem. A scientific choice of the required initial conditions in the vertical stretching sheet
problem is made following a procedure similar to the horizontal one.

With the chosen guess values for f00(0), h0(0), h0(0), for the PST condition, we now get the initial conditions
f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 00ð0Þ ¼ a0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q

p
;

hð0Þ ¼ �Sf 00ð0Þ; h0ð0Þ ¼ b0 ¼ �0:5;
hð0Þ ¼ 1; h0ð0Þ ¼ c0:

ð51Þ
Obviously the chosen guess values a = a0, b = b0, c = c0 are not the most accurate ones and hence there is a need to refine
them using the Newton–Raphson method. We solve the Eqs. (37) and (39) with initial conditions (51), using the classical,
explicit, Runge–Kutta method of four slopes and obtain the solution at ‘1’. The solution at ‘1’ does not match with those
given in the problem due to the crude choice of f00(0), h0(0) and h0(0). Since the solution to be obtained depends on the values
of a, b and c, we introduce a suggestive notation yi(Y,a,b,c), i = 1,2, . . . ,7 for y1 = f(Y), y4 = h(Y), y6 = h(Y) and write the initial
value problem as follows:
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Initial value problem-1 (IVP-1):
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dY
¼ y2;

dy2

dY
¼ y3;

dy3

dY
¼ y2

2 þ Qy2 � y1y3 � k2y5;

dy4

dY
¼ y5;

dy5

dY
¼ 1

G2
ð2y4 þ y3Þ;

dy6

dY
¼ y7;

dy7

dY
¼ Pry2y6 � Pry1y7 � ey2

7

1þ ey6
� ðA�y2 þ B�y6Þ;

ð52Þ
with the initial conditions
y1ð0Þ ¼ 0; y2ð0Þ ¼ 1; y3ð0Þ ¼ a; y4ð0Þ ¼ �Sa; y5ð0Þ ¼ b; y6ð0Þ ¼ 1; y7ð0Þ ¼ c: ð53Þ
We need to solve a sequence of initial value problems as above, by taking a = an, b = bn and c = cn, so that the end boundary
values thus obtained numerically match up to a desired degree of tolerance with the boundary values at ‘1’ given in the
problem. In what follows, yi(1,a,b,c) is the solution at ‘1’ to be obtained by the classical RK method of four slopes.

Assuming that the IVP satisfies necessary conditions for the existence and uniqueness of the solutions, the problem now
reduces to that of finding a, b and c such that
Fða;b; cÞ ¼ f 0ð1;a;b; cÞ � f 0ð1Þ ¼ y2ð1;a;b; cÞ � y2ð1Þ ¼ 0
Hða;b; cÞ ¼ hð1;a;b; cÞ � hð1Þ ¼ y4ð1;a;b; cÞ � y4ð1Þ ¼ 0
Hða;b; cÞ ¼ hð1;a;b; cÞ � hð1Þ ¼ y6ð1;a; b; cÞ � y6ð1Þ ¼ 0

9>=
>;: ð54Þ
These are three nonlinear equations in a, b and c which are to be solved by the Newton–Raphson method. This method for
finding roots of non-linear equations, with a0, b0 and c0 as the initial values, yields the following iterative scheme:
anþ1

bnþ1

cnþ1

2
64

3
75 ¼

an

bn

cn

2
64

3
75�

@F
@a

@F
@b

@F
@c

@H
@a

@H
@b

@H
@c

@H
@a

@H
@b

@H
@c

2
664

3
775
�1

ðan ;bn ;cnÞ

F

H

H

2
64

3
75
ðan ;bn ;cnÞ

; ðn ¼ 0;1;2; . . .Þ: ð55Þ
To implement the scheme (55) we require finding the nine partial derivatives in the to-be-inverted matrix. These can be ob-
tained by differentiating the initial value problem-1, given in Eqs. (52) and (53), with respect to a, b and c. By differentiating
Eqs. (52), (53) with respect to a, b and c we get three more initial value problems known as the variational equations in lit-
erature. Solving the four initial value problems it is possible to go ahead with the iterative scheme (55). The procedure is
same for solving the boundary value problem with PHF boundary conditions. In solving the boundary value problem arising
in the vertical stretching sheet the method as outlined above for the horizontal stretching sheet problem is again used.

The accuracy chosen for obtaining a, b and c by Newton–Raphson method, for both horizontal and vertical stretching
sheet problems, was 10�6. Convergence of the Newton–Raphson iterative scheme was ensured due to the scientific choice
of the missing initial values there by circumventing the usual problems of slow convergence or divergence or overflow
encountered in shooting method procedures. We also note here that the governing ordinary differential equations for both
horizontal and vertical stretching sheet problems are not stiff and hence do not need any special procedures.
5. Results and discussion

The hydromagnetic problem of horizontal and vertical stretching sheets in a non-uniform property micropolar liquid of
weak electrical conductivity are considered using shooting method that takes care of, quite naturally, coupling, non-linearity,
variable coefficients, and also boundary conditions of Dirichlet and third types with coupling in one of them. As can be seen
in the mathematical formulation, the two problems involve two-way coupling between the equations of conservation of lin-
ear and angular momentums. Further, the horizontal stretching sheet involves one-way coupling between the equation of
conservation of linear momentum and the equation of conservation of energy. For the vertical stretching sheet problem it
is two-way coupling between the two. The non-linearity appears in the form of advection terms in the conservation equa-
tions. The assumption of variable thermal conductivity and non-uniform heat source/sink together with linearly varying
(with respect to x) wall temperature profile or wall heat flux makes the problem have variable coefficients in its equation
as well as boundary conditions of Dirichlet and third types. The general condition on the spin further couples the quantities
even in the boundary conditions.
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The shooting method requires the assumption of missing initial values as well as criterion to decide ‘1’ for a given set of
parameter values. The scientific choice of missing initial values is done as per the procedure outlined in Section 4. The sys-
tematic choice of initial values facilitated assured convergence in the Newton–Raphson method used as part of the shooting
method. The decision on ‘1’ was designed to be undertaken by the program in the course of computation itself. The same has
been elaborated in Section 4. A stringent tolerance of 10�6 was chosen for arriving at the final value of the missing initial
values and also for estimating the ‘1’ for each set of parameter values. The accuracy of the missing initial values and the
‘1’ ensured the accuracy of the solution using the shooting method based on the explicit, classical, Runge–Kutta method
of four slopes together with Newton–Raphson method. We now discuss the results of extensive computation under taken
in the study.

Fig. 3 shows the effect of Chandrasekhar number Q on the horizontal and angular velocity profiles f0(Y) and h(Y), for PST
and PHF cases. From Fig. 3a it is evident that increasing values of Q results in flattening of f0(Y). The transverse contraction of
the viscous boundary layer is due to the applied magnetic field that invokes the Lorentz force to flatten the velocity profile.
The angular velocity h(Y) increases with increasing values of Q as seen in Fig. 3. The applied magnetic field increases the spin
(microrotation) of the suspended particles and thereby the angular velocity increases and due to this the magnitude of hor-
izontal velocity decreases.

Fig. 4 illustrates the effect of the micro-rotation parameter S on the axial and angular velocity profiles. The velocity re-
mains same near the boundary and decreases exponentially thereon. It is quite evident from Fig. 4 that the velocity of
the liquid corresponding to the no-spin condition S = 0 is maximum. Increasing the values S decreases the horizontal veloc-
ity. Also, Fig. 4 reveals that increasing the value of S results in increase in angular velocity h(Y). The angular velocity for the
case of no-spin condition, S = 0, has a parabolic distribution whereas in case of S – 0 it decreases continuously along the
sheet. The microrotation effect is more prominent at the wall as expected.

The effect of S on heat transfer is projected in Fig. 5 in case of PST and PHF respectively. Clearly, as S increases the mag-
nitude of the temperature increases in both the cases. This is due to the fact that an increase in S causes a slow down in the
liquid flow in the horizontal direction and as a result the liquid-sheet contact time is more compared to the case when S = 0.
This means enhanced heat transfer and hence the results of Fig. 5.

Fig. 6 delineates the effect of variable thermal conductivity parameter e on temperature profiles in PST and PHF cases
respectively. It is observed from these plots that in both the cases the increasing values of e result in increasing the magni-
tude of temperature causing thermal boundary layer thickening. However, the wall temperature /(0) in case of PHF de-
creases with the increasing values of e, i.e., the effect of e near the wall is opposite to that far-away from the wall.
Recollecting that e is defined by e ¼ Dt

k1
@k
@t

� ���
t¼t1

it is quite clear that e signifies that the k � t curve gets steeper; thereby mean-
ing that temperature dependence of thermal conductivity gets stronger. In view of the above observation the results of Fig. 6
are well understood.

Figs. 7 and 8 illustrate the effect of flow-dependent heat source/sink parameter A⁄ and temperature-dependent heat
source/sink parameter B⁄, respectively on the temperature distribution in PST and PHF cases. Before discussing the results
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Fig. 3. Effect of Chandrasekhar number Q on the axial and angular velocity profiles, respectively.
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we recollect the fact that A⁄ > 0, B⁄ > 0 correspond to internal heat generation and A⁄ < 0, B⁄ < 0 correspond to internal heat
absorption. Eq. (6) can be readily seen to be
q000 ¼ k1cDt
t
ð1þ eTÞðA�f 0 þ B�TÞ;
where use has been made of the definition of dimensionless variables, namely Eq. (8). The heat generation/absorption clearly
depends on the axial flow and also on the boundary layer temperature T. It is the cumulative influence of the velocity-depen-
dent and temperature-dependent heat source/sink parameter that determines the extent to which the temperature falls or
rises in the boundary layer region. From the plots it is clear that the energy is released for increasing values of A⁄ > 0 and
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B⁄ > 0 and this causes the magnitude of temperature to increase in both PST and PHF cases, where as energy is absorbed for
decreasing values of A⁄ < 0 and B⁄ < 0 resulting in temperature dropping significantly near the boundary layer. In any case it
is observed in all these plots that there is a transfer of heat from the boundary layer region to the sheet for some negative
values of A⁄. Also, some unrealistic pattern on heat transfer are encountered for values of B⁄ > 0.1 both in PST and PHF cases.

The effects of all the parameters (Q,S,e,A⁄ and B⁄) on dynamics of cooling liquid due to vertical stretching sheet are qual-
itatively similar to that observed in case of horizontal stretching sheet. Hence, we discuss only the effect of Grashof number
Gr in a vertical stretching sheet problem. The Grashof number Gr highlights the significance of convection in controlling the
axial velocity. The effect of Gr on the linear velocity, angular velocity and temperature profiles is shown in Figs. 9–11 for the
cases of PST and PHF. Fig. 9 indicates that the momentum boundary layer thickness increases with the increasing values of Gr
enabling more scope for flow. The buoyancy force that evolved as a consequence of cooling of the vertical stretching sheet
acts like a favorable pressure gradient accelerating the liquid in the boundary layer region. From Fig. 10 it is clear that the
angular momentum boundary layer thickness decreases with the increasing values of Gr. The effect of Gr is to decrease the
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thermal boundary layer thickness as can be seen from Fig. 11. Here, we make a note that for Gr = 0, one can obtain the results
of horizontal stretching sheet problem.

From the computed results it has been observed, in general, that PHF boundary condition succeeds in cooling the stretch-
ing sheet more effectively compared to PST. In the case of PST condition the stretching sheet is maintained at a constant pre-
scribed temperature while in the case of PHF it is a constant prescribed heat flux. In the latter case the flux of heat forced
through the sheet facilitates carrying away of the heat much faster than in the former case. This is the reason for the reduced
temperature situation in the case of PHF. The velocity profile is independent of PST and PHF thermal boundary conditions in
case of horizontal stretching sheet whereas the two have mutual influences in the case of vertical stretching sheet. In the
vertical stretching sheet case it is obvious that in most cases due to the reduced temperature situation of the PHF, the axial
and angular velocity profiles of the PHF case are below the PST ones as shown in Figs. 9 and 10. We will also have to add here
that this general result is violated when the micropolar effects are large, when the flow and temperature dependent heat
source/sink are strong, when the buoyancy effect is quite small and when the thermal conductivity varies quite negligibly
with temperature.
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6. Conclusions

Some of the important findings of the paper are:

1. The effects of Chandrasekhar number Q and the parameter S are to decrease the horizontal velocity and increase the angu-
lar velocity.

2. The individual and collective effects of increasing values of S, A⁄ and B⁄ are to increase the magnitude of heat transfer.
3. The effects of k2 and G2 on velocity and temperature profiles reported by Seddeek [34] are reiterated by the computations

undertaken in the present study. The symbols k1 and G1 have been respectively used by Seddeek [34] for the parameters
k2 and G2 used in the present study.

4. The variable thermal conductivity parameter e increases the temperature distribution in both PST and PHF cases. How-
ever, the wall temperature /(0) decreases with the increasing values of e i.e., the effect of e near the sheet is opposite to
that of far away from the sheet.
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5. Non-uniform heat sinks (A⁄ < 0, B⁄ < 0) are better suited for effect cooling of the stretching sheet.
6. As a general result we note that with the PHF condition the temperature at any given point is lower than that with PST

boundary condition. This would mean that in most physical situations PHF is better suited for cooling of the sheet as com-
pared to the PST condition.

7. Shooting method is well suited to take care of coupling, non-linearity, variable coefficients, and also boundary conditions
of Dirichlet and third types with coupling in one of them. The micropolar forced and mixed convections problem dem-
onstrate the strength of the shooting method.
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