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Abstract

A set S C V(G) is a neighborhood set of a graph G = (V, E), if
G = Uyes(N[v]), where (N[v]) is the sub graph of a graph G induced
by v and all vertices adjacent to v. The dual neighborhood number
nT2(G) = Min. {|S1]+ |S2| : S1, Sz are two disjoint neighborhood set of
G}. In this paper, we extended the concept of neighborhood number to
dual neighborhood number and its relationship with other neighborhood
related parameters are explored.
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1 Introduction

All the graph considered here are finite and undirected with no loops and
multiple edges. As usual p = |V| and ¢ = |F| denote the number of vertices
and edges of a graph G, respectively. In general, we use (X) to denote the sub
graph induced by the set of vertices X and N(v) and N[v] denote the open
and closed neighborhoods of a vertex v, respectively. The private neighborhood
PN(v,X) of v € X is defined by PN (v, X) = N[v] — N[X — {v}]. Let deg(v)
be the degree of vertex v and usual 6(G) the minimum degree and A(G) the
maximum degree. ap(G)(a1(G)), is the minimum number of vertices (edges)
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in a(an) vertex (edge) cover of G. [y(G)(51(G)), is the minimum number of
vertices (edges) in a maximal independent set of vertex (edge) of G. For a
real number = > 0, let[z] be the least integer not less than z and |z| be
the greatest integer not greater than x. For graph-theoretical terminology and
notation not defined here we follow [4].

A set S C V is a neighborhood set of G, if G = U,eg(N[v]), where (N[v])
is the sub graph of GG induced by v and all vertices adjacent to v. The neigh-
borhood number 7(G) of G is the minimum cardinality of a neighborhood set
of a graph G, see [11]. A neighborhood set S C V is a minimal neighborhood
set, if S —wv for all v € S, is not a neighborhood set of G. The nomatic num-
ber of G, N(G) is the largest number of sets in a partition of V into disjoint
minimal neighborhood sets of a graph G, see [7]. Further, a neighborhood set
S C V is called an independent neighborhood set, if (S) is an independent
and neighborhood set of G, see [9] /paired neighborhood set, if (S) contains
at least one perfect matching, see [12] /maximal neighborhood set, if V — §
does not contain a neighborhood set of G, see [13] /inverse neighborhood set,
if V' — S contain a neighborhood set of G, see [8]. The minimum cardinality
taken over all independent / maximal / inverse neighborhood set in G is called
an independent / paired / maximal / inverse neighborhood number of G and
is denoted by 7;(G) /npr(G) [ 1 (G) /0~ (G), respectively.

A set D of vertices in a graph G is a dominating set if every vertex in V' — D
is adjacent to some vertex in D. The domination number v(G) is the minimum
cardinality of a dominating set of G. Further, the dual domination number of
a graph G is the minimum cardinality of the union of two disjoint dominating
sets in G. The dual domination number y72(G) = Min.{|S;| + |Ss| : Si, Ss
are two disjoint dominating set of G}, see [6]&[10]. For complete review of
domination theory, see [5] & [14].

Analogously, we now define dual neighborhood number as follows: A graph
G having k- disjoint neighborhood set (kDN-set) with k& > 2 is called a k-
disjoint neighborhood graph (abbreviated kDN-graph), where k is a positive
integer. Note that, if £ = 1, then G having a 1- neighborhood set and the
1- neighborhood number n(G) of a graph G is the usual neighborhood set
and neighborhood number of a graph G, respectively. In fact, if £ = 2, then
G having a 2-disjoint neighborhood set (2DN-set). The dual neighborhood
number n*?(G) = Min. {|S1| + |S2| : S1, 599 are 2DN-set of G}. A graph G
for which kDN-set with £ > 2 is called a kDN-graph. A neighborhood set
S with minimum cardinality is called n - set of G. Similarly, the other sets
can be expected. For more details on neighborhood number and its related
parameters, [1], [3] & [7].
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2 Existing Results
We make use of the following results in sequel.

Theorem 2.1 [4] A graph is bipartite if and only if all its cycles are even.

Theorem 2.2 [11] For any non trivial graph G of order p, n(G) = 1 if and
only if G has a vertex of degree p—1. Thus n(G) of each of the following graph
is one (1) K,; (i) Ky p—q; (iii) W,.
Further, if G is bipartite graph without isolates, with bipartition {Vi,Va} of
V(Q), then n(G) = Min. {Vi,V,}.

Theorem 2.3 [11]

(i) n(G) = ao(Q), provided G has no triangles.

(ii) Let G be any graph and S be any subset of V(G). Then S is an n-set of G
if and only if every edge in (V — S) belongs to (Nu]) for some u € S.

Theorem 2.4 [13]. A neighborhood set S of a graph G is a mazimal neigh-
borhood set of G if and only if there exist two adjacent vertices u,v € S such
that every vertex w € V- — S is adjacent to at most one of u and v.

Theorem 2.5 [12]. If G has no isolated vertices, then
(1) 7pr(G) = Maz.([p/ A(G)], [2p/ A(G) + 1))

(ii) npr(G) > (419 - QQ)/?’

(iif) 7,0 (G) < 0G).

Theorem 2.6 [7]. For any graph G,

() N(G)<a(G) + 1, -
(ii) n(G) +n(G) < p+ 1, and equality holds if and only if G ~ K,, or K,,,
(iii) n(G) + N(G) < p+ 1, and equality holds if and only if G ~ K, or K,
(iv) For any graph G, N(G) =1 4f and only if G =~ K, or Cyy1;7 > 2, and
N(G) =p if and only if G = K,,.

3 Main Results

These easily computed values of 772(G) are stated without proof.

Proposition 3.1 .

(i) For any complete graph K, with p > 2 vertices, n™?(K,) = 2

(ii) For any wheel graph W, with p > 4 vertices, n**(W,) = |p/2] + 1

(ili) For any cycle Cy, with n > 2, path P, with p > 2 and complete bipartite
graph K, s with 1 > r < s vertices, n7?(Cy,) = n™2(P,) = n™*(K,5) = p.
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Let G be a graph having more than one minimal neighborhood set. Then
multiple neighborhood set is a union of all minimal neighborhood set of G and
the cardinality of multiple neighborhood set is called multiple neighborhood
number and is denoted by n™(G) = ¥ | S; |, where S; (1 < i < k) is a
minimal neighborhood set of G.

Proposition 3.2 .
(1) 77+k(Kp) :77+k(P) +k(02n) 77+k(Kr,S) =p, if {p,n} > 2 and {r,s} > 1.
(11) nJrk(C?n-H) = n(CQn-l-l) |—p/2-|1 an Z 2.

A graph G for which k-independent neighborhood set (kIN — set) with
k > 2 is called a kI N-graph. Also, here we consider an invariant to both
n*2(G) and 7;*(@), namely, the minimum cardinality of the disjoint union of
minimum neighborhood set S and an independent neighborhood set .S;, which
we will denote nn;(G). We will call such a pair of neighborhood sets (.5, 5;)
a nn;-pair (or simply, a mixed 7 - set). We note that every graph G with
no isolates has a nn;-pair, which can be found by letting S; be any maximal
independent set, and then noting that complement V' — S; is a neighborhood
set, and there fore contains a minimal neighborhood set, say S.

By the definitions of n(G) / ni(G) /np(G) / mn(G) /n7HG)/ 77(G)/
nT2(G), we have the following inequalities, since their proofs are immediate,
they are omitted.

Proposition 3.3 Let G be a kIN- graph with no isolated vertices. Then,
() n(G) < ni(G) < (@)

(i) 2 < 7 (G) <™G) <p

(iii) 2 < T2(G) < n(G) + Bo(G)

(iv) 9(G) < HG) < p—n(G) < (G)

(v) 2(G) +1 < *(G) < n(G) + 1~ H(G)

(vi) 2n(G) < (G) < m(G) <1 (G)

(vii) 7(G) +1 < y*H(G) < n™(G).

Theorem 3.1 A graph G with no isolated vertices has V(G) as its 2DN-set
if and only if G is a bipartite graph.

Proof. Clearly, a graph is bipartite if and only if each of its components is
bipartite. So, without loss of generality, we assume that G is connected. Let
G be a bipartite graph with V' = V} U V5, so that every edge of G joins a
vertex of V; with the vertex of V5. Then V) and V5 have independent set of
V(G), and the minimum and maximum cardinality of V; and V5 have a 7 - set
and n~'-set of G, respectively. Thus n™?(G) = p. This proves the necessity.
Assume that 7%(G) = p and G is not a bipartite graph. Then there exist at
least three vertices u, v and w such that u and v are adjacent and w is adjacent
to both u and v, which is form a odd cycle and by Theorem 2.1, this implies
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that {V —w} is a 2DN-set of G, which is a contradiction. Thus the sufficiency
is proved.

Theorem 3.2 Let G be a kDN-graph with no isolated vertices. Thenn™?(G) =
2 if and only if there ezist two adjacent vertices u,v € V(G) such that deg(u)
=deg(v) =p—1.

Proof. Suppose n72(G) = 2 holds. On contrary, suppose the graph G not
satisfies the above condition, then there exist at least three vertices u, v and
w such that u and v are adjacent and w is adjacent to at most one of u and v,
suppose v is adjacent to w, then v is a vertex of the minimal neighborhood set
S and whose complement (V' — {v}) is also a neighborhood set of a graph G.
This implies that n™2(G) > 2, which is a contradiction. This proves necessity,
sufficiency is obvious.

Theorem 3.3 Let G be a graph with no isolated vertices. Then n,.(G) =
2n(G) if and only if every n - set of G is an n; - set of G.

Proof. Let G be a graph having 7,,(G) = 2n(G). Then we have the followings
cases:

Case 1. Suppose that a n-set, say S’ is an independent set of G, then the
complement (V' —S’) is contain a another set, say S”, which is also a 7 - set as
well as n; - set of G, since two disjoint neighborhood set S" and S” are both »;
- sets of a graph G, hence G is a 2] N- graph with v; € S" and v; € 5" ;i # j.
Thus, the collection of all pairs of edges v;v; € E(G) in S"U S” form a paired
neighborhood set of a graph G and the results desired.

Case 2. Suppose that a n-set S’ is not independent. Then, there is an adjacent
pair of vertices u and w in S’, this form a paired- neighborhood set for G by
pairing u and w and pairing each vertex in S’ — {u, w} with a neighbor in
V —S’. This is possible since the minimality of S’ implies that for each z € 5,
either = has a private neighbor PN (z, S’) or z is isolated in (S’). Let I be the
set of isolates in S’ without private neighbors. Now each vertex in I must have
at least one neighbor in V' — S, since GG has no isolates. The minimality of S’
implies that no two vertices in I have a common neighbor. Hence, each vertex
in V — u, w can be paired with a neighbor forming a paired- neighborhood set
of order n(G) +n(G) —2 < 2n(G), that is n,.(G) < 2n(G), which is a contrary
to our hypothesis.

Theorem 3.4 For any kDN -graph G with no isolates, n,(G) < n**(G).
Further, the bound is attained if the graph G satisfies one of the following
(i) GrmKy or Ky ;t>1,

(ii) There exist at least two vertices u, v such that deg(u) = deg(v) =p — 1.
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Proof. Clearly every 2D N-set is a paired neighborhood set of a graph G, then
Ny (G) < n™2(G) follows. Further, by Theorem 3.3, the bound is attained.

Theorem 3.5 Let G be a kDN -graph with no isolated vertices. Then
(i) n3(G) > Mazx. {[p/A(GQ)],[2p/A(G) + 1]}, bound is attained if G = mK,,
(ii) n*%(G) > (4p — 2q)/3, bound is attained if G = K3 or mKy or Ky + K,,.

Proof. (i) and (ii) follows from Theorem 2.4 and Theorem 3.4.

Theorem 3.6 For any complete multipartite graph G = K, ,
(i) n+2(G) Min{6,r1 +ro}, if2<r; <ry <..<rg

(i) » ( ) =2k, if2<r; <ry <..<rmy

(iif) 7*2(G) < (), if 3< T < <<y

(iv) n2(G )>77m( ), if 1< <y

(v) 72(G) = n™4(G) if and only if G = Koo or Kpyyyrs ;3 <11 <19 <7131

Proof. Let G = K,, ,, . be a complete multipartite graph with 2 < r; <
rg <713 < 3. Then V =V, UVL,UV5 with (V4), (V5) and (V) are an independent
in G and complete in G, respectively. Thus, n™%(G) = r; + ry. Also, if
4 <1y <ry<ry<k, then n™?(G) = 6. Thus (i) holds and hence by Theorem
3.2, (ii) follows.

By the definition of n,,(G), if 3 < r; <ry < ... <1y vertices, then (iii) follows
and if 1 < r1 < 7”2, the (iv) follows.

Suppose n72(G) = n12(G) holds. On contrary, suppose G is not isomorphic
with Koo or Ky ryry 3 3 <11 <19 < 13. Then there exist at least one of the
partite set V; for 1 <1 < k, in complete multipartite graph GG contains exactly
one vertex, thus n™2(G) does not exist, which is a contradiction. This proves
necessity, sufficiency is obvious and hence (v) follows.

A set S C V(G) is a double neighborhood set of G such that for every
vertex v € V, [N[v] N S| > 2. The double neighborhood number 7,(G) of G is
the minimum cardinality of a double neighborhood set in G, see [3].

Observation 3.1 If vertex v has degree one, then both v and its support must
be in double neighborhood set as well as dual neighborhood set of a graph G.

Theorem 3.7 For any kDN -graph G with no isolates, n4(G) < n2(G).

Proof. By the definition of 14(G) and n™?(G). Clearly, every dual neighbor-
hood set is a double neighborhood set of a graph G. Then 74(G) < n12(G)
follows.

Theorem 3.8 Let T be a tree such that both T and T having kDN-sets with
no isolated vertices. Then, n™2(T) = n™2(T) if and only if T ~ P,.
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Proof. Suppose n1%(T) = n*%(T) holds. On contrary, suppose T is not iso-
morphic with P;. Then we consider the following cases:

Case 1. If tree T has at least two adjacent cut vertices u and v with
{deg(u),deg(v)} > 3, then by Theorem 3.1, we have V is a dual neigh-
borhood set of T. But the dual neighborhood set of T is V — (u,v), since
¢(T) = (3p(p—1)) — (p— 1) and hence this implies that n**(T) < n™(T) = p,
which is a contradiction.

Case 2. If tree T has at least two non adjacent cut vertices, which form
a path of length greater than or equal to 4, then by Theorem 3.1, we have
nt2(T) < n**(T) = p, which is again a contradiction. This proves necessity,
sufficiency is obvious.

By Theorem 2.5, and the definitions of n(G), n7(G) and N(G), we have
following results, which are straight forward, hence we omits the proofs.

Theorem 3.9 Let G be a graph such that both G and G have no isolated
vertices. Then

(i) n(G) < N(G), provided G does not contain Copyq;7 > 2,

(il ( ) < N(G), provided G does not contain Co,i1;7 > 2,

(iii) n™2(G) < 2p/N(G), provided G having kDN-sets,

(iv) N(G) < n™*(@Q), provided G having kDN-sets and which is not contain a
(p — 1)-reqular graph.

(v) N(T) = N(T) if and only if T ~ Py or Ky;t > 2, with exvactly one
subdivided edge.

4 Conclusions

Being new concepts, dual domination and dual neighborhood are both invari-
ants whose properties are relatively unknown. For more details on the study
of the disjoint dominating sets and its related parameters in graphs, see [6].
Many questions are suggested by this research, among them are the following.

1. When n2(G) = v™(G) ?
2. When n2(G) = v"2(G) ?
3. When n™%(G) = n,(GQ) ?
4. When n2(G) = n4(G) ?
5. When nv(G) = n2(G) ?
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