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a b s t r a c t

The stability of buoyancy-driven parallel shear flow of a couple stress fluid confined between vertical
plates is investigated by performing a classical linear stability analysis. The plates are maintained at con-
stant but different temperatures. A modified Orr–Sommerfeld equation is derived and solved numerically
using the Galerkin method with wave speed as the eigenvalue. The critical Grashof number Gc; critical
wave number ac and critical wave speed cc are computed for wide ranges of couple stress parameter
Kc and the Prandtl number Pr. Based on these parameters, the stability characteristics of the system
are discussed in detail. The value of Prandtl number, at which the transition from stationary to travel-
ling-wave mode takes place, increases with increasing Kc. The couple stress parameter shows destabil-
ising effect on the convective flow against stationary mode, while it exhibits a dual behaviour if the
instability is via travelling-wave mode. The streamlines and isotherms presented demonstrate the devel-
opment of complex dynamics at the critical state.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Buoyancy driven flows continued to receive the attention of
researchers in both heat transfer and fluid mechanics. In recent
years important industrial problems in which natural convection
dominates are of major focus for analysts and experimentalists.
The study of fluid motions and transport processes by buoyancy
have been generally motivated by the important applications such
as nuclear reactor, cooling of electronic equipments, materials pro-
cessing such as solidification phenomenon, atmospheric and oce-
anic circulations, or in air currents rising from a cooling object,
crystal growth processes, and other natural convection processes
in the natural calamity (spread of fire). Cooling of electronic com-
ponents by natural convection is most preferable as it is highly reli-
able and avoids additional power consumption to induce the flow
as in the case of forced convection. The recognition of high free
convection heat transfer rates in atomic reactors, electrical trans-
formers and other engineering applications prompted many to
understand and study the stability of natural convection. The main
interest in the study of stability of natural convection in a fluid
layer is to know when and how laminar flow breaks down, its sub-
sequent development and its eventual transition to turbulence.
The stability of natural convection of a Newtonian viscous fluid
which is confined between two parallel vertical plates maintained
at constant and different temperatures provides one of the sim-
plest cases of an interaction between buoyancy and shearing forces
and has been investigated analytically, numerically and experi-
mentally [1–9]. Instability of the base flow in such a vertical fluid
layer occurs when the Grashof number becomes greater than a
certain critical value. The most interesting observation is that the
type of instability is determined by the magnitude of the Prandtl
number Pr. For values of Pr < 12.7, the parallel flow undergoes a
transition to a stationary multicell flow pattern when the Grashof
number exceeds a critical value. This transition has been observed
experimentally by Vest and Arpaci [6]. The critical disturbance
modes are found to be travelling waves when Pr > 12.7.

Majority of the studies on the stability of natural convection in a
vertical fluid layer are mainly concerned with Newtonian fluids
which have a linear relationship between the shear stress and
shear rate. However, fluid dynamical systems encountered in many
practical problems cited above exhibit non-Newtonian behaviour.
Therefore, studying the stability of natural convection considering
non-Newtonian effects are quite desirable. Unlike Newtonian flu-
ids, there are different kinds of non-Newtonian fluids and obvi-
ously they do not lend themselves to a unified treatment. In
recent years, polar fluids – a class of non-Newtonian fluids have
received a wider attention. These fluids deform and produce a spin
field due to the microrotation of suspended particles. As far as
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Nomenclature

a vertical wave number
c wave speed
cr phase velocity
ci growth rate
D = d/dx1 differential operator
~g acceleration due to gravity
G = agbh4/m2 Grashof number
h thickness of the dielectric fluid layer
p pressure
Pr = m/j Prandtl number
~q ¼ ðu1;u2;u3Þ velocity vector
t time
T temperature
T1 temperature of the left boundary
T2 temperature of the right boundary

Wb basic velocity
x1; x2; x3ð Þ Cartesian co-ordinates

Greek symbols
a thermal expansion coefficient
g couple stress viscosity
j thermal diffusivity
Kc ¼ h

ffiffiffiffiffiffiffiffiffi
l=g

p
couple stress parameter

l fluid viscosity
m( = l/q0) kinematic viscosity
w x1; x3; tð Þ stream function
W amplitude of vertical component of perturbed velocity
q fluid density
q0 reference density at T0

h amplitude of perturbed temperature

Fig. 1. Physical configuration.
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these types of non-Newtonian fluids are concerned, there are two
important theories proposed by Eringen [10] and Stokes [11] and
these are, respectively, referred to as micropolar fluid theory and
couple stress fluid theory. The micropolar fluids take care of local
effects arising from microstructure and as well as the intrinsic
motions of microfluidics. The spin field due to microrotation of
freely suspended particles set up an anti-symmetric stress, known
as couple stress, and thus forming couple stress fluid. The couple-
stress fluid theory represents the simplest generalisation of the
classical viscous fluid theory that allows for polar effects and
whose microstructure is mechanically significant in fluids. More-
over, the couple stress fluid model is one of the numerous models
that were proposed to describe response characteristics of non-
Newtonian fluids. The constitutive equations in these fluid mod-
els can be very complex and involve a number of parameters, also
the resulting flow equations lead to boundary value problems in
which the order of differential equations is higher than the
Navier–Stokes equations and are given by Stokes [11] which
allows the sustenance of couple stresses in addition to usual
stresses. This fluid theory shows all the important features and
effects of couple stresses and results in equations that are similar
to Navier–Stokes equations. Couple-stress fluids have applications
in a number of processes that occur in industry such as the extru-
sion of polymer fluids, solidification of liquid crystals, cooling of
metallic plates in a bath, nuclear slurries, exotic lubricants and
colloidal fluids, liquids containing long-chain molecules as poly-
meric suspensions, and lubrication, electro-rheological fluids to
mention a few.

Work on the stability of natural convection in a vertical fluid
layer subsequently extended to non-Newtonian fluids is concerned
only with viscoelastic fluids ([12,13]). Jain and Stokes [14] studied
the effect of couple stresses in fluids on the hydrodynamic stability
of plane Poiseuille flow, while effect of couple stresses on thermal
convective instability is analyzed by many researchers ([15–19]).
Rudraiah et al. [20] investigated electrohydrodynamic stability of
couple stress fluid flow in a horizontal channel occupied by a por-
ous medium using energy method.

Nonetheless, the effect of couple stresses on the stability of
natural convection in a vertical fluid layer has not received
any attention in the literature despite its relevance and impor-
tance in many practical problems cited above. The intent of
the present paper is to investigate this problem in which the
vertical plates are maintained at constant but different tempera-
tures. Modified Orr–Sommerfeld equations are derived and the
resulting eigenvalue problem is solved numerically using the
Galerkin method.
2. Mathematical formulation

The geometric arrangement of the problem is illustrated sche-
matically in Fig. 1. We consider an incompressible couple stress
fluid confined between two parallel vertical plates at x1 = ±h. The
left surface is maintained at fixed temperature T1, whereas the
plate at x1 = h is maintained at fixed temperature T2 (>T1). A Carte-
sian coordinate system (x1, x2, x3) is chosen with the origin in the
middle of the vertical fluid layer, where the x1-axis is taken per-
pendicular to the plates and the x3-axis is vertically upwards,
opposite in the direction to the gravity. Under the Oberbeck–Bous-
sinesq approximation (since the temperature difference between
the vertical plates is assumed to be small, the density is treated
as a constant everywhere in the governing equation except in the
gravitational term), we have

ui;i ¼ 0 ð1Þ
q ¼ q0 1� a T � T0ð Þf g ð2Þ

where ui is the velocity vector, T is the temperature, q is the fluid
density, a is the thermal expansion coefficient, q0 is the density at
reference temperature T = T0 (at the middle of the channel).

The equation of motion for couple stress fluids are based on the
constitutive equations which are given by Stokes [11]. The stress
tensor si j consists of symmetric and anti-symmetric parts and
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the couple stress tensor Mi j has the linear constitutive relation.
They are respectively given by

si j ¼ ð�pþ kDk kÞdi j þ 2lDi j
� �

� 2gWi j;kk þ
1
2
eijk qGk þm;k
� �� �

ð3Þ

and

Mi j ¼
1
3

mdi j þ 4gxj;i þ 4g0xi;j ð4Þ

In the above equations, p is the pressure, Di j ¼ ðui;j þ uj;iÞ=2 is the
rate of deformation tensor, Wi j ¼ �ðui;j � uj;iÞ=2 is the vorticity ten-
sor, qGk is the body couple vector, m is the trace of the couple stress
tensor, k and l are the material constants having dimensions of vis-
cosity, while g and g0 are material constants having dimensions of
momentum and xi ¼ eijkuj;k=2 is the spin vector. The equation of
motion of an incompressible couple stress fluid in the presence of
body force and in the absence of body couples is given by

q0 ui;t þ ujui;j
� �

¼ �p;i þ qgdi3 þ lui;jj � gui;jjkk ð5Þ

where g is the gravitational acceleration and dij is the Kronecker
delta symbol.

The equation of energy is

q0cv T ;t þ ujT ;j
� �

¼ kT ;jj ð6Þ

where k is the thermal conductivity and cv is the specific heat at
constant volume.
Table 1
Order of base polynomial independency.

No. of grid points N G ¼ 1000; Pr ¼ 6; Kc ¼ 5; a ¼ 1

cr c

1501 5 �0.98451753 �
10 �1.36292584 �
15 �1.30325876 �
20 �1.32266683 �
25 �1.31257952 �
30 �1.31268480 �
35 �1.31268474 �
40 �1.31268476 �
50 �1.31268477 �
60 �1.31268477 �
70 �1.31268477 �

Table 2
Comparison of Galerkin and Chebyshev collocation method for different values of Pr and

Kc Pr Galerkin method

Gc ac cc

0 1 992.056 1.404 0
5 982.516 1.384 0
10 983.456 1.383 0
20 301.163 0.823 ±9
50 138.408 1.110 ±4

10 1 1133.029 1.501 0
5 1119.363 1.483 0
10 1119.195 1.482 0
20 312.842 0.882 ±9
50 160.731 1.12 ±5

20 1 1018.032 1.432 0
5 1006.577 1.412 0
10 1007.213 1.412 0
20 305.298 0.817 ±9
50 145.106 1.108 ±4
3. Basic state

The basic state is a fully developed, unidirectional, steady, and
laminar flow. Thus,

ui ¼Wbðx1Þdi3; p ¼ pbðx3Þ; T ¼ Tb x1ð Þ; q ¼ qb x1ð Þ ð7Þ

where the subscript b denotes the basic state. Under this circum-
stance, the basic state solution is found to be

Tb � T0 ¼ bx1=2; b ¼ DT=h ð8a;bÞ

qb ¼ q0 1� abx1

2

	 

ð9Þ

Substituting Eq. (7), in Eq. (5), we obtain

g
d4Wb

dx4
1

� l d2Wb

dx2
1

� abq0g
2

x1 ¼ 0 ð10Þ

with boundary conditions

Wb ¼ 0 ¼ d2Wb

dx2
1

at x1 ¼ �h ð11Þ

Solving Eq. (10) subject to the boundary conditions (11), we
obtain

Wb¼
agb

12lm
x1 h2�x2

1

� �
l�6g

n o
þ6hgcosech h

ffiffiffiffi
l
g

r	 

sinh x1

ffiffiffiffi
l
g

r	 
� �
ð12Þ

where m( = l/q0) is the kinematic viscosity and
:5 G ¼ 500; Pr ¼ 10; Kc ¼ 10; a ¼ 0:5

i cr ci

20.77093642 �0.51541614 14.02106065
20.81058032 �0.50446281 14.08347133
20.77491326 �0.50330389 14.08103093
20.77631900 �0.50370766 14.08202431
20.77632666 �0.50360305 14.08203570
20.77632916 �0.50362153 14.08203212
20.77632906 �0.50362135 14.08203201
20.77632902 �0.50362134 14.08203203
20.77632904 �0.50362133 14.08203205
20.77632903 �0.50362133 14.08203205
20.77632904 �0.50362133 14.08203206

Kc .

Chebyshev collocation method

Gc ac cc

992.529 1.404 0
982.991 1.385 0
983.553 1.383 0

.283122 301.176 0.821 ±9.292101

.438623 138.427 1.110 ±4.441947

1133.178 1.501 0
1119.987 1.483 0
1119.195 1.482 0

.482435 313.169 0.882 ±9.487368

.076330 161.001 1.121 ±5.077923

1018.423 1.432 0
1006.778 1.412 0
1007.299 1.413 0

.227417 305.378 0.817 ±9.231406

.558382 145.193 1.109 ±4.559101
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pb ¼ const� q0gx3 ð13Þ
4. Linear stability analysis

To study the linear stability of fluid flow, we superimpose an
infinitesimal disturbance on the base flow in the form

ui ¼Wbðx1Þdi3 þ u0i; p ¼ pbðx3Þ þ p0; T ¼ Tbðx1Þ þ T 0;

q ¼ qbðx1Þ þ q0 ð14Þ

According to the Squire theorem [21], the critical Grashof num-
ber can be obtained by considering two-dimensional disturbances
rather than three dimensional disturbances. Substituting Eq. (14)
into Eqs. (1), (5), and (6), linearising and restricting the attention
to two-dimensional disturbances, we obtain

@u1

@x1
þ @u3

@x3
¼ 0 ð15Þ

@u1

@t
þWb

@u1

@x3
¼ � 1

q0

@p
@x1
þ mr2u1 �

g
q0
r4u1 ð16Þ
1.0 0.5 0.0 0.5 1.0
200

100

0

100

200

1.0 0.5 0.0 0.5 1.0
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1000

500

0
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100,50,20,10,5Pr =
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bW
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bW

x

1000, 5G Pr= =

500, 10cG = Λ =

5, 10cPr = Λ =

(a)

(b)

(c)

Fig. 2. Velocity profile of the base flow.
@u3

@t
þ u1DWb þWb

@u3

@x3
¼ � 1

q0

@p
@x3
þ mr2u3 �

g
q0
r4u3 þ aTg

ð17Þ

@T
@t
þWb

@T
@x3
þ u1

2
¼ jr2T ð18Þ

where D = d/dx1 and r2 ¼ @2=@x2
1 þ @

2=@x2
2. Non-dimensionalizing

Eqs. (15)–(18) by scaling (x1, x2, x3) by h, t by h2/m, ui by j/h, T by
bh and p by q0jm/h2, we get

@u1

@x1
þ @u3

@x3
¼ 0 ð19Þ

@u1

@t
þWb

Pr
@u1

@x3
¼ � @p

@x1
þr2u1 �

1

K2
c

r4u1 ð20Þ

@u3

@t
þ 1

Pr
u1DWb þWb

@u3

@x3

	 

¼ � @p

@x3
þr2u3 �

1

K2
c

r4u3

þ GPr T ð21Þ

@T
@t
þ 1

Pr
Wb

@T
@x3
þ u1

2

	 

¼ 1

Pr
r2T ð22Þ

where, Pr = m/j is the Prandtl number, G = agbh4/m2 is the Grashof
number, Kc ¼ h

ffiffiffiffiffiffiffiffiffi
l=g

p
is the couple stress parameter. It should be

noted here that the basic velocity in dimensionless form is

Wb ¼ �
GPr

12K2
c

x1 6þK2
c �1þ x2

1

� �n o
� 6cosech Kcð Þ sinh x1Kcð Þ

h i
ð23Þ

Eliminate the pressure p from the momentum equation and
introducing a stream function w(x1, x3, t) through
Table 3
Variation of Gc , ac and cc as a function of Pr and Kc .

Kc Pr Gc ac cc

0 6.9 983.059 1.384 0
7.0 983.077 1.384 0

10.5 983.500 1.383 0
10.6 983.508 1.383 0
12.5 983.641 1.383 0
12.6 983.646 1.383 0
12.7 983.652 1.383 0
12.8 826.162 0.399 ±24.67603571

5 6.9 1862.857 1.585 0
7.0 1589.04 0.427 ±33.7676377

10.5 702.359 0.759 ±15.4107643
10.6 694.164 0.765 ±15.2389444
12.5 577.913 0.844 ±12.8195316
12.6 573.289 0.845 ±12.7263330
12.7 568.787 0.848 ±12.6327679
12.8 564.389 0.851 ±12.5412616

10 6.9 1119.261 1.483 0
7.0 1119.257 1.483 0

10.5 1119.19 1.482 0
10.6 998.431 0.400 ±27.13636194
12.5 600.676 0.599 ±16.53774459
12.6 590.568 0.606 ±16.26967541
12.7 580.938 0.614 ±16.01170690
12.8 571.736 0.621 ±15.76694478

30 6.9 992.794 1.396 0
7.0 992.809 1.396 0

10.5 993.177 1.396 0
10.6 993.184 1.396 0
12.5 993.301 1.395 0
12.6 836.445 0.393 ±24.77670377
12.7 808.222 0.400 ±23.97625617
12.8 784.654 0.405 ±23.31291980
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Fig. 3. Neutral stability curves.
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u1 ¼
@w
@x3

; u3 ¼ �
@w
@x1

ð24Þ

and employing the normal mode analysis procedure in which we
look for the solution of the form

w; Tf gðx1; x3; tÞ ¼ W; hf gðx1Þ exp ia x3 � ctð Þ½ � ð25Þ

where c is the wave speed and a is the vertical wave number which
is real and positive, we then obtain

Wb

Pr
� c

	 

D2 � a2
� �

W� 1
Pr

D2WbW

¼ 1
ia

D2 � a2
� �2

W� 1

K2
c

D2 � a2
� �3

W� GPrDh

" #
ð26Þ
Wb

Pr
� c

	 

hþ 1

2Pr
W ¼ 1

iaPr
D2 � a2
� �

h ð27Þ

In general, c = cr + ici, where cr is the phase velocity and ci is the
growth rate.

The associated boundary conditions are:

W ¼ DW ¼ D3W ¼ h ¼ 0 at x1 ¼ �1 ð28Þ
5. Numerical solution

Eqs. (26) and (27) together with the boundary conditions (28)
constitute an eigenvalue problem which has to be solved numeri-
cally. The resulting eigenvalue problem is solved using Galerkin
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method. Accordingly, W x1ð Þ and h x1ð Þ are expanded in terms of
Legendre polynomials in the form

W x1ð Þ ¼
XN

n¼0

annn x1ð Þ; h x1ð Þ ¼
XN

n¼0

bnfn x1ð Þ ð29Þ

with the corresponding base functions

nn x1ð Þ ¼ x2
1 � 3

� �
x2

1 � 1
� �2

Pn x1ð Þ; fn x1ð Þ ¼ 1� x2
1

� �
Pn x1ð Þ

where, Pn x1ð Þ is the Legendre polynomial of degree n and an and bn

are constants. It may be noted that W x1ð Þ and h x1ð Þ satisfies the
boundary conditions. Eq. (29) is substituted into Eqs. (26) and
(27) and the resulting error is required to be orthogonal to nm x1ð Þ
and fm x1ð Þ for m ¼ 0;1;2; . . . N. This gives

Pr

K2
c

XN

n¼0

an

Z 1

�1
n000n n000m þ 3a2n00nn

00
m þ 3a4n0nn

0
m þ a6nnnm

� �
dx1

þ Pr
XN

n¼0

an

Z 1

�1
n00nn

00
m þ 2a2n0nn

0
m þ a4nnnm

� �
dx1

þ ia
XN

n¼0

an

Z 1

�1

d2Wb

dx2
1

þ a2Wb

 !
nnnm �Wbn

00
nnm

( )
dx1

� GPr2
XN

n¼0

bn

Z 1

�1
f0nm dx1 ¼ iac Pr

XN

n¼0

an

Z 1

�1
n0nn

0
m þ a2nnnm

� �
dx1 ð30Þ
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ia
2

XN

n¼0

an

Z 1

�1
nnfm dx1 þ ia

XN

n¼0

bn

Z 1

�1
Wb fnfm dx1

þ
XN

n¼0

bn

Z 1

�1
f0nf

0
m þ a2fnfm

� �
dx1 ¼ iac Pr

XN

n¼0

bn

Z 1

�1
fnfm dx1 ð31Þ

in which the primed quantities denote differentiation with respect
to x1.

The above equations form the following system of linear alge-
braic equations

AX ¼ cBX ð32Þ

where A and B are the complex matrices, c is the eigenvalue and X is
the eigenvector. To solve the above system (32), the DGVLCG of the
IMSL library [22] is employed. The routine is based on the QZ algo-
rithm due to Moler and Stewart [23]. The first step of this algorithm
is to simultaneously reduce A to upper Heisenberg form and B to
upper triangular form. Then, orthogonal transformations are used
to reduce A to quasi-upper-triangular form while keeping B upper
triangular. The generalised eigenvalues for the reduced problem
are then computed as detailed below.

For fixed values of Pr; Kc; a and G; the values of c which ensure
a non trivial solution of Eq. (32) can be obtained as the eigenvalues
of the matrix B�1A: From 2ðN þ 1Þ eigenvalues cð1Þ; cð2Þ; . . . ;

cð2N þ 2Þ; the one having the largest imaginary part (cðpÞ; say) is
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selected. In order to obtain the neutral stability curve, the value of
G for which the imaginary part of c(p) vanishes must be sought. Let
this value of G be noted by Gq: The lowest point of Gq as a function
of a gives the critical Grashof number Gc and the critical wave
number ac: The real part of c(p) corresponding to Gc and ac gives
the critical wave speed cc: If cc ¼ 0; the critical disturbance modes
are stationary, whereas for cc – 0 they are travelling waves. This
procedure is repeated for various values of Pr and Kc.

6. Results and discussion

The effect of couple stresses on the stability of natural convec-
tion in a vertical fluid layer is investigated. The resulting eigen-
value problem of Orr–Sommerfeld type is solved numerically
using higher order Galerkin technique with Legendre polynomials
as trial functions and wave speed as the eigenvalue. The critical
Grashof number and the critical wave speed are computed with
respect to the wave number for various values of couple stress
parameter and the Prandtl number.

The convergence of the numerical method employed is tested
by varying the order of base polynomial. Table 1 illustrates the
convergence of numerical solution as a function of order of polyno-
mials for two different set of parameters. To account for all the har-
monics in a complicated solution, a large number of terms have to
be included in the expansion. We have chosen different orders of
base polynomials and four digits point accuracy was achieved by
retaining 31 terms in Eq. (29). As the number of terms increased
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Fig. 8. Pattern variation of isotherm
in Eq. (29), the results were found to remain consistent and accu-
racy improved up to 7 digits for N ¼ 40: By rigorous computational
analysis, it was found that accurate solutions up to 8th digit could
be reached by taking 50 terms in the Galerkin expansion and hence
the results are obtained by taking N = 50. To know the accuracy of
the numerical method employed to extract the stability parame-
ters, the results are also obtained using Chebyshev collocation
method (Appendix A) for a representative set of parametric values
and compared in Table 2. From the Table it is seen that the results
are in good agreement.

Fig. 2(a–c), respectively show the influence of couple stress
parameter Kc; Prandtl number Pr and Grashof number G on the
basic velocity profile Wb: These figures indicate that decrease in
Kc; Pr and G is to suppress the fluid flow. From the figures, it is also
seen that the solution does not have symmetry with respect to x1;

in general. This effect is due to the fixed direction of the gravita-
tional field. The velocity profiles are antisymmetric about the ver-
tical line at x1 = 0 however, they are not precisely centrosymmetric
about x1 ¼ �1=2: In other words, in one half of the region, the basic
flow is in one direction and in the other half it is in the opposite
direction and is zero at x1 ¼ 0: Also, it is noticed from Fig. 2(a) that
for Kc ¼ 30; the solution is almost same as the non-polar solution
(dotted line). For small values of Kc; that is for large couple stres-
ses, the velocities are lower than that of non-polar case.

In Table 3, the critical Grashof number Gc; the critical wave
number ac and the critical wave speed cc are tabulated for different
values of Kc and Prandtl number Pr, as the magnitude of Pr
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determines the mode of instability. When Kc – 0; the value of Pr at
the point of intersection from stationary to travelling-wave mode
is found to increase with increasing Kc: Besides, the critical Grashof
number Gc at the transition mode decreases with increasing Kc:

Moreover the value of Pr, at which the transition mode occurs,
approaches to that of non-polar case as Kc increases. To justify
our numerical results, test computations have been performed
for 1=Kc ¼ 0 The critical Prandtl number at the transition between
the stationary mode and travelling-wave mode predicted by the
present code is 12.7, which is in agreement with the well estab-
lished result in the literature (Korpela et al. [9], Bergholz [24]).
We also find that as Pr increases, cc decreases for all values of Kc

considered in a manner similar to that of maximum base velocity.
It is well known that the critical wave speed must be less than the
maximum velocity of the base flow in the case of inviscid, homoge-
neous, parallel shear flows. The results presented in the tables also
exhibit similar behaviour. This is to be expected, because the ther-
mal disturbances tend to be heavily damped at high values of Pr.

The neutral stability curves in the (G, a) – plane are displayed in
Fig. 3(a) and (b) for different values of Pr when Kc = 10 and 20,
respectively. The neutral stability curves exhibit single but differ-
ent minimum with respect to the wave number for various values
of Kc and Pr. The portion below each neutral curve corresponds to a
stable region and the region above corresponds to instability. It
may be noted that, increase in Pr leads to decrease in the region
of stability.
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Fig. 9. Pattern variation of streamline
Figs. 4 and 5 illustrate the variation of critical Grashof number
Gc and the corresponding critical wave number ac as a function
of Prandtl number Pr for different values of Kc: Depending on the
value of Kc; there exists a threshold value of Pr at which the insta-
bility switches over from stationary to travelling-wave mode
(Fig. 4). Moreover, the threshold value of Pr increases noticeably
with increasing Kc: The results presented for Kc !1 corresponds
to non-polar fluids. In the stationary mode, increasing Kc is to
decrease Gc and thus it has a destabilising effect on the system.
In other words, increase in the couple stress viscosity stabilizes
the flow against stationary mode. This is because the effect of sus-
pended particles is to increase the viscosity of the fluid and thereby
exhibits stabilizing influence on the system. However, Kc shows a
dual behaviour on Gc if the instability is via travelling-wave mode.
It is also seen from the figure that the dependence of Gc upon Pr is
very weak in the case of stationary mode, while Gc for travelling-
wave mode is a strongly decreasing function of Pr. The vertical
lines represent the discontinuous changes in ac due to the transi-
tion from stationary to travelling-wave mode (Fig. 5). It is evident
from the figure that the dependence of ac at stationary mode upon
Pr is weak, whereas ac at travelling-wave mode depends strongly
upon Pr. Further it is seen that if the disturbances are stationary,
the critical wave number decreases marginally with increasing Pr
while it increases when the disturbances are travelling waves for
a particular value of Kc . The same trend is observed for all values
of Kc:
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There is a weak dependence of Gc upon Pr in the case of station-
ary mode for all the values of Kc considered (Fig. 4). This may be
due to the fact that energy for stationary instability at low to mod-
erate Pr is derived mainly from the base flow velocity field through
the action of disturbance Reynolds stresses at the mid-plane
between the upward and the downward flowing convective
streams. Also, it is observed that buoyancy forces work to enhance
the instability when Kc is small and to retard it when Kc increases
gradually.

A closer inspection of Fig. 5 reveals that, through the transition,
the wave number drops suddenly with Pr for different values of Kc;

and then increases again with further increase in the values of Pr:
This indicates two different physical mechanisms of instability. As
Pr increases, there is a tendency for more of the disturbance energy
to originate from the potential energy associated with the buoy-
ancy effect than as transfer from the kinetic energy of the base flow
by the action of Reynolds stresses.

Additional information regarding the nature of the travelling-
wave instability are summarised in Fig. 6, indeed confirm the
above observed behaviour more evidently, which shows the varia-
tion of positive cc with Pr for various values of Kc: The discontinu-
ous changes in cc due to the transition from stationary (cc ¼ 0) to
travelling-wave (cc – 0) mode are represented by the vertical lines.
Fig. 6 demonstrates that cc for the travelling-wave mode is a
decreasing function of both Pr and Kc:
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Fig. 10. Pattern variation of isotherm
To have a thorough understanding about the stability behaviour
of the fluid flow in the above discussed case, streamlines and iso-
therms at the critical state for both stationary and travelling-wave
modes are analyzed. Figs. 7 and 8 show the results for different val-
ues of Pr and a particular value of Kc = 5. In the figures, dotted and
solid lines represent negative and positive values, respectively. For
Pr = 6.8, the flow pattern appears to be stationary and bicellular.
Further, the streamlines move closer and become parallel at the
centre of the vertical fluid layer (Fig. 7(a)). The isotherms are bicel-
lular oblate triangles which are occupying almost the whole thick-
ness of vertical fluid layer and the same is evident from Fig. 8(a).
The flow pattern and flow strength changes qualitatively as well
as quantitatively as the mode changes from stationary to travel-
ling-wave with increasing Prandtl number. In other words, the
instability switches over from stationary to travelling-wave mode
once the value of Pr exceeds the value 6.9. When Pr = 7, convective
cells transform into unicellular form bicellular in streamlines
(Fig. 7(b)). Also, shapes of the isotherms changes from bicellular
oblate triangles to unicellular oblate triangles and concentrate in
the vicinity of the hot wall (Fig. 8(b)). It is further seen that the
actual wavelengths are substantially larger in both streamlines
and isotherms and at this stage wmax increases from 0.44 to 1.07,
also hmax changes from 0.04 to 0.008. This fact is also evident from
Figs. 7 and 8(b). Further increase in Pr is to decrease the flow
strength (Fig. 7(e) and (f)) and also to weaken the isotherms
0.5 1

r = 7.0

-1 -0.5 0 0.5 10

1

2

3

4

(c) Pr = 10.4= 0.01

0.5 1

= 12.4

1

-1 -0.5 0 0.5 10

2

4

6

8

10

(f) Pr = 12.6= 0.009

x1

s as a function of Pr for Kc ¼ 10.



-1 -0.5 0 0.5 10

1

2

3

4

(b) Pr = 7.0= 0.46

-1 -0.5 0 0.5 10

1

2

3

4

(c) Pr = 10.4= 0.46

-1 -0.5 0 0.5 10

1

2

3

4

(e) Pr = 12.4= 0.47

x1
-1 -0.5 0 0.5 10

2

4

6

8

10

12

14

16
(f) Pr = 12.6= 1.04

x1

-1 -0.5 0 0.5 10

1

2

3

4

ψmax (a) Pr = 6.8= 0.46

x3

-1 -0.5 0 0.5 10

1

2

3

4

(d) Pr = 10.6= 0.46

x1

x3

Fig. 11. Pattern variation of streamlines as a function of Pr for Kc ¼ 30.

B.M. Shankar et al. / International Journal of Heat and Mass Transfer 78 (2014) 447–459 457
(Fig. 8(e) and (f)). From these figures, it is also observed that the
cells change from unicellular to bicellular in streamlines and oblate
triangles to bicellular with an inclination. With increasing Pr fur-
ther, the streamline and isotherm patterns appear to be same as
those observed for value of Pr at which the transition mode took
place. However, the wavelength is found to be decreasing with
increasing Pr.

To study the effect of couple stress parameter, results are pre-
sented for Kc = 10. The streamlines and isotherms are shown in
Figs. 9 and 10(a–c), respectively for Pr = 6.8, 7.0 and 10.4. The pat-
tern appears to be stationary bicellular convection in streamlines,
whereas in isotherms bicellular oblate triangles. It is also observed
that the magnitude of secondary flow is very weak. As Pr increases
to 10.6 (Fig. 9(d)), a sudden change in the magnitude of secondary
flow is observed (i.e., wmax = 0.46–0.99) and convective cell
becomes unicellular. In the case of isotherms, as mode changes
from stationary to oscillatory, the magnitude of isothermal lines
reduces drastically (hmax = 0.01–0.006) and pattern variation is also
observed (Fig. 10(d)). This behaviour of the streamlines and iso-
therms may be due to the change in the mode of instability from
stationary to travelling-wave mode. It amounts to change in the
streamline pattern from unicellular to bicellular and again to uni-
cellular as observed from Fig. 9(e) and (f) with increase in the value
of Pr: A change in the isotherm patterns is also observed from
oblate triangles to bicellular with an inclination and then to oblate
triangles (Fig. 10(e) and (f)).
Figs. 11 and 12 exhibit the evolution of profile patterns before
and after the transition mode as a function of Pr for Kc = 30. We
observe almost the same pattern for Pr = 6.8, 7.0, 10.4, 10.6 and
12.4 in both streamlines and isotherms (Figs. 11 and 12(a–e)).
Figs. 11 and 12(f) illustrate the results for Pr = 12.6. From these fig-
ures, it is observed that the flow strength suddenly changes both
qualitatively and quantitatively in both streamlines and isotherms.
Also, there is a sudden increase in wavelength and this confirms
that transition mode occurs at this point.
7. Conclusions

The stability of natural convection of a vertical couple stress
fluid layer is studied using linear stability theory. An eigenvalue
problem of Orr–Sommerfeld type is solved using the Galerkin
method with Legendre polynomials as trial functions. The critical
Grashof number Gc, the critical wave number ac and the critical
wave speed cc are computed for wide ranges of couple stress
parameter Kc and the Prandtl number Pr: The couple stress param-
eter Kc shows destabilising effect on the system at the stationary
mode. To the contrary, it exhibits a dual behaviour once the insta-
bility is via travelling-wave mode. Moreover, the value of Pr
increases at which transition from stationary to travelling-wave
instability occurs as the value of Kc increases. The streamlines
and isotherms are found to mimic the behaviour of stability curves
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observed before and after the change of mode of instability.
Besides, a sudden change in streamlines and isotherms is observed
both in their magnitude and pattern just before and after the tran-
sition mode. For the range of parametric values considered, con-
vective cells are found to appear both bicellular as well as
unicellular in nature.
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Appendix A

The eigenvalue problem has also been solved using Chebyshev
collocation method. The kth order Chebyshev polynomial is given
by
nk xð Þ ¼ cos kh; h ¼ cos�1 x ðA1Þ

The Chebyshev collocation points are given by

xj ¼ cos
pj
N

	 

; j ¼ 0 1ð ÞN ðA2Þ

Here, the right and left wall boundaries correspond to j = 0 and
N, respectively. The field variable W and h can be approximated in
terms of Chebyshev variable as follows

W xð Þ ¼
XN

j¼0

nn xj
� �

Wj; h xð Þ ¼
XN

j¼0

nn xj
� �

hj ðA3Þ

The governing equations (26)–(28) are discretized in terms of
Chebyshev variable x to get

Wb

Pr
� c

	 
 XN

k¼0

BjkWk � a2Wj

 !
� 1

Pr
D2WbWj

¼ 1
ia

XN

k¼0

DjkWk � 2a2
XN

k¼0

BjkWk þ a4Wj

 !

� 1

iaK2
c

XN

k¼0

EjkWk � 3a2
XN

k¼0

DjkWk þ 3a4
XN

k¼0

BjkWk � a6Wj

 !

� GPr
ia

XN

k¼0

Ajkhk; j ¼ 1 1ð ÞN � 1 ðA4Þ
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Wb

Pr
� c

	 

hj þ

1
2Pr

Wj ¼
1

iaPr

XN

k¼0

Bjkhk � a2hj

 !
; j ¼ 1 1ð ÞN � 1 ðA5Þ

W0 ¼ WN ¼ 0 ðA6Þ

XN

k¼0

AjkWk ¼ 0; j ¼ 0 & N ðA7Þ

XN

k¼0

CjkWk ¼ 0; j ¼ 0 & N ðA8Þ

h0 ¼ hN ¼ 0 ðA9Þ

where

Ajk ¼

cj �1ð Þkþj

ck xj�xkð Þ j – k

xj

2 1�x2
j

� � 1 6 j ¼ k 6 N � 1

2N2þ1
6 j ¼ k ¼ 0

� 2N2þ1
6 j ¼ k ¼ N

8>>>>>>>><
>>>>>>>>:

ðA10Þ

Bjk ¼ Ajm � Amk; Cjk ¼ Bjm � Amk; Djk ¼ Bjm � Bmk & Ejk

¼ Djm � Bmk ðA11Þ

with

cj ¼
2 j ¼ 0;N
1 1 6 j 6 N � 1




The above equations form the following system of linear alge-
braic equations

AX ¼ cBX
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