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Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by
sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO

4
medium at 303K. The rate shows first-

order dependence on [CAB]o, shows fractional–order dependence on [substrate]o, and is self-governing on acid concentration.
Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition
of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the
activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were
identified by spectral analysis. The conjugate free acid C

6
H
5
SO
2
NHCl of CAB is postulated as the reactive oxidizing species. The

observed results have been explained by plausible mechanism and the related rate law has been deduced.

1. Introduction

Local anesthetics are drugs which produce reversible bloc-
kade of nerve impulse conduction.They act directly on speci-
fic receptors on sodium channels inhibiting sodium ion in-
flux. Local anesthetics are valued for the ability to avoid
membrane depolarization [1]. Tetracaine hydrochloride
[2-dimethylaminoethy-4-n-butylaminobenzoate hydrochl-
oride, TCH], an ester of p-aminobenzoic acid, has been wid-
ely used as local anaesthetic and is long-standing agent for
spinal anaesthesia. In biomedical research, TCH is used to
modify the function of calcium release channels (ryanodine
receptors) that control the release of calcium from
intracellular stores. TCH is an allosteric blocker of channel
function. At low concentrations, TCH causes an initial
inhibition of spontaneous calcium release events, while at
high concentrations, TCH blocks release completely [2, 3].
Hence tetracaine hydrochloride forms one of the important
drugs in pharmaceutical industry. After reviewing the
literature, we found that there was no information available
on the oxidation kinetics of TCHwith any oxidant.Therefore
the title investigation was undertaken.

The miscellaneous nature of chemistry of N-haloamines
is a significance of their aptitude to act as sources of species,
such as halonium cations, hypohalites, and N-anions which
act as bases, nucleophiles, and nutrenoids [3–7].They behave
as mild oxidants and are suitable for the partial oxidation of
several groups. As a result, these reagents react with a selec-
tion of functional groups distressing an array of molecular
transformations. In general, monohaloamines undergo two
electron changes while dihaloamines are four-electron oxi-
dants [3]. The reduction products are the respective sulfon-
amide andNaCl orHCl.Theoutstandingmember of this class
of compounds is chloramine-T (CAT) and the other member
is chloramine-B (sodium N-chlorobenzenesulfonamide or
CAB). The N–Cl bond in CAT and CAB is highly polar and
hence these two compounds are fairly strong electrophiles,
since chlorine leaves as Cl+ in these reactions. CAT has
been used for the oxidation of a variety of organic and
inorganic substrates and the oxidation mechanisms have
been kinetically well investigated [5, 6]. But there is meager
information available in literature [7, 8] on the use of CAB.
CAB is a stable compoundwith slightly higher active chlorine
content than its analogue CAT. CAB is gaining importance as
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a mild oxidant and hence there is a considerable scope for
the extension of work with CAB to get better insight of the
speciation of CAB reaction models and deliberate its redox
chemistry in solution.

In the glow of the available information and in continua-
tionof work on oxidation studies with organic chloramines in
general and medicinal compounds in particular, the present
investigations were undertaken. The main objectives of the
present study are to (i) explicate plausible mechanisms, (ii)
deduce suitable rate laws, and (iii) determine the various
reactive species.

2. Experimental

2.1. Materials. An aqueous solution of CAB (Merck) was
prepared and stored in brown bottles to prevent its pho-
tochemical deterioration [9]. TCH (Alfa Chem) was used
as received and an aqueous solution of TCH was freshly
prepared whenever required. Solvent isotope studies were
made with D

2
O, 99.4% supplied by BARC, Mumbai, India.

Analytical grade chemicals and double distilled water were
used throughout. Regression coefficient (𝑟) was calculated
using fx-350 TL scientific calculator.

2.2. Kinetic Procedure. Reactions were carried out under
pseudo-first-order conditionsweremaintained for the kinetic

runs ([substrate]o ≫ [oxidant]o) at constant temperature
303K in glass stoppered Pyrex boiling tubes coated black
fromoutside to eliminate photochemical deterioration. A
Raaga digital proportional temperature controller (CH-16)
was used to maintain the desired temperature with an
accuracy of ±0.1∘C. The requisite amounts of solutions of
substrate and HClO

4
solutions and water (for constant total

volume) for all kinetic runs were equilibrated at 303K for
about 30min. A measured amount of CAB also equili-
brated at the same temperature was rapidly added to the
reaction mixture which was periodically shaken for uni-
form concentration. The improvement of the reaction was
monitored by withdrawing measured aliquots (5mL each)
from the reaction mixture at regular time intervals and
determined the unreacted CAB iodometrically. The course
of the reaction was studied more than two half-lives. The
pseudo-first-order rate constants (k󸀠 s−1) calculated from the
linear plots of log [CAB] versus time were reproducible
within ± 3-4%.

2.3. Stoichiometry. Varying ratios of CAB to TCH were
equilibriated at 303K for 24 h in the presence of mol dm−3
HClO

4
. The residual oxidant was determined by iodometry

and the analysis showed that one mole of TCH consumed 5
moles of CAB as

O

N

H

COOHC

OH

OOH COOH+ +

(CH2)3 CO CH2CH2

CH3

+ H2N

+ H2OH3C

H3C

N̈

NH(CH3)2 CH2 CH2 CH2

CH3 + 5PhSO2NClNa

+ 5PhSO2NH2 + 5Na+ + 5Cl−.

(1)

2.4. Product Analysis. TheTCH-CAB reactionmixture in the
stoichiometric ratio in the presence of HClO

4
under stirred

condition was allowed to progress for 24 h at 303K. After
completion of the reaction (monitored by TLC), the reaction
products were neutralized with NaOH and extracted with
ether. The organic products were subjected to spot tests and
chromatographic analysis (TLC technique) which revealed
the formation of p-aminobenzoic acid (Figure 1), dimethy-
lamine, and glycolic acid. These oxidation products were
separated by column chromatography and were confirmed
by GCMS analysis (molecular ion peak at 45, 76, 88, and
137 amu (Figure 1). It was also noticed that there was no
further oxidation of these products under current kinetic
conditions.

The reaction product of CAB, benzenesulfonamide,
(PhSO

2
NH
2
) was detected [7] by thin layer chromatography,

using light petroleum-chloroform-butan-1-ol (2 : 2 : 1 v/v/v)
as the solvent and iodine as the detecting agent (𝑅

𝑓
= 0.88)

and also confirmed by GCMS analysis (157 amu).

3. Results and Discussion

The kinetics of oxidation of TCH by CAB was investigated at
several initial concentrations of the reactants at 303K. Under
pseudo-first-order conditions of [substrate]o ≫ [oxidant]o
at constant [HClO

4
] and temperature, plots of log [CAB]

versus time were linear (𝑟 > 0.9925) indicating a first-
order dependence of rate on [CAB]o. The pseudo-first-order
rate constants (𝑘󸀠) calculated from these plots are given in
Table 1. Further, the values of 𝑘󸀠 calculated from these plots
are unaltered with variation of [CAB]o, confirming the first-
order dependence on [CAB]o. The rate increased with the
increase in [substrate]o (Table 1). A plot of log 𝑘󸀠 versus
log [TCH] was linear (𝑟 = 0.9892, Figure 3) with a slope
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Figure 1: GC-mass spectrum of p-aminobenzoic acid with its
molecular ion peak at 137 amu.

Table 1: Effect of varying CAB, TCH, andHClO4 concentrations on
reaction at 303K.

103 [CAB]
∘

102 [TCH] 10 [HClO4] 10
4
𝑘
󸀠

(mol dm−3) (mol dm−3) (mol dm−3) (s−1)
0.5 2.0 2.0 7.65
1.0 2.0 2.0 7.55
2.0 2.0 2.0 7.95
4.0 2.0 2.0 7.80
6.0 2.0 2.0 7.87
2.0 0.5 2.0 4.66
2.0 1.0 2.0 6.46
2.0 2.0 2.0 7.95
2.0 3.0 2.0 10.1
2.0 4.0 2.0 12.3
2.0 2.0 0.5 8.25
2.0 2.0 1.0 7.93
2.0 2.0 2.0 7.95
2.0 2.0 3.0 8.13
2.0 2.0 4.0 7.88

of 0.46 indicating a fractional-order dependence of the rate
on [TCH]o. Furthermore, a plot of 𝑘󸀠 versus [TCH]o is
linear (𝑟 = 0.9864, Figure 4) with 𝑦-intercept, confirming
fractional-order dependence on [substrate]o. Values of 𝑘

󸀠 are
unaffected with the increase in [HClO

4
], indicating a zero-

order dependence of rate on [H+] (Table 1).
Addition of the reaction product, benzenesulfonamide,

(2.0 × 10−4–6.0 × 10−4mol dm−3) and addition of Cl− ion
(4.0 × 10−2–8.0 × 10−2mol dm−3) in the form of NaCl had no
significant effect on the rate. The effect of ionic strength of
the medium was studied by varying the sodium perchlorate
concentration in a range of 0.10–0.30 mol dm−3 by keeping
the other experimental conditions constant. It was found that
ionic strength has a negligible effect on the reaction rate.
Hence no attempt was made to keep ionic strength constant
for kinetic runs.
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Figure 2: GC-Mass spectrum of benzenesulfonamide with its
molecular ion peak at 157 amu.
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Figure 3: Plot of log 𝑘󸀠 versus log [TCH].

Table 2: Effect of varying dielectric constant of medium on the
reaction rate at [CAB]o = 2.0 × 10−3 mol dm−3; [TCH]o = 2.0 ×
10−2 mol dm−3; and [HClO4] = 0.2mol dm−3; temp = 303K.

% MeOH (v/v) 𝐷 10
4
𝑘
󸀠 (s−1)

0 76.73 7.95
5 74.50 8.42
10 72.37 9.75
20 67.48 11.4
30 62.71 12.7
40 58.06 15.9

The effect of dielectric constant (𝐷) on the reaction rate
was studied by adding various proportions of methanol (0–
40% v/v) to the reacting system. It was observed that an
increase in methanol composition in the reaction system
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Table 3: Effect of varying temperature on the reaction rate and
activation parameters for the oxidation of tetracaine hydrochloride
in acid medium at [CAB]o= 2.0 × 10−3 mol dm−3 ; [substrate]o = 2.0
× 10−2 mol dm−3; and [HClO4] = 0.2mol dm−3.

Temperature (K) 10
4
𝑘
󸀠 (s−1)

283 4.56
293 6.31
303 7.95
313 10.3
323 13.6
𝐸
𝑎
/kJmol−1 46.0
Δ𝐻
̸= /kJmol−1 43.7

Δ𝐺
̸= /kJmol−1 93.2

Δ𝑆
̸= /JK−1 mol−1 −159
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Figure 4: Plot of 𝑘󸀠 versus [TCH].

increased the reaction rate (Table 2) and a plot of log 𝑘󸀠 versus
1/𝐷 was linear (Figure 5; 𝑟 = 0.9926) with a positive slope.
The values of permittivity (dielectric constant) for MeOH-
water mixtures reported in the literature were employed [9].
Blank experiments run with methanol indicated negligible
oxidation under the experimental conditions employed. The
solvent isotope effect was studied in D

2
O, where 𝑘󸀠 = 7.95 ×

10−4 s−1 in D
2
O medium and 7.95 × 10−4 s−1 in water leading

to a solvent isotope effect, 𝑘󸀠 (H
2
O)/𝑘󸀠 (D

2
O) = 1.07.

The reaction was studied at different temperatures
(283–323K), keeping other experimental conditions con-
stant. From the linear Arrhenius plot of log 𝑘󸀠 versus 1/𝑇
(𝑟 = 0.9921, Figure 6), values of activation parameters
(𝐸
𝑎
, Δ𝐻

̸=
, Δ𝑆
̸=
, and Δ𝐺 ̸= ) for the overall reaction were

computed. These results are compiled in Table 3. Absence of
free radicals during the course of oxidation was confirmed
when no polymerization was initiated with the addition of
acrylonitrile solution to the reaction mixture.

CAB is analogous to CAT and exhibits similar equilibria
in aqueous acidic and basic solutions [5, 8, 10, 11]. In gen-
eral, CAB undergoes a two-electron change in its reactions
forming the reduction products, benzenesulfonamide (BSA;
PhSO

2
NH
2
) and NaCl. The oxidation potential of CAB-BSA
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Figure 5: Plot of log 𝑘󸀠 versus 1/𝐷.

redox couple varies [12] with pH of the medium (values are
1.14 V at pH 0.65 and 0.50V at pH 12). Aqueous solution of
CAB behaves as a strong electrolyte and, depending on the
pH, CAB furnishes different types of reactive species

PhSO
2
NClNa 󴀕󴀬 PhSO

2
NCl− +Na (2)

PhSO
2
NCl− +H+ 󴀕󴀬 PhSO

2
NHCl (3)

2PhSO
2
NHCl 󴀕󴀬 PhSO

2
NH
2
+ PhSO

2
NCl
2 (4)

PhSO
2
NCl
2
+H
2
O 󴀕󴀬 PhSO

2
NHCl +HOCl (5)

PhSO
2
NHCl +H

2
O 󴀕󴀬 PhSO

2
NH
2
+HOCl (6)

HOCl 󴀕󴀬 H+ +OCl− (7)

HOCl +H+ 󴀕󴀬 H
2
OCl+ (8)

Therefore, the possible oxidizing species in acid solution
of CAB are PhSO

2
NHCl, PhSO

2
NCl
2
, HOCl, and pos-

sibly H
2
OCl+ and, in alkaline CAB solutions, they are

PhSO
2
NHCl, PhSO

2
NCl−, HOBr, and OBr−.

The first-order dependence of rate on [CAB]o and the
addition of benzenesulfonamide (PhSO

2
NH
2
) having no

effect on the reaction rate both indicate that PhSO
2
NCl
2
and

HOCl may not be the reactive species (4) and (6). Further,
these species are present in very low concentrations at the
experimental conditions employed. Furthermore, variation
of [H+], ionic strength of the medium, and addition of
the reaction product, benzenesulfonamide, have virtually no
effect on the rate.

Based on the above discussion and experimental obser-
vation, the following general scheme involving the direct
interaction of the substrate with PhSO

2
NHCl (Scheme 1)

is proposed. A fractional order dependence on [substrate]o
indicates a prior equilibrium followed by the rate determining
step.

In Scheme 1, X is a CAB-TCH complex species and X󸀠
is another intermediate complex species whose structures
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Figure 6: Plot of log 𝑘󸀠 versus 1/𝑇.

2 PhSO2NHCl

PhSO2NHCl + TCH X

Products

(i) Fast

(ii) Slow and rate determining
(iii) Fast

X X 󳰀

X 󳰀
+

Scheme 1: A general mechanistic scheme for the oxidation of
tetracaine hydrochloride by CAB in acid medium.

are shown in Scheme 2, where a detailed mechanistic inter-
pretation of procaine hydrochloride oxidation by CAB in
acid medium is proposed. In this, the conjugate-free acid
(PhSO

2
NHCl) directly reacts with the substrate in a fast

equilibrium step to form the substrate-oxidant complex (𝑋).
This decomposes in a rate-determining step to the products.
Five moles of the oxidant is consumed to yield the ultimate
products.

Step (ii) of Scheme 1 determines the overall rate,

rate = −𝑑 [CAB]
𝑑𝑡
= 𝑘
2
[X] . (9)

If [CAB]
𝑡
represents the total CAB concentration in solution,

then

[CAB]
𝑡
= [PhSO

2
NHCl] + [X] , (10)

from which solving for [X] and substituting its value in (9),
rate law (11) can be derived

rate =
𝐾
1
𝑘
2
[CAB]

𝑡
[TCH]

1 + 𝐾
1
[TCH]

. (11)

Rate law (11) is in good agreement with the experimental
results.

Since rate = 𝑘󸀠[CAB]
𝑡
, rate law (11) can be transformed

into (12) and (13) as follows:

𝑘
󸀠
=
𝐾
1
𝑘
2
[TCH]

1 + 𝐾
1
[TCH]
, (12)

1

𝑘󸀠
=
1

𝐾
1
𝑘
2
[TCH]
+
1

𝑘
2

. (13)

Based on rate law (13), a plot of 1/𝑘󸀠 versus 1/[TCH] at
constant [CAB]o, [H

+], and temperature was found to be
linear (Figure 2; 𝑟 = 0.9934). From the intercept and slope of
this plot, the formation constant (𝐾

1
) and the decomposition

constant (𝑘
2
) of the substrate-oxidant species were found to

be 10.9 dm3mol−1 and 6.67× 10−3 s−1, respectively.

3.1. Michaelis-Menten Kinetics. Since the rate was fractional-
order in [TCH]o, Michaelis-Menten type of kinetics [13] was
adopted. The TCH was varied in the concentration range
of 0.5 × 10−2–4.0 × 10−2mol dm−3 at different temperatures
(283–313 K), with all other experimental conditions being
held constant. Based on (13), plots of 1/𝑘󸀠 versus 1/[TCH]
were found to be linear (𝑟 > 0.9851).

For a reaction involving a fast preequilibriumH+ or OH−
ion transfer, the rate increases in D

2
O since D

3
O+ and OD−

are 2 to 3 times stronger acids and stronger bases [12–14],
respectively, than H

3
O+ and OH− ions. The reverse holds

good for reactions involving retardation of rate by H+ or
OH− ions. In the present case, solvent isotope studies show
that 𝑘󸀠 (H

2
O)/𝑘󸀠 (D

2
O) ≈ 1 and this is generally correlated

with the fact that the negligible effect of [H+] on the rate of
reaction. Hence the observed solvent isotope effect supports
the proposed mechanism and the derived rate expression.

The effect of varying solvent composition on the reaction
kinetics has been described in detail in the well-known
monographs [15–25]. For a limiting case of zero angle of
approach between two dipoles or an ion-dipole system, Amis
[23] has shown that a plot of log 𝑘󸀠 versus 1/𝐷 gives a straight
line with a negative slope for a reaction between a negative
ion and a dipole or between two dipoles, while a positive slope
results for a positive ion-dipole interaction.The latter concept
agrees with the present observations, where a positive ion and
a dipole are involved in the rate-limiting step of Scheme 2.

The influence of the ionic strength of the medium on
the rate is negligible indicating that nonionic species are
involved in the rate limiting step. The reaction product,
benzenesulfonamide (PhSO

2
NH
2
), does not influence the

rate showing that it is not involved in a preequilibrium.
Addition of chloride ions had no effect on the rate indicating
that no interhalogen or free chlorine is formed. All these
observations also confirm the proposed mechanism.

The proposed mechanism is also supported by the mod-
erate values of energy of activation and other activation
parameters. The fairly high positive value of free energy of
activation indicates that the transition state is highly solvated,
while the large negative Δ𝑆 ̸= suggests the formation of a
compact activated complex with a reduction in the degrees
of freedom of molecules.

4. Conclusion

The kinetics of oxidation of tetracaine hydrochloride by CAB
has been studied at 303K. The reaction follows the rate
law rate = 𝑘[CAB]o[TCH]

𝑥, where 𝑥 is less than unity. On
the basis of experimental results, a suitable mechanism and
appropriate rate law have been derived.
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Scheme 2: Continued.
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