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This paper theoretically examines the combined effects of surface roughness and magnetic field between two rectangular parallel
plates of which the upper plate has roughness structure and the lower plate has porous material in the presence of transverse
magnetic field.The lubricating fluid in the film region is assumed to be Newtonian fluid (linearly viscous and incompressible fluid).
Thismodel consists ofmathematical formulation of the problemwith appropriate boundary conditions and solution numerically by
finite difference basedmultigridmethod.The generalized averagemodifiedReynolds equation is derived for longitudinal roughness
using Christensen’s stochastic theory which assumes that the height of the roughness asperity is of the same order as the mean
separation between the plates. We obtain the bearing characteristics such as pressure distribution and load carrying capacity for
various values of roughness, Hartmann number, and permeability parameters. It is observed that the pressure distribution and
load carrying capacity were found to be more pronounced for increasing values of roughness parameter and Hartmann number;
whereas these are found to be decreasing for increasing permeability compared to their corresponding classical cases. The physical
reasons for these characters are discussed in detail.

1. Introduction

It is unrealistic that there exists a perfectly smooth surface.
Since all the surfaces are rough to some extent, the sur-
face roughness percentage (degree) may vary from polished
surfaces to machined surfaces. Rough surfaces usually wear
more quickly and have higher frictional coefficients than
smooth surfaces. The interesting observation is that the
bearing geometry and roughness type affect the measure
of influence of surface roughness. It is a piece of evidence
that surface roughness of the bearings considerably affect
its performance. Bearing surfaces develop roughness after
having some run in andwear.On the other hand, other reason
to generate roughness is contamination of the lubricant. In
view of this, many scientists and mathematicians proposed
to study the effect of surface roughness on bearing surfaces (a
saw tooth curve model by Davies [1], the Fourier series type
approximation by Burton [2], and so on). Since the surface
roughness distribution is random in nature, a stochastic

approach has to be adopted. A stochastic theory for the
study of rough surfaces in hydrodynamic lubrication was
investigated by Christensen [3]. Since then many researchers
have adopted and used extensively this approach to study
roughness effect on bearing surfaces, narrow journal bearings
by Gururajan and Prakash [4], finite journal bearings by Chi-
ang et al. [5], poroelastic bearings by Bujurke and Kudenatti
[6], and so on.

MHD is the physical-mathematical framework that con-
cerns the dynamics of magnetic field in electrically conduct-
ing fluids. The presence of magnetic field leads to the forces
that in turn act on the fluid, thereby potentially altering
the geometry (topology). Some of the other phenomena of
various fields like science, astrophysics, geophysics, engineer-
ing, and technology involve MHD.The applications of MHD
are MHD generators, MHD pumps, fusion reactors, crystal
growth, magnetic drug targeting, and metallurgical applica-
tions.Theoretically and experimentally several investigations
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Figure 1: The physical configuration of squeeze film between rough and porous rectangular plate in the presence of magnetic field.

have taken place on MHD lubrication. Many theoretical
studies on MHD lubrication are available in the literature
which includesMHD slider bearings (MHD Journal bearings
Kamiyama [7], Anwar and Rodkiewicz [8], effects of MHD
by Hamza [9], Maki et al. [10], and Shukla [11]). Recently,
Bujurke and Kudenatti [12] have theoretically explored the
effect of roughness on the electrically conducting fluid in the
rectangular plates, inwhich upper plate has a rough structure,
and found that the effect of roughness andHartmann number
is to increase the pressure distribution and hence the load
carrying capacity for increasing roughness and magnetic
parameters.

We investigate the combined effects of surface roughness
andmagnetic field on squeeze film lubrication characteristics
between two plates of which an upper plate has a roughness
structure and the lower plate has a porous material in the
presence of uniform applied transverse magnetic field.

This paper is organized into the following different
sections. The basic governing equations with supporting
boundary conditions are given and consequently modified
MHD Reynolds equation is derived in Section 2. The
Reynolds equation for longitudinal roughness is derived in
this section to study the effect of roughness. Finite difference
based multigrid method is adopted to obtain the pressure
distribution and load carrying capacity in Section 3. In
Section 4, we analyse bearing characteristics for varying
roughness parameters, Hartmann number, aspect ratio, and
permeability. Important findings and their significances are
summarized in the final section.

2. Formulation of the Problem

Thismodel consists of flow of viscous isothermal and incom-
pressible (Newtonian) electrically conducting fluid between
two rectangular plates in which the upper plate has a rough
structure.The physical configuration of the problem is shown
in Figure 1. The upper rough plate approaches the lower
smooth plate with a constant velocity 𝑑𝐻/𝑑𝑡. A uniform

transversemagnetic field𝑀
0
is applied in the 𝑧-direction.The

upper and lower plates are separated by thickness𝐻, then, the
total film thickness is made up of two parts as

𝐻 = ℎ
0
+ ℎ
𝑠
(𝑥, 𝑦, 𝜉) , (1)

where ℎ
0
is the height of the nominal smooth part of the

film region, ℎ
𝑠
is part due to the surface asperities measured

from the nominal level which is a randomly varying quantity
of zero mean, and 𝜉 is the index parameter determining a
definite roughness structure.

In addition to the usual assumptions of lubrication theory,
we assume fluid inertia to be negligible and, except the
Lorentz force, the body forces are also neglected. Under
these assumptions, the governing equations in Cartesian
coordinates system are

𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0, (2)

𝜕𝑝

𝜕𝑥
= 𝜇

𝜕
2
𝑢

𝜕𝑧2
− 𝜎𝑀

2

0
𝑢, (3)

𝜕𝑝

𝜕𝑦
= 𝜇

𝜕
2V

𝜕𝑧2
− 𝜎𝑀

2

0
V, (4)

𝜕𝑝

𝜕𝑧
= 0, (5)

where 𝑢, V, and 𝑤 are the velocity components in 𝑥, 𝑦, and
𝑧 directions, respectively, 𝑝 is the pressure, 𝜎 is electrical
conductivity of the fluid, 𝑀

0
is the impressed magnetic

field, and 𝜇 is viscosity of the fluid. The relevant boundary
conditions for the velocity components are mentioned below.

At the upper solid rough surface 𝑧 = 𝐻 one has

𝑢 = 0, V = 0, 𝑤 =
𝜕𝐻

𝜕𝑡
, (6)



Mathematical Problems in Engineering 3

and at the lower porous surface at 𝑧 = 0 one has

𝛼

√𝑘
(𝑢 − 𝑢

∗
) =

𝜕𝑢

𝜕𝑧
, (7)

𝛼

√𝑘
(V − V∗) =

𝜕V

𝜕𝑧
, (8)

𝑤 = 𝑤
∗
. (9)

The slip velocity boundary conditions (7) and (8) are due
to the Beavers and Joseph [13] slip conditions, where 𝛼 is
the dimensionless slip constant that depends on the char-
acteristics of the porous medium and 𝑘 is the permeability
parameter.

The modified form of the Darcy law, which governs the
flow of a Newtonian fluid and applied magnetic field in the
porous region, is given by

𝑢
∗
=

−𝑘

𝜇 (1 + 𝜑𝑀2)

𝜕𝑃
∗

𝜕𝑥
, (10a)

V∗ =
−𝑘

𝜇 (1 + 𝜙𝑀2)

𝜕𝑃
∗

𝜕𝑦
, (10b)

𝑤
∗
=
−𝑘

𝜇

𝜕𝑃
∗

𝜕𝑧
, (10c)

∇ ⋅ q∗ = 0, (11)

where q∗ = (𝑢∗, V∗, 𝑤∗) are velocity components in 𝑥, 𝑦, and
𝑧 directions, 𝜑 is the porosity parameter,𝑀 (= 𝑀

0
√(𝜎/𝜇)ℎ

0
)

denotes the nondimensional magnetic (Hartmann) number
and gives the effect of magnetic field on squeeze film lubrica-
tion and P∗ is the hydrostatic pressure. It readily follows from
(10a), (10b), (10c), and (11) that the pressure P∗ in the porous
region obeys the Laplace equation

𝜕
2
𝑃
∗

𝜕𝑥2
+
𝜕
2
𝑃
∗

𝜕𝑦2
+ 𝐷

𝜕
2
𝑃
∗

𝜕𝑧2
= 0, (12)

where𝐷 = (1 + 𝜙𝑀
2
).

Integrating the Laplace equation (12) with respect to 𝑧
from −𝛿 to 0 using the solid backing boundary condition
𝜕𝑃
∗
/𝜕𝑧 = 0 at 𝑧 = −𝛿, we get

𝜕𝑃
∗

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= −

1

𝐷
∫

0

−𝛿

(
𝜕
2
𝑝

𝜕𝑥2
+
𝜕
2
𝑝

𝜕𝑦2
)𝑑𝑧, (13)

where 𝛿 is the thickness of the porous region. Using Morgan
and Cameron [14] approximation which assumes that the
thickness of porous region is too small compared to the fluid
film region, and then using interface boundary condition 𝑝 =
𝑃
∗ at 𝑧 = 0, (13) becomes

𝜕𝑃
∗

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
= −

𝛿

𝐷
(
𝜕
2
𝑝

𝜕𝑥2
+
𝜕
2
𝑝

𝜕𝑦2
) . (14)

Plugging the solutions of (3) and (4) for 𝑢 and V into the
continuity equation (2) and integrating it with respect to 𝑧
across the fluid film thickness using boundary conditions (6)
and (9), we get the following modified Reynolds equation
describing pressure distribution in the fluid film region:

𝜕

𝜕𝑥
{𝐹 (𝐻,𝑀)

𝜕𝑝

𝜕𝑥
} +

𝜕

𝜕𝑦
{𝐹 (𝐻,𝑀)

𝜕𝑝

𝜕𝑦
}

= − (
𝜕𝐻

𝜕𝑡
+
𝑘

𝜇

𝜕𝑃
∗

𝜕𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0
) ,

(15)

where

𝐹 (𝐻,𝑀)

= (𝐴
1
(cosh(𝑀𝐻

ℎ
0

) − 1)

− 𝐴
2
(cosh(𝑀𝐻

ℎ
0

) − 1)
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ℎ
0
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𝐻ℎ
0

2

𝜇𝑀2
𝐴
3
)

× (cosh(𝑀𝐻
ℎ
0

) +
𝛼ℎ
0

√𝑘𝑀
sinh(𝑀𝐻

ℎ
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−1

,

𝐴
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2𝛼ℎ
0

4

√𝑘𝜇𝑀4
, 𝐴

2
=

𝛼𝑘ℎ
0

2

√𝑘𝜇𝐷𝑀2
,

𝐴
3
= cosh(𝑀𝐻

ℎ
0

) +
𝛼ℎ
0

√𝑘𝑀
sinh(𝑀𝐻

ℎ
0

) .

(16)

Substituting (14) in (15) and rearranging the terms, we get

𝜕

𝜕𝑥
{[𝐹 (𝐻,𝑀) −

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
]
𝜕𝑝

𝜕𝑥
}

+
𝜕

𝜕𝑦
{[𝐹 (𝐻,𝑀) −

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
]
𝜕𝑝

𝜕𝑦
} = −𝜇𝑀

3 𝜕𝐻

𝜕𝑡
.

(17)

The above equation is the modified Reynolds equation that
accounts theMHD and porous effects in the fluid film region.
To study the effect of roughness, we take stochastic average of
the Reynolds equation (17) as

𝜕

𝜕𝑥
{𝐸[(𝐹 (𝐻,𝑀) −

𝑘𝛿𝑀
3

1 + 𝜙 𝑀2
)
𝜕𝑝

𝜕𝑥
] }

+
𝜕

𝜕𝑦
{𝐸[(𝐹 (𝐻,𝑀) −

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
)
𝜕𝑝

𝜕𝑦
]}

= −𝜇𝑀
3 𝜕𝐻

𝜕𝑡
,

(18)

where expectancy operator 𝐸(∙) is defined by

𝐸 (∙) = ∫

∞

−∞

(∙) 𝑓 (ℎ
𝑠
) 𝑑ℎ
𝑠
, (19)
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and 𝑓(ℎ
𝑠
) is the probability density function of the stochastic

variable ℎ
𝑠
. In many engineering applications, bearing sur-

faces show a roughness height distribution which is Gaussian
in nature. Therefore, polynomial form which approximates
the Gaussian is chosen in the analysis. Such a probability
density function is given by Christensen [3] as

𝑓 (ℎ
𝑠
) =

{

{

{

35

32𝑐7
(𝑐
2
− ℎ
𝑠

2
)
3

, if − 𝑐 < ℎ
𝑠
< 𝑐;

0, elsewhere,
(20)

where 𝑐 is the total range of random film thickness variable
and function terminates at 𝑐 = ±3𝜎, 𝜎 being the standard
deviation.

There are two types of roughness patterns, namely,
longitudinal and transverse roughness structures, given by
the Christensen stochastic theory [3]. This stochastic theory
helps us to derive the modified Reynolds equation for both
longitudinal and transverse roughness structure. The longi-
tudinal roughness structure has the form of narrow ridges
and valleys across 𝑥 directions, and the one-dimensional
transverse structure where roughness striations run in the 𝑦
directions in the form of narrows.

2.1. Longitudinal Roughness. In this case, as roughness has
the form of narrow ridges running in the 𝑥-direction, film
thickness takes the form

𝐻 = ℎ
0
+ ℎ
𝑠
(𝑥, 𝜉) . (21)

Then, (18) becomes

𝜕

𝜕𝑥
{(𝐸 (𝐹 (𝐻,𝑀)) −

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
)
𝜕𝐸 (𝑝)

𝜕𝑥
}

+
𝜕

𝜕𝑦
{(

1

𝐸 (1/𝐹 (𝐻,𝑀))
−

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
)
𝜕𝐸 (𝑝)

𝜕𝑦
}

= −𝜇𝑀
3 𝜕𝐸 (𝐻)

𝜕𝑡
.

(22)

2.2. Transverse Roughness. In this case, one-dimensional
transverse roughness striations run in the𝑦 directions; hence,
film thickness takes the form

𝐻 = ℎ
0
+ ℎ
𝑠
(𝛾, 𝜉) . (23)

Then, (18) becomes

𝜕

𝜕𝑥
{(

1

𝐸 (1/𝐹 (𝐻,𝑀))
−

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
)
𝜕𝐸 (𝑝)

𝜕𝑥
}

+
𝜕

𝜕𝑦
{(𝐸 (𝐹 (𝐻,𝑀)) −

𝑘𝛿𝑀
3

1 + 𝜙𝑀2
)
𝜕𝐸 (𝑝)

𝜕𝑦
}

= −𝜇𝑀
3 𝜕𝐸 (𝐻)

𝜕𝑡
.

(24)

However, we are focusing on one-dimensional longitudinal
roughness since the transverse roughness structure can be

obtained from the other by just rotation of coordinate axes.
Therefore, the modified Reynolds equation (22) for one-
dimensional longitudinal roughness is analysed for further
investigation. In order to solve the modified Reynolds equa-
tion (22) for the pressure, the following boundary conditions
are used

𝐸 (𝑝) = 0, at 𝑥 = 0; 𝑎, 𝑦 = 0; 𝑏, (25)

where 𝑎 and 𝑏 are finite dimensions of plates in 𝑥 and 𝑦
directions, respectively.

From (19), we have

𝐸 (𝐻) = ℎ. (26)

The following non-dimensional parameters and variables are
introduced:

𝑥 =
𝑥

𝑎
, 𝑦 =

𝑦

𝑏
, 𝐻 =

𝐻

ℎ
0

, 𝑝 =
−ℎ
0

3
𝐸 (𝑝)

𝑎2𝜇 (𝜕ℎ/𝜕𝑡)
,

𝑆 =
𝛼

√𝑘
, 𝑆 =

𝑆

ℎ
0

, 𝜆 =
𝑏

𝑎
, 𝜓 =

𝑘𝛿

ℎ
0

3
,

(27)

where𝐶 is the non-dimensional roughness parameter,𝑝 is the
nondimensional fluid film pressure, 𝜆 is the aspect ratio, and
𝑆 is the nondimensional slip velocity parameter; then (22),
after dropping the overhead bars, becomes

𝜕

𝜕𝑥
{[𝐸 (𝐹 (𝐻,𝑀, 𝑆)) −

𝑀
3
𝜓

1 + 𝜙𝑀2
]
𝜕𝑝

𝜕𝑥
}

+
1

𝜆2

𝜕

𝜕𝑦
{[

1

𝐸 (1/𝐹 (𝐻,𝑀, 𝑆))
−

𝑀
3
𝜓

1 + 𝜙𝑀2
]
𝜕𝑝

𝜕𝑦
}

= 𝑀
3
,

(28)

where

𝐹 (𝐻,𝑀, 𝑆)

= (−2𝑆 +
𝛼
2
𝑀
2

𝑆 (1 + 𝜙𝑀2)
+

((−𝐻𝑀
2
+ 2𝑆 −

𝛼
2
𝑀
2

𝑆 (1 + 𝜙𝑀2)
) cosh (𝑀𝐻)

+ (𝑀 −𝑀𝐻𝑆) sinh (𝑀𝐻)))

× (𝑀 cosh (𝑀𝐻) + 𝑆 sinh (𝑀𝐻))−1,
(29)

𝐸 (𝐹 (𝐻,𝑀, 𝑆)) =
35

32𝐶7
∫

𝐶

−𝐶

𝐹 (𝐻,𝑀, 𝑆) (𝐶
2
− ℎ
2

𝑠
)
3

𝑑ℎ
𝑠
,

(30)

𝐸 (1/𝐹 (𝐻,𝑀, 𝑆)) =
35

32𝐶7
∫

𝐶

−𝐶

(𝐶
2
− ℎ
2

𝑠
)
3

𝐹 (𝐻,𝑀, 𝑆)
𝑑ℎ
𝑠
, (31)
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and boundary conditions (25) for the pressure field become

𝑝 = 0 at 𝑥 = 0; 1, 𝑦 = 0; 1. (32)

The above-modified Reynolds equation is too complicated to
solve analytically, as there are two integral expressions (30)
and (31) which are not solvable in closed form. Hence, we
resort to solveing the modified Reynolds equation (28) by
multigrid method.

3. Numerical Solution by Multigrid Method

The modified Reynolds equation (28) is elliptic in nature,
which is very complicated to be solved analytically. Finite dif-
ference basedmultigridmethod is used to solve this equation.
This method provides us a simple way to compute pressure
distribution. In multigrid method, few Gauss-Seidel itera-
tions are applied for smoothing the errors. Half-weighting
restriction operator is used for transferring the calculated
residual to the coarser grid level. The procedure is repeated
till the coarsest level is reached with just single unknown that
can be solved exactly. Next, bilinear interpolation operator is
used to prolongate the solution from coarsest level to next
finer grid level and then apply few Gauss-Seidel iterations.
Repeat this till the original level is reached. The number of
grids in each direction is taken to be 257 × 257. Thus, there
are 257 × 257 number of unknowns and hence equations in
the problem. Convergent solution for the pressure is obtained
when the pressure at two consecutive finest levels is almost
the same: up to 10−6. Simpson’s 1/3rd rule is adopted to solve
the expressions (30) and (31).

4. Results and Discussions

A simplified mathematical model has been developed to
investigate the combined effects of roughness and magnetic
field on squeeze film lubrication of two rectangular plates
of which the upper plate has roughness and the lower plate
has a porous material and discussed for various physical
phenomena. Multigrid method solution to the Reynolds
equation (28) has been obtained for the range for parameters
𝐶 = 0.1–0.5, 𝑀 = 1–10, and 𝜆 = 0.1–10 as these
values are opted to be in the limit of parameters that have
been used extensively in previous studies and experimental
investigations. All the derived quantities such as pressure
distribution and load capacity are obtained as a function of
roughness (𝐶), Hartmann number (𝑀), permeability (𝜓),
and aspect ratio (𝜆) and are presented in Figures 2–6.

For 𝜓 → 0 (nonporous), 𝑆 → ∞ (no-slip), and
𝑀 → 0 (nonmagnetic), the present analysis, respectively
reduces to the study of Bujurke and Kudenatti [12] wherein
they study MHD lubrication between rough parallel plates,
and the analysis of Lin [15] where the author studies MHD
squeeze film characteristics for finite rectangular plates.

In Figures 2(a)–2(d), the deviation of pressure distri-
bution with rectangular coordinates 𝑥 and 𝑦 for various
parameters is represented. It is pragmatic that the effect of
Hartmann number is to increase the pressure distribution
in the fluid film region. For increasing 𝑀, the pressure

distribution also increases (compare Figures 2(a) and 2(d)).
Also note that for 𝑀 = 3, 𝐶 = 0.2, (Figure 2(b))
the consequence of roughness is to increase the pressure
distribution compared to 𝐶 = 0.4 (Figure 2(e)). The reason
behind this is due to the application of magnetic field normal
to the flow reducing the velocity of the lubricant in fluid
film region. Thus, large amount of the fluid is retained in
the film region, and this yields an increase in the pressure
rise. Thus, velocity of the fluid reduces by the increase of
application of magnetic field and consequently pressure rise
increases. Furthermore, increase in the roughness increases
the roughness asperities on bearing surface which further
reduces the velocity of the fluid and also reduces the sidewise
leakage of the fluid.Thus, pressure distribution also enhances.

4.1. Nondimensional Load Carrying Capacity. Load carrying
capacity is one of the salient features of hydrodynamic
characteristics of the bearing. This can be obtained once the
fluid film pressure is calculated. The non-dimensional load
carrying capacity𝑊 of the bearing surface per unit area in a
non-dimensional form is

𝑊 =∬

1

0

𝑝 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (33)

The variation of load carrying capacity𝑊 as a function of
aspect ratio 𝜆 for different Hartmann number keeping other
parameters constant is shown in Figure 3. The Hartmann
number increases the load carrying capacity. The graph
depicts that as 𝑀 increases the load carrying capacity also
increases. Furthermore, as aspect ratio 𝜆 increases from 0.1
to 10, the load carrying capacity also increases. As explained
in the previous section, effects of roughness and Hartmann
number are to reduce the velocity of the fluid; as a result
pressure distribution increases in the fluid film region which
yields an increase of the load capacity of the bearings.

The variation of load carrying capacity 𝑊 as a function
of aspect ratio 𝜆 for different values of roughness 𝐶 keeping
all other parameters constants is shown in Figure 4. It is
interesting to note that there exists a critical value 𝜆

𝑐
of the

aspect ratio 𝜆 at which the effect of roughness vanishes. At
the critical value 𝜆

𝑐
(𝜆
𝑐
= 1.5683), for 𝜆 > 𝜆

𝑐
, the effect

of roughness increases the load carrying capacity, and for
𝜆 < 𝜆

𝑐
, the trend reverses. This trend is observed in Figure 4.

However, as aspect ratio 𝜆 increases from 0.1 to 10 load
carrying capacity increases. Also as aspect ratio 𝜆 increases
the load carrying capacity increases.

Figure 5 depicts the variation of load carrying capacity
𝑊 as a function of permeability 𝜓 keeping other parameters
constant. The effect of Hartmann number is to increase the
load carrying capacity for all parameters of𝑀. Further, it is of
interest to note that for increasing permeability (from 0.0001
to 1), the load carrying capacity decreases for all magnetic
parameters 𝑀. The reason behind this is that as permeable
surface becomes main path for the fluid to percolate into
the porous, the fluid which is retained due to application
of magnetic field decreases in the fluid film region. This
decreases the pressure rise which results into decrease in the
load carrying capacity. This trend can be seen in Figure 5.
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Figure 2: (a) Variation of distribution of pressure 𝑝 for 𝐶 = 0.2, ℎ = 0.5, 𝜙 = 0.6 and,𝑀 = 1. (b) Variation of distribution of pressure for
𝐶 = 0.2, ℎ = 0.5, 𝜙 = 0.6, and𝑀 = 3. (c) Variation of distribution of pressure for 𝐶 = 0.2, ℎ = 0.5, 𝜙 = 0.6, and𝑀 = 7. (d) Variation of
distribution of pressure for 𝐶 = 0.2, ℎ = 0.5, 𝜙 = 0.6, and𝑀 = 10. (e) Variation of distribution of pressure for 𝐶 = 0.4, ℎ = 0.5, 𝜙 = 0.6, and
𝑀 = 3.0.
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Figure 3: Variation of nondimensional load carrying capacity𝑊 with aspect ratio 𝜆 for𝐻 = 0.5, 𝜑 = 0.6, 𝜓 = 0.0001.
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The similar trend has been observed in Figure 6 wherein
we plot the load carrying capacity with the permeability 𝜓
for different values of roughness parameter for 𝐶. Again, as
roughness increases the load carrying capacity also increases,
whereas for increasing𝜓 the load carrying capacity decreases.

5. Conclusions

The combined effects of roughness and magnetic field
between twoparallel plates ofwhich the upper plate has rough
surface and the lower plate has porous surface are studied
using Christensen stochastic model for roughness.

Our investigations revealed the following.

(1) The pressure distribution and load carrying capacity
increase for increasing roughness parameter (𝐶).

(2) These bearing characteristics are found to increase for
increasing Hartmann number (𝑀).

(3) These characteristics decrease for increasing perme-
ability parameter (𝜓).

(4) Also, the load carrying capacity increases as the aspect
ratio (𝜆) increases.
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Figure 6: Variation of nondimensional load carrying capacity𝑊 as
a function of permeability 𝜓 for𝑀 = 2, ℎ = 0.5, and 𝜆 = 1.

It is expected that these results help the lubrication
engineers to choose the appropriate parameters for given
magnetic field to enhance the life of the bearings.
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