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In this paper, we give an exact solution to the most celebrated magnetohydrodynamic Falkner–Skan

equation. The equation governs the two-dimensional laminar boundary layer flow of a viscous,

incompressible and electrically conducting fluid over a semi-infinite flat plate in the presence of

magnetic field. Similarity transformations are used to convert the governing coupled non-linear partial

differential equations into a highly non-linear ordinary differential equation with boundary conditions.

An exact analytical solution is obtained for certain parameters which is then modified and generalized

to give an exact solution to all other involved parameters. The results thus obtained are compared with

that of direct numerical solutions, which agree well up to desired accuracy. The MHD Falkner–Skan

equation exhibits the upper and lower branch solutions that reveal a very interesting velocity profiles

for a set of parameters. Results are presented in the form of velocity profiles and skin friction for various

values of physical parameters and are discussed in detail.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a steady MHD two-dimensional boundary layer
flow of a viscous and incompressible electrically conducting fluid
in the presence of the magnetic field which is obeyed by the MHD
Falkner–Skan equation

f 000ðZÞþ f ðZÞf 00ðZÞþbð1�f 02ðZÞÞ�M2
ðf 0ðZÞ�1Þ ¼ 0, ð1Þ

with boundary conditions

f ð0Þ ¼ a, f 0ð0Þ ¼�l, f 0ðþ1Þ¼ 1, ð2Þ

where b is stream-wise pressure gradient parameter and M is the
magnetic (Hartmann) number. See Appendix for the derivation of
MHD Falkner–Skan equation. Parameter l represents the stretch of
the boundary, and a is the suction or injection parameter. For
M¼ a¼ 0¼ l, the above system reduces to the classical Falkner–
Skan equation. Interestingly, we see that f ðZÞ ¼ Zþa is an exact
solution of system (1) and (2) for l¼�1, then velocity gradient
becomes zero which demarcates the solution nature across
boundary layer flow. We note here that, though the above
governing ordinary differential equation is not stiff, it seems it
is more difficult to solve analytically because of its high non-
linearity. We discuss some of the significant features of solution of
the above system in the absence of magnetic field. Behavior
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atti).
of the boundary layer flow over the flat plate has considerable
engineering applications, such as drawing of plastic films, spinning
of metals, insulating materials, fine-fiber matts, etc. In the process,
the plate while moving in its own plane may induce a motion
in the neighboring fluid or fluid may move independently parallel
to it. This would have great impact on the final products. On the
other hand, the boundary layer flow over stretching surface with
porous media has been studied in the past due to many engineer-
ing applications in petroleum and geothermal industry, food
processing, extraction of geothermal energy, etc. Because of these
applications, many investigators studied the above problem
in different contexts (Rajagopal et al. [1], Hsu et al. [2], Olagunju
[3], Anabtawi and Khuri [4], Vera and Valencia [5], etc.).

Numerous papers are available in the literature for the
numerical solution of the above system for different values of b
with different boundary cases (Hartree [6], Stewartson [7], Libby
and Liu [8], etc.). They have proved the existence of multiple
solutions of the above system for some range of pressure gradient
parameter b. The numerical computations were refined by Riley
and Weidman [9] for the Falkner–Skan equation with a¼ 0
over the range of parametric values of b presuming the overshoot
velocity profiles have physical meanings. Surprisingly, their
computations revealed that, when l40, and an appropriate
choice of b, the system admits a unique solution in the range
0:14rbr0:5, dual solutions for 0:5rbr1, and even triple
solutions for 0obr0:14. The physical mechanism underlying
this behavior was discussed in detail by Riley and Weidman [9].
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All the above mentioned solutions to the Falkner–Skan equation
are given by the numerical methods in different context. To the
authors knowledge, no closed form solution has been found in the
literature because of its robust non-linearity and an infinite interval.
As pointed out by Liao [10], the perturbation techniques have been
applied to most of the boundary layer problems which involve one or
more small parameters. Using this technique in higher order terms,
Afzal and Luthra [11] have predicted the skin friction f 00ð0Þ for
different values of b. Furthermore, Fang and Zhang [12] and Afzal
[13] have reported that the Falkner–Skan problem (1) and (2) admits
a closed-form analytical solution for b¼�1 apparently this solution
is a combination of solutions of Yang and Chien [14] with l¼ 0 and
Riley and Weidman [9] with a¼ 0. Twice integration of (1) and (2)
with b¼�1 gives the Riccati type equation

f 0ðZÞþ f 2
ðZÞ
2
¼
Z2

2
þdZ�alZ�lþ a2

2
, ð3Þ

where d¼ f 00ð0Þ. The solution of (3) is given by

f ðZÞ ¼ Zþd�al

þ
ðað1þlÞ�dÞe�ððZ2=2Þþ ðd�alÞZÞ

1þðað1þlÞ�dÞ
ffiffiffip
8

p
e

1
2 ðd�alÞ

2
erf Zþd�alffiffi

2
p

� �
�erf d�alffiffi

2
p

� �� � , ð4Þ

provided d¼ al7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þlÞþa2

p
. Differentiation of (4) provides

the velocity profiles for various of values of a and l. The gradient of
axial velocity at the wall can be obtained

f 00ð0Þ ¼ d¼ al7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þlÞþa2

q
: ð5Þ

From Eq. (5), it follows that, the Falkner–Skan equation exhibits dual
solutions for �2ð1þlÞþa2

Z0, and no solution for �2ð1þlÞþ
a2o0. Exploiting analytical structure of solution (4) for b¼�1, Fang
and Zhang [12] have divided the velocity profiles as the upper branch
solution when ao0, and as the lower branch solution for a40 when
wall stretching parameter l is held constant. So, rigorously speaking,
the closed form solution (4) is the only available solution for the
Falkner–Skan equation for b¼�1 but fail to do so for other values of
pressure gradient parameter b. Therefore, it is worthwhile to develop
a new analytical techniques for all possible values of b which seem to
have physical meanings. In this category, Liao’s [10] homotopy
analysis method gives a uniformly valid, and convergent assured
series solution for the Falkner–Skan family of equations. This method
naturally embeds the analytical continuation techniques in its base
function that ensures the uniformly valid solution. Notice that, this
method involves moderately higher order approximations in order to
obtain a reasonable accuracy for derived quantities such as skin
friction (f 00ð0Þ), velocity profiles (f 0ðZÞ), etc. Exploring this almost
uniformly valid solution method, many investigators have applied to
non-linear differential equations arising in two-dimensional bound-
ary layer flow (Yao [15], Yao and Chen [16], Raftari and Vajravelu [17]
and so on).

All the analytical solution of the Falkner–Skan equation for b¼�1
that have been reported in the past are for different boundary
conditions (Yang and Chein [14], Riley and Weidman [9], Fang and
Zhang [12], and Afzal [13]). Rewriting, for convenience, Eq. (4) as

f ðZÞ ¼LþZ�L�a
GðZÞ , ð6Þ

where L¼ d�al, and the new stream-function GðZÞ shall be
defined in Section 2. Form (6) closely resembles with that of a
single hump solution of the Burger’s equation (Sachdev [18]). Using
similar function like (6), Sachdev et al. [19,20] gave an exact
solution of the generalized Burgers equation for all involved
parameters via Euler–Painleve transcendents which characterize
the analytic properties of the generalized Burgers equation. Using
the above concept, Sachdev et al. [21] gave an exact solution of the
Falkner–Skan equation for all possible values of pressure gradient
parameter b. Their method embeds an exact analytical solution (4)
of the Falkner–Skan equation for b¼�1 (boundary conditions (2)
with a¼ 0) as a special case, and recovers all earlier solutions.
Recently, Kudenatti [22] successfully adopted the above technique
to solve the Falkner–Skan equation modified by the reference
velocity which is composed of free-velocity and the velocity at
the wall, and gave an exact solution of the system when a¼ 0 for all
values of pressure gradient parameter.

Along with usual boundary layer applications, magnetohydrody-
namic (MHD) flows of viscous fluids have been performed due to
large number of applications in industries, for instance, MHD power
generation, MHD flow meters and MHD pumps. In polymer industry,
when cooling of continuous strips or filaments through quiescent
fluid takes place, these strips are often get stretched, thus, this cooling
can be effectively managed by passing the stretched strips through a
magnetic field so that final products would have desired character-
istics. This cooling largely depends on the applied magnetic field. The
study of effects of MHD applications can be found in other applica-
tions related to stretching surfaces. In general, the magnetic fields
have the stabilizing capacity of the boundary layer flow. Because of
these significant applications, many mathematical models have been
proposed to explain the behaviors of the viscous MHD boundary layer
flow under different conditions. Rashidi and Erfani [23] have inves-
tigated MHD boundary layer flow in the porous medium using a
combination of the differential transform method and Pade’ approx-
imants, and discussed the influence of all parameters on the velocity
and temperature profiles.

In the present study, significant advances in obtaining an exact
solution of the Falkner–Skan problem (1) and (2) for all values of b
and Hartman number M have been achieved through similar
approach pioneered by Sachdev et al. [21]. We follow the work of
Sachdev et al. [21] and Kudenatti [22] to obtain the exact solution of
the problem for all b and M, and for ease of completeness and to
make the paper self-contained some derivations have been given
again with regard to the present problem. Our exact solution
exhibits a very interesting solution branches which are not found
in most of numerical investigations. Although the exact solution of
the problem is, however, not possible for all parameters except for
b¼�1, these multiple solutions have not been reported. The
variety of possible mechanisms for multiple solutions has led to
the desire and robust mathematical analysis of the governing
equation. As a result, the inherent of a parameter (see Eq. (13)
below) in our solution method makes these solutions to exist. In the
process, we first give an exact solution to the problem in discussion,
and then we shall discuss the nature of solutions in detail.

Rest of the paper is organized as follows. In Section 2, we give
an exact solution of the MHD Falkner–Skan Eq. (1) with boundary
conditions (2) for general values of b and M. The modified form
(6) has been utilized for this purpose. Various physical para-
meters in the form of velocity profiles and skin friction coefficient
also have been discussed in this section. Asymptotic solution of
problem for large Z has been given in Section 3, and solution
nature has also been discussed briefly. In Section 4 we discuss the
important results of the method. Final section summarizes the
importance of the method and its possible generalization to other
boundary layer equations.
2. Exact solution for general b and M

In this section, we give an exact solution to (1) and (2). Notice
from (4) that, we have already obtained a closed form solution to
(1) and (2) for b¼�1 and M¼0 which is rewritten in the form of
(6). Now, the essence is to transfer expression (6) into another
non-linear ordinary differential equation in GðZÞ which contains
the parameters b and M. To do so, substituting (6) into (1), we get
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the following equation:

G2G
000

�GG00ð6G�ðað1þlÞ�dÞ�ðZþd�alÞGÞ
�G2G0ð2bþM2

Þ�G02ððað1þlÞ�dÞð2�bÞ
þ2ðZþd�alÞGÞþ6G03 ¼ 0, ð7Þ

and the boundary conditions (2) become

Gð0Þ ¼ 1, G0ð0Þ ¼
1þl

að1þlÞ�d , Gðþ1Þ¼1, ð8Þ

where G¼ GðZÞ. It readily follows from (6) that, an exact analytical
solution of (7) and (8) for b¼�1 and M¼0 is given by

GðZÞ ¼ eðZ
2=2þðd�alÞZÞ þ

ffiffiffiffi
p
8

r
ðað1þlÞ�dÞe1

2ðZþd�alÞ
2

� erf
Zþd�alffiffiffi

2
p

� �
�erf

d�alffiffiffi
2
p

� �� �
, ð9Þ

where erf( ) is the error function. The error and exponential
functions in (9) are entire functions that can be expanded using
Taylor series at the onset of the boundary layer which have an
infinite radius of convergence. Thus, the series representation of
solution (9) becomes the main clue for the further similar analysis
for general b and M. Expecting the similar series representation, it
is natural to express the stream-function GðZÞ as

GðZÞ ¼
X1
n ¼ 0

anZn, ð10Þ

for general b and M. For obtaining the coefficients an, substituting
(10) into (7) and equating the coefficients of Zn to zero, we get

a0 ¼ 1, a1 ¼
1þl

að1þlÞ�d ,

a3 ¼
1

6ða�dþalÞ3
ð�1�lÞð6�M2d2

�bd2
þ12lþbd2lþ6l2

þ2adð1þlÞð1þM2
þb�blÞ�a2ð1þlÞ2ð2þM2

þb�blÞÞ

�2ða�dþalÞ2ð�6ð1þlÞþaða�dþalÞÞa2,

a4 ¼�
15017

8

1

ða�dþalÞ4

 !
ð1þlÞða3dð�4�3M2

þ3bð�1þlÞð1þlÞ2þa4ð1þlÞ3ð2þM2
þb�blÞ

þadð�4ð�4þlÞð1þlÞ2þM2
ð�d2

þ12ð1þlÞ2Þ

þbðd2
ð�1þlÞ�8ð�2þlÞð1þlÞ2ÞÞþa2ð1þlÞð3M2

ðd2

�2ð1þlÞ2Þþ2ðd2
þð�8þlÞð1þlÞ2Þþbð�3d2

ð�1þlÞ

þ4ð�2þlÞð1þlÞ2ÞÞþ2ð1þlÞð12�3M2d2
þ2bd2

ð�2þlÞ

þlðd2
þ12ð2þlÞÞÞÞ�

1

ða�dþalÞ2
ð2ð12þM2d2

�2a3dð1þlÞ

þa4ð1þlÞ2�2adð1þlÞð�4þM2
þl�2blÞþlðð1�2bÞd2

þ12ð2þlÞÞþa2ðd2
þM2

ð1þlÞ2

�ð1þlÞ2ð8�lþ2blÞÞÞÞa2�24a2
2Þ, etc:,

and in general the recurrence relation is

anþ3 ¼
�1

ðnþ1Þðnþ2Þðnþ3ÞXn�1

m ¼ 0

Xn�m

k ¼ 0

ðmþ1Þðmþ2Þðmþ3Þakan�m�kamþ3

 

þ
Xn

m ¼ 0

ð�ðd�að1þlÞÞÞðmþ1Þððmþ2Þan�mamþ2

�ð2�bÞðn�mþ1Þamþ1an�mþ1Þ

�
Xn

m ¼ 0

Xm

k ¼ 0

ðkþ1Þðm�kþ1Þð2ðd�alÞan�m

�6ðn�mþ1Þan�mþ1Þakþ1am�kþ1
þ
Xn

m ¼ 0

Xn�m

k ¼ 0

ððmþ1Þðmamþ1þðd�alÞðmþ2Þamþ2

�2bamþ1�M2amþ1Þakan�m�k

�ðkþ1Þð6ðmþ1Þðmþ2Þamþ2þ2ðn�m�kÞamÞakþ1an�m�kÞ
�
,

ð11Þ

for n¼ 1,2,3, . . .. Notice from (11) that all the coefficients an have
been obtained in terms of b, M and two unknowns a2 and d. This
constant a2 remains unknown because of an end condition in (8).
This unknown a2 which characterizes the coefficient of skin
friction, must be found in such a way that the derivative condition
at far distance is satisfied. This is equivalent to determine the
value of either a2 of series (10) or f 00ð0Þ of the system (1) and (2)
because these are intrinsically related to each other through
Eq. (6) as

a2 ¼
�1

2ðað1þlÞ�dÞ
f 00ð0Þ�

2ð1þlÞ2

ðað1þlÞ�dÞ

 !
: ð12Þ

Also, note that the constant d defined in (4) is only for b¼�1, but
for other values of b and M, it also needs to be determined. Thus,
we have a two-parameter family of solutions to the Falkner–Skan
equation. To determine one of these unknown constants a2 or
f 00ð0Þ and d, we patch the series expansion of the closed form
solution (9) with that of series (10) with b¼�1 and M¼0, which
gives the same constant

d¼ al7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þlÞþa2

q
: ð13Þ

Thus, the above constant d plays a crucial role in the present
analysis. In fact, an exact solution of the MHD Falkner–Skan
equation exists when the values of arguments in the square root
function is positive. As mentioned earlier, there are different
solutions to the problem depending on whether d takes positive
or negative sign before the square root function. We call it as the
upper branch solution if it is positive, and the lower branch
solution if it is negative. Fig. 1(a) and (b) shows the contour plots
for these solution branches, wherein we divide the solution
domain into five regions according to the values of l and a. The
white areas represent no solution to the problem. Physical
significance for these regions will be discussed later.

To determine other constant f 00ð0Þ or a2, integrating the MHD
Falkner–Skan Eq. (1) over the flow domain using the boundary
conditions (2), we getZ 1

0
ðf 0ðZÞ�f 02ðZÞÞ dZþb

Z 1
0
ð1�f 02ðZÞÞ dZ

�M2
Z 1

0
ðf 0ðZÞ�1ÞdZ¼ f 00ð0Þ�að1þlÞ: ð14Þ

Since, the left hand side of (14) also involves f 00ð0Þ, it can be solved
iteratively with suitable initial approximation for it. However, in
order to effectively illustrate the method used to find f 00ð0Þ, we
rewrite the above integral relation asZ Zmax

0
ðf 0ðZÞ�f 02ðZÞÞ dZþb

Z Zmax

0
ð1�f 02ðZÞÞ dZ

�M2
Z Zmax

0
ðf 0ðZÞ�1Þ dZ¼ f 00ð0Þ�að1þlÞ, ð15Þ

where Zmax ¼ lim Z-1. Since, f 00ð0Þ appears on both sides of the
above relation, it has to be solved iteratively for all involved
parameters. The solution of the above asymptotic integral relation
is too complicated by the fact that the boundary condition is
specified at infinity. Thus, the skin friction value f 00ð0Þ could be
found such that the end condition is satisfied. Therefore, in our
computations, ‘infinity’ is numerically approximated by the large
value of independent variable (i.e. Zmax). There is no such priori
general method for estimating this value. Giving too small numerical
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value for Zmax would not assure a uniformly valid convergent solution.
And selecting too large value for Zmax results either in asymptotic dive-
rgent series or in slow convergence of the series to satisfy derivative
boundary condition at infinity. Moreover, when an arbitrary initial
estimate is made, the successive approximations may not converge to
the correct result. Hence, a method must be modified to logically
estimate the value of Zmax to get f 00ð0Þ up to required accuracy. In the
integration, the initial approximation of f 00ð0Þ ¼ 2:56488 is taken from
exact analytical solution of the Falkner–Skan equation for b¼�1 and
M¼0 for all other parameter b and M which serves a good initial
estimate for f 00ð0Þ, and also it ensures the fast convergence. For small
value of Zmax, the series is well behaved and can be integrated. So, in the
process, once f 00ð0Þ is assumed and the Pade’ approximants which
extend the region of validity of convergence, are used to sum the series,
the integral relation can be integrated without any difficulty to
determine a nearly correct value of f 00ð0Þ. With fewer iterations, f 00ð0Þ
can be obtained up to any desired accuracy. All of our simulations
indicate that form (6) through series (10) gives convergent solution via
Pade’ approximants. More about Pade’ approximants will be discussed
later in the paper. Moreover, when f 00ð0Þ is accurate enough, then
corresponding velocity profiles approach their asymptotic value 1. The
results thus obtained for various values of b and M by the present
method are seen to agree with those produced by the DNS of the MHD
Falkner–Skan equation.

Therefore, we have obtained an exact solution of the MHD
Falkner–Skan system (1) and (2) for all values of b and M in the form

f ðZÞ ¼ d�alþZ� d�að1þlÞ
GðZÞ , ð16Þ

where the series GðZÞ is given by (10).
To assess the efficiency of the present exact method, the results

for skin friction value f 00ð0Þ are compared with those produced by
the direct numerical solution of the MHD Falkner–Skan equation.
Table 1a and b presents the results for skin friction f 00ð0Þ for
different values of flow parameters. It can be seen that the results
obtained by the present method are in excellent agreement with
those given by the DNS for all values taken for comparison.
Furthermore, these tables illustrate that the absolute value of skin
friction increases for increasing pressure gradient parameter b for
all values of M which signifies the presence of a magnetic field.
Also, it increases for increasing suction and injection parameter a.
Thus, this can be concluded that the family of solutions though
f 00ð0Þo0 whose first-order derivative seems to approach to
1 exponentially.

Again, we compute the residual error of the MHD Falkner–
Skan equation for two sets of values at Z¼ 1 and Z¼ 2 for
increasing number of terms in Pade’ approximant series (i.e.
p¼ q¼N-1). This has been shown in Table 3a. It is clearly
observed that the residual error approaches zero as N-1 which
confirms that solution (16) converges to the true solution.
Table 3b also confirms that above results wherein we compute
solution (16) at different orders in Pade’ approximants. This is
calculated for b¼ 10, l¼�1:1, a¼ 0:5, and for different values of
magnetic parameter M. This shows that solution f ðZÞ remains
constant for increasing ½N�.

Now we describe the nature of the upper and lower branch
solutions in Fig. 1 that make the velocity profiles greatly distinct
from each other. Note that no solutions exist for the white area.
Velocity profiles in each region in Fig. 1 behave differently for
both solution branches. We chose the parameters from each of
these regions. In Fig. 2, we plot the velocity profiles as a function
of Z for accelerated flow b¼ 1 and M¼1.0 for upper branch
solution (left column) in all the regions. Each region represents a
typical velocity profiles behaving according to physical nature of
the problem. In regions I and IV, the velocity curves are mono-
tonically decreasing but satisfy their end condition, and the curve
in regions II and III increases monotonically to its end boundary.
However, in region I (II), the decrease (increase) rate is faster
compared to other corresponding regions. However, we found a
different velocity overshoot profile in region V. The curve in
region V, the velocity first increases gradually to its peak value,
then decreases and eventually satisfies its downstream condition.
The similar results are also shown by Fang and Zhang [12] where
their analysis was given only for b¼�1 in the absence of
magnetic field (M¼0). The similar trend can be seen in right
column of Fig. 2 wherein we have shown velocity profiles for the
lower branch solutions.

The following figures provide more physical insights men-
tioned below. Fig. 3 shows the variation of velocity profiles as a
function of Z for different values of stretching parameter l for
three sets of suction and injection parameter a and for two values



Table 1

(a) Comparison of the results of skin friction f 00ð0Þ obtained by an exact solution with the DNS of the MHD Falkner–Skan equation for magnetic parameter M¼1.

(b) Comparison of the results of skin friction f 00ð0Þ obtained by an exact solution with the DNS of the MHD Falkner–Skan equation for magnetic parameter M¼2.

b¼ 1 b¼ 1:5 b¼ 2:5

l a Analytical solution Numerical solution l a Analytical solution Numerical solution l a Analytical solution Numerical solution

(a)

M¼1

�1.1 �1.0 �0.1439 �0.14381 �1.1 �1.0 �0.16711 �0.16906 �1.1 �1.0 �0.2112 �0.21229

�0.5 �0.1693 �0.16561 �0.5 �0.1913 �0.19103 �0.5 �0.2344 �0.23455

0 �0.1904 �0.19067 0 �0.2129 �0.2159 0 �0.2591 �0.25921

0.5 �0.2184 �0.21891 0.5 �0.23536 �0.24359 0.5 �0.2857 �0.28626

1 �0.2502 �0.2501 1 �0.27191 �0.27398 1 �0.3152 �0.31562

�1.5 �1.0 �0.7729 �0.77073 �1.5 �1.0 �0.90525 �0.90646 �1.5 �1.0 �1.1377 �1.13812

�0.5 �0.8701 �0.88027 �0.5 �1.0162 �1.01636 �0.5 �1.2488 �1.24885

0 �1.0168 �1.00518 0 �1.1301 �1.13988 0 �1.3711 �1.37097

0.5 �1.1452 �1.14521 0.5 �1.27683 �1.27691 0.5 �1.5102 �1.50447

1 �1.2991 �1.29941 1 �1.4253 �1.42687 1 �1.64901 �1.64908

�2.0 �1.0 �1.6672 �1.66332 �2.0 �1.0 �1.95642 �1.95654 �2.0 �1.0 �2.4556 �2.45581

�0.5 �1.8822 �1.88347 �0.5 �2.1716 �2.1764 �0.5 �2.6766 �2.67622

0 �2.1383 �2.13264 0 �2.4246 �2.42197 0 �2.9111 �2.91805

0.5 �2.41062 �2.41029 0.5 �2.6875 �2.69311 0.5 �3.1863 �3.18151

1 �2.71491 �2.71496 1 �2.9884 �2.98891 1 �3.46609 �3.46616

(b)

M¼2

�1.1 �1 �0.21028 �0.21026 �1.1 �1 �0.22658 �0.22951 �1.1 �1 �0.26551 �0.26446

�0.5 �0.23189 �0.23257 �0.5 �0.24908 �0.25192 �0.5 �0.28711 �0.28706

0 �0.2572 �0.25729 0 �0.27570 �0.27659 0 �0.31164 �0.31166

0.5 �0.28327 �0.28442 0.5 �0.30527 �0.3035 0.5 �0.33819 �0.33825

1 �0.30691 �0.31387 1 �0.33436 �0.33259 1 �0.36682 �0.3668

�1.5 �1 �1.08893 �1.08974 �1.5 �1 �1.19548 �1.19553 �1.5 �1 �1.38644 �1.38645

�0.5 �1.20159 �1.20158 �0.5 �1.30387 �1.3076 �0.5 �1.4979 �1.49899

0 �1.32416 �1.32514 0 �1.43089 �1.43055 0 �1.62116 �1.62117

0.5 �1.46031 �1.46035 0.5 �1.5694 �1.56437 0.5 �1.75305 �1.753

1 �1.60556 �1.60688 1 �1.70770 �1.70877 1 �1.89432 �1.89432

�2.0 �1 �2.21052 �2.20252 �2.0 �1 �2.50649 �2.50643 �2.0 �1 �2.92549 �2.92589

�0.5 �2.49779 �2.49686 �0.5 �2.73079 �2.73056 �0.5 �3.1502 �3.15009

0 �2.74401 �2.74384 0 �2.97422 �2.97564 0 �3.39253 �3.39277

0.5 �3.01035 �3.01333 0.5 �3.24156 �3.24166 0.5 �3.65308 �3.65398

1 �3.30386 �3.30472 1 �3.52749 �3.52816 1 �3.9333 �3.9335
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of magnetic parameter M. Note that though values of l are
negative, the profiles start from the positive values because of
the initial condition f 0ð0Þ ¼�l. The velocity curves for injection
and suction are very different from an impermeable case (a¼ 0).
Presence of the parameter a makes the boundary layer flow
greatly enriched. It is observed that fluid injection into the flow
increases the boundary layer thickness, whereas it decreases for
the suction parameter a. The similar structure can be observed for
other stretching parameter l. Furthermore, when Hartmann
number increases the boundary layer thickness decreases, see
right side of Fig. 3. In Fig. 4, the similar observation can be made
from the above analysis, wherein we investigate the effect of
pressure gradient b and Hartmann number M. The velocity profiles
in this case decrease revealing the fact that the effect of b is to
decelerate the velocity of the fluid, and hence it reduces the
momentum boundary layer thickness.

In Fig. 5, we investigate the variation of dimensionless velocity
profiles with respect to the variation in the Hartmann number M

in the MHD boundary layer flow for different values of b. The
momentum interacts with each other, and the profiles in figure
have strong variations with a distance along the boundary layer.
When the magnetic parameter increases, the velocity gradient
decreases, clearly showing the effect of the magnetic field in the
flow system. When the magnetic field is applied, the system
acquires more magnetization, the momentum force decreases, as
a result the flow moves slowly along the whole field. Also, the
variation in the Lorentz force offers more resistance to the flow
phenomena. Whereas the reverse trend is observed for smaller
values of M. Thus, the application of the magnetic field on the
boundary layer flow decreases the thickness of the boundary
layer and this typical trend is observed for all values of b.

Thus, an application of magnetic field on the two-dimensional
viscous boundary layer flow over a semi-infinite flat plate reveals
an important flow characters. The flow problem has been solved
both analytically and asymptotically in the large Z limit. It is
found that the thickness of the boundary layer decreases for
increasing Hartmann number M and pressure gradient parameter
b, while absolute of value of skin friction f 00ð0Þ increases when
they increase. All these observed phenomena are in accordance
with dynamics of the problem.
3. Asymptotic solution

The derivative boundary condition at edge of the boundary
layer suggests to look for local behavior i.e. 9f 0ðZÞ�1951 as Z-1.
In order to formulate the problem at the edge, we introduce a
stream-function EðZÞ such that

f ðZÞ � aþZþEðZÞ, ð17Þ

where E0ðZÞ51. Also, it is instructive to compare the solutions of
(17) with those of exact method presented in Section 3 for all
values. Substituting (17) into the MHD Falkner–Skan system
(1) and (2), and upon linearizing the resulting ordinary



Fig. 2. Variation of velocity profiles f 0ðZÞ for the upper branch solution (left column) and the lower branch solution (right column) in all five regions with M¼1 and b¼ 1.
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Fig. 4. Variation of velocity profiles f 0ðZÞ for different values of pressure gradient parameter b with l¼�1:3, a¼�1 and M¼1, 2, and 3. Note that f 0ð0Þ ¼ �l.

Fig. 3. Variation of velocity profiles f 0ðZÞ for different values of injection and suction parameter a and stretching parameter l with b¼ 1 and M¼1, 2. Note that f 0ð0Þ ¼�l.
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differential equation, we get

E000ðZÞþðaþZÞE00ðZÞ�ð2bþM2
ÞE0ðZÞ ¼ 0, ð18Þ

and boundary conditions take the form

Eð0Þ ¼ 0, E0ð0Þ ¼�ð1þlÞ, E0ðþ1Þ¼ 0: ð19Þ

Solution of Eq. (18) subjected to the conditions (19) is given by

E0ðZÞ ¼

�ð1þlÞF �b�
M2

2
,

1

2
, �
ðZþaÞ2

2

 !
þð1þlÞCðZþaÞF 1�2b�M2

2
,

3

2
, �
ðZþaÞ2

2

 !

F �b�
M2

2
,

1

2
, �
ðaÞ2

2

 !
�CaF

1�2b�M2

2
,

3

2
, �
ðaÞ2

2

 ! ,

ð20Þ

where C ¼ ðGð1=2Þ=Gð3=2ÞÞðGð1þbþM2=2Þ=Gð1=2þbþM2=2ÞÞ, G
is the Gamma function and Fð ~a, ~b,ZÞ is the confluent hypergeo-
metric function. Table 2a and b compare the values of skin friction
f 00ð0Þ obtained through (17) and (20) with those given by Eq. (16)
for two values of Hartmann number M for other different para-
meters. The results are quite remarkable. Behaviors of the solu-
tions at far distance are entirely in accordance with physical
phenomenon of the flow problem.
4. Discussions and conclusions

We have developed a new exact solution for the MHD
Falkner–Skan Eq. (1) subject to the boundary conditions (2) for
all values of the pressure gradient parameter b and Hartmann
number M. This new method utilizes and embeds the known
exact solution of the problem for b¼�1 and M¼0, which is
rewritten to give an exact solution for general values of b and M.
Function (16) through series (10) is an analytical solution. The
validity and efficiency of the method has been checked for various
values of b and M, and compared with that of the DNS of the
problem.

The present method can be compared to homotopy analysis
method in the following way; it is well known that the latter
method requires an appropriate ‘initial guess’ and operators to
obtain a uniformly valid convergent solution to the problem in
question, whereas the present method utilizes its own ‘closed-
form solution’ obtained for the particular parameters for obtain-
ing analytical solution for other values of parameters which
makes the method more analytically stronger than any other
method. Thus, the present method is easy to use for non-linear
boundary layer problems.

We now give a simple analysis for usage of Pade’ approximants in
summation of the series GðZÞ. That is to show if the infinite series GðZÞ
is convergent, then a function f ðZÞ is analytical solution of the MHD
Falkner–Skan equation. The Pade’ approximants perform an analytic
continuation of the series outside its radius of convergence. Employ-
ing the classical Pade’ technique to power series GðZÞ, we have

GðZÞ ¼
X1
n ¼ 0

anZn ¼

Pp
k ¼ 0 bkZkPq
k ¼ 0 ckZk

, ð21Þ

where c0 ¼ 1 without loss of generality, and remaining ðpþqþ1Þ
coefficients b0,b1,b2, . . . ,bp,c1,c2,c3, . . . ,cq are to be determined
uniquely from the coefficients an, so that the first (pþqþ1) coeffi-
cients in the Taylor series expansion of the Pade’ approximants



Table 2

(a) Comparison of the results of skin friction f 00ð0Þ obtained by an asymptotic solution (24) with (28) with exact solution for M¼5. (b) Comparison of the results of skin

friction f 00ð0Þ obtained by an asymptotic solution (24) with (28) with exact solution for M¼10.

b¼ 1 b¼ 1:5 b¼ 2:5

l a Analytical solution Asymptotic solution l a Analytical solution Asymptotic solution l a Analytical solution Asymptotic solution

(a)

M¼5

�1.1 �1 �0.47728 �0.47637 �1.1 �1 �0.48708 �0.4858 �1.1 �1 �0.50588 �0.50416

�0.5 �0.50077 �0.49981 �0.5 �0.51051 �0.50926 �0.5 �0.52921 �0.52767

0.5 �0.55131 �0.55027 0.5 �0.56087 �0.5597 0.5 �0.57948 �0.57808

1 �0.57774 �0.57727 1 �0.58699 �0.58666 1 �0.60741 �0.60497

�1.5 �1 �2.40588 �2.38187 �1.5 �1 �2.46047 �2.42898 �1.5 �1 �2.56639 �2.52078

�0.5 �2.52171 �2.49908 �0.5 �2.57743 �2.5463 �0.5 �2.68524 �2.63833

0.5 �2.76521 �2.75135 0.5 �2.8348 �2.79849 0.5 �2.93428 �2.89037

1 �2.91012 �2.88637 1 �2.96518 �2.93332 1 �3.0681 �3.02484

�2.0 �1 �4.85861 �4.76374 �2.0 �1 �4.98258 �4.85795 �2.0 �1 �5.22193 �5.04156

�0.5 �5.09286 �4.99816 �0.5 �5.21564 �5.09261 �0.5 �5.45605 �5.27666

0.5 �5.59729 �5.5027 0.5 �5.72884 �5.59698 0.5 �5.95747 �5.78075

1 �5.86697 �5.77275 1 �5.99859 �5.86664 1 �6.22383 �6.04969

(b)

M¼10

�1.1 �1 �0.96396 �0.96354 �1.1 �1 �0.96922 �0.96846 �1.1 �1 �0.97855 �0.97824

�0.5 �0.98877 �0.98767 �0.5 �0.99325 �0.9926 �0.5 �1.00336 �1.00238

0.5 �1.03807 �1.0378 0.5 �1.04342 �1.04272 0.5 �1.05345 �1.0525

1 �1.06406 �1.06378 1 �1.06936 �1.0687 1 �1.07944 �1.07846

�1.5 �1 �4.8413 �4.81771 �1.5 �1 �4.85873 �4.84231 �1.5 �1 �4.91566 �4.89118

�0.5 �4.9485 �4.93838 �0.5 �4.9788 �4.96301 �0.5 �5.03636 �5.01191

0.5 �5.20162 �5.18899 0.5 �5.22988 �5.21361 0.5 �5.28674 �5.26251

1 �5.33415 �5.31892 1 �5.3595 �5.3435 1 �5.41644 �5.39232

�2.0 �1 �9.68455 �9.63541 �2.0 �1 �9.75018 �9.68463 �2.0 �1 �9.87995 �9.78236

�0.5 �9.92459 �9.87677 �0.5 �9.99146 �9.92602 �0.5 �10.1206 �10.0238

0.5 �10.4217 �10.378 0.5 �10.4933 �10.4272 0.5 �10.6216 �10.525

1 �10.6731 �10.6379 1 �10.7526 �10.687 1 �10.8807 �10.7846

Fig. 5. Variation of velocity profiles f 0ðZÞ for different values of Hartmann number M for b¼ 0, 1, 2, a¼ 1 and l¼�1:4. Note that f 0ð0Þ ¼�l.

R.B. Kudenatti et al. / International Journal of Non-Linear Mechanics 50 (2013) 58–67 65



Fig. 6. Domb–Sykes plot for the new stream-function c.

Table 3

(a) Decaying residual error of the MHD Falkner–Skan Eqs. (1) and (2) for l¼�1:1 and a¼ 0:5. (b) Comparison of solution (16) of the MHD

Falkner–Skan Eqs. (1) and (2) for b¼ 10 at different orders of Pade’ approximants.

(a)

[N] M ¼ 1, b¼ 0:5 M¼ 2, b¼ 1:0

1 0.0549291 0.0360102 0.0949388 0.0435226

2 0.00689758 0.0142268 0.0200642 0.040367

3 0.00387604 0.00511756 0.0031738 0.0123218

4 4.110e�5 0.00427407 9.854e�5 7.336e�05

5 1.882e�5 0.0010319 9.523e�5 9.274e�5

6 8.164e�9 6.431e�5 4.523e�6 2.714e�05

7 1.765e�7 9.225e�5 4.071e�7 1.21e�5

8 3.471e�9 6.187e�6 6.097e�9 2.928e�6

9 1.476e�10 1.153e�6 1.311e�9 1.426e�6

10 1.949e�12 8.555e�8 1.290e�11 6.653e�7

(b)

[N] Z M¼1 M¼5 M¼10 M¼20 M¼30 M¼40 M¼50

10 1 1.29091 1.13296 1.23698 1.02848 1.01619 1.00976 1.00491

20 1 1.29091 1.13296 1.23698 1.02848 1.01619 1.00976 1.00491

30 1 1.29091 1.13296 1.23698 1.02848 1.01619 1.00976 1.00491

10 2 1.31647 1.07235 1.02448 1.01666 0.99879 0.99383 0.988242

20 2 1.31647 1.07235 1.02448 1.01666 0.99879 0.99383 0.988242

30 2 1.31647 1.07235 1.02448 1.01666 0.99879 0.99383 0.988242

10 3 1.31737 1.05407 1.01738 1.04222 0.97969 0.98009 0.975953

20 3 1.31737 1.05407 1.01738 1.04222 0.97969 0.98009 0.975953

30 3 1.31737 1.05407 1.01738 1.04222 0.97969 0.98009 0.975953
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should match the first (pþqþ1) coefficients in the infinite series
GðZÞ. Therefore, from solution (16), we have

f ðZÞ ¼ d�alþZ� d�að1þlÞP1
n ¼ 0 anZn

¼ d�alþZ�
ðd�að1þlÞÞ

Pq
k ¼ 0 ckZkPp

k ¼ 0 bkZk
¼cp,qðZÞ, ð22Þ

where conveniently written function cp,qðZÞ is the Pade’ approxi-
mants to analytical solution f ðZÞ through the infinite series GðZÞ. Note
that using the elementary arithmetic operations, the coefficients
(pþqþ1) are easy to evaluate numerically. It immediately follows
from (22) that

f 0ðZÞ ¼c0p,qðZÞ,

f 00ðZÞ ¼c00p,qðZÞ,

f 000ðZÞ ¼c000p,qðZÞ, etc:

Therefore, from system (1), we obtain

d3cp,qðZÞ
dZ3

þcp,qðZÞ
d2cp,qðZÞ

dZ2

þb 1�
dcp,qðZÞ

dZ

� �2
 !

�M2 dcp,qðZÞ
dZ

�1

� �
¼ 0: ð23Þ

Note that if the infinite series (10) is convergent, then the solution
f ðZÞ ¼cp,qðZÞ must be a solution of Eq. (23) in the sense that Eq. (1)
uniquely satisfies. We emphasize here that the Pade’ approximants
converge to the true solution as p and q tend to infinity. It is easy to
calculate the coefficients an using Mathematica and Maple, and also
easy to code with MATLAB. Also, it is worth to mention that the
function cp,q embeds the known closed-form solution (9) of system
(7) and (8) for b¼�1 and M¼0 in its base function which assures
that the convergence is guaranteed. A close examination and careful
evaluation of the coefficients (dn) in the new stream-function
cp,qðZÞð ¼ f ðZÞÞ suggest that the more accurate estimation of the
region of convergence can be obtained using the Domb–Sykes plot.
The Domb–Sykes plots for two-sets of flow quantities have been
shown in Fig. 6. This plot is typical for the analysis of the series in that
the curves show an establishment of a linear relationship between
the ratio of coefficients as the number of terms increases (42). This
linear curve easily helps to extrapolate the ratios dn=dn�1 to 1=n¼ 0
which gives the intercept value of 0.179 in the graph above, and
0.202 in the second graph. Thus, the radius of convergence of the
function in the first curve is 1

0:179� 5:6, and for the other curve it is
approximately 5. Also, the curves in all figures show that the end
condition is satisfied much earlier than these values which affirm
the analyticity of the method. These suggest that the results
obtained by our method by setting convergent range agree with
the range given by numerical solution. Therefore, all of our
computations indicate that series (10) is convergent implying the
solution f ðZÞ is a complete analytical solution of the MHD Falkner–
Skan equation for all parameters under investigation.

Note also that function (16) is an analytical solution of the
MHD Falkner–Skan equation, the constant d restricts us to ana-
lyze for complete set of the parameters (see the arguments in
square root function, i.e. �2ð1þlÞþa2o0). The closed form
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solution (4) of (1) exists only when the arguments in square root
in d are positive, so is true for all values of b and M. Therefore, the
method has to be modified such that solution (16) is an exact
solution of the problem, and a serious investigation is underway.
Hopefully this can be achieved through when we follow analysis
of Yang and Chein [14] (with l¼ 0) where they give a closed form
solution for b¼�1 in terms of confluent hypergeometric func-
tions of the first kind.
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Appendix

Consider the MHD two-dimensional viscous and incompres-
sible boundary layer flow over a semi-infinite flat plate moving
with a constant velocity Uw in an electrically conducting fluid in
the presence of applied magnetic field B(x). The x-axis is mea-
sured along the direction of the flow, and y-axis is normal to it.
The moving plate is considered to have permeable with lateral
mass flux velocity Vw. The magnetic field is applied transversely
to the boundary layer flow. The Reynolds number is too small so
that the induced magnetic field is negligible, also strength of
electric field due to polarization of charges is negligible. Finally
the free-stream velocity is U(x). Under these approximations, the
governing boundary layer equations are given by

@u

@x
þ
@v

@y
¼ 0, ð24Þ

u
@u

@x
þv

@u

@y
¼UðxÞ

@UðxÞ

@x
þn @

2u

@y2
�
sB2
ðxÞ

r ðu�UðxÞÞ, ð25Þ

where u and v are the velocity components in the x and y directions, n
is the kinematic viscosity of the fluid, s is the electrical conductivity,
r is the fluid density, and the magnetic field is given by
BðxÞ ¼ B0xðm�1Þ=2, U(x) is the velocity at the edge of the boundary
layer which obeys the power law relation UðxÞ ¼U1xm, where x is
the distance measured from the onset of the boundary layer, U1 and
m are constants. The relevant boundary conditions for the above
model are

at y¼ 0 : u¼UwðxÞ, v¼ VwðxÞ, and

as
y

d
-1 : u-UðxÞ, ð26Þ

where Uw(x) is the stretching surface velocity which obeys the power-
law relation UwðxÞ ¼U0wxm. Using the following similarity transfor-
mations:

c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nxUðxÞ

1þm

r
f ðZÞ, Z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞUðxÞ

2nx

r
y, b¼

2m

1þm
, ð27Þ

where the stream-function cðx,yÞ is defined as

ðu,vÞ ¼
@c
@y

,�
@c
@x

� �
,

into the above non-linear system (24) and (25), we get a third order
ordinary differential equation

f 000ðZÞþ f ðZÞf 00ðZÞþbð1�f 02ðZÞÞ�M2
ðf 0ðZÞ�1Þ ¼ 0, 0 ¼

d

dZ , ð28Þ

with the boundary conditions

f ð0Þ ¼ a, f 0ð0Þ ¼�l, f 0ðþ1Þ¼ 1, ð29Þ
which is the MHD Falkner–Skan boundary layer equation. Here f ðZÞ is
the non-dimensional stream-function, and Z is a new similarity
variable, að ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x=ðmþ1ÞnUðxÞ

p
VwðxÞÞ is the suction or injection

parameter, a40 represents suction and ao0 is the injection, and
whereas a¼ 0 is impermeable of the plate. l ¼�Uw=U1

� �
is the

stretch of the boundary, l40 and lo0 correspond to moving plate
in opposite and in the same direction to the free-stream velocity,
whereas l¼ 0 is the case for fixed plate, b is the pressure gradient
parameter, b40 is the favorable, and bo0 is the adverse pressure
gradient, whereas b¼ 0 is the two-dimensional Blasius flow over a
flat plate. Parameter M is the magnetic (Hartmann number) para-
meter which is the ratio of electromagnetic force to the viscous force.
For b¼ 0 and M¼0, the above problem reduces to the Blasius flow
that describes a two-dimensional flow over a flat plate with mass
transfer and stretch of the plate, and is studied by several investiga-
tors with different cases and hence no comment is needed.
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Euler–Painlevé transcendents III, Journal of Mathematical Physics 29 (1988)
2397–2404.

[21] P.L. Sachdev, R.B. Kudenatti, N.M. Bujurke, Exact analytic solution of a
boundary value problem for the Falkner–Skan equation, Studies in Applied
Mathematics 120 (2008) 1–16.

[22] R.B. Kudenatti, A new exact solution for boundary layer flow over a stretching
plate, International Journal of Non-Linear Mechanics 47 (2012) 727–733.

[23] M. Rashidi, E. Erfani, A new analytical study of MHD stagnation-point flow in
porous media with heat transfer, Computers & Fluids 40 (2011) 172–178.


	MHD boundary layer flow over a non-linear stretching boundary with suction and injection
	Introduction
	Exact solution for general beta and M
	Asymptotic solution
	Discussions and conclusions
	Acknowledgments
	Appendix
	References




