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The linear and weakly nonlinear stability analysis of the quiescent state in a viscoelastic
fluid subject to vertical solute concentration and temperature gradients is investigated.
The non-Newtonian behavior of the viscoelastic fluid is characterized using the Oldroyd
model. Analytical expressions for the critical Rayleigh numbers and corresponding wave
numbers for the onset of stationary or oscillatory convection subject to cross diffusion
effects is determined. A stability diagram clearly demarcates non-overlapping regions of
finger and diffusive instabilities. A Lorenz system is obtained in the case of the weakly non-
linear stability analysis. The effect of Dufour and Soret parameters on the heat and mass
transports are determined and discussed. Due to consideration of dilute concentrations
of the second diffusing component the route to chaos in binary viscoelastic fluid systems
is similar to that of single-component (thermal) viscoelastic fluid systems.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The study of non-Newtonian liquids has gained tremendous interest because of its usage as a working media in many
engineering and industrial applications. Viscoelastic fluids which exhibit both solid and liquid properties have applications
in such diverse fields as geothermal energy modeling, material processing, thermal insulation material, cooling of electronic
devices, transport of chemical substances, crystal growth, injection molding and solar receivers. Other applications are found
in the petroleum industry, chemical and nuclear industries, geophysics, bioengineering and so on. The rheological equation
for viscoelastic liquid usually involve either one or two relaxation times. They possess both elasticity (associated with solids)
and viscosity (associated with liquids) which leads to unique instability patterns such as overstability that is not predicted or
observed in Newtonian fluids. Hence, Rayleigh–Bernard convection in a thin rectangular layer of viscoelastic fluid heated
from below has been the focus of many studies over the past few decades, [1–8].

Vest and Arpaci [1] and Sokolov and Tanner [2] were among the first to study the linear stability of convection in a hor-
izontal layer of an upper-convected Maxwell fluid, for which the stress exhibits an elastic response to strain characterized by
a single viscous relaxation time. Li and Khayat [3,4] studied stationary and oscillatory instabilities in great detail for the Old-
royd-B viscoelastic model. Their study gave useful insight into pattern formation in viscoelastic fluid convection. Green [5]
studied oscillatory convection in an elasticoviscous liquid. He found that a large restoring force sets up an oscillating con-
vective motion in a thin layer of elasticoviscous fluid heated from below. The linear stability analysis of the Rayleigh–Benard
convection problem in a Boussinesquian, viscoelastic fluid has investigated by Siddheshwar and Krishna [6]. They showed
that thermodynamics and stability analysis dictates that the strain retardation time should be less than the stress relaxation
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time for convection to set in as oscillatory motions in high-porosity media. Recently, Siddheshwar et al. [7] studied nonlinear
stability of thermal convection in a layer of viscoelastic liquid subject to gravity modulation. They used a novel transforma-
tion for the momentum equations as an alternative to the approach by Khayat that uses normal stresses explicitly in deriving
the Lorenz system for the complex dynamics.

Sharma [8] studied the thermal instability of a layer of a uniformly rotating Oldroyd fluid and found that rotation has a
destabilizing as well as a stabilizing effect in contrast to a Maxwell fluid (Bhatia and Steiner [9]).

Experimental studies by Kolodner [10] confirmed the existence of oscillatory convection in suspensions in annular geom-
etry. The findings contradicted earlier beliefs that oscillatory convection can not be observed in viscoelastic liquids. Although
he established a qualitative agreement in the oscillatory instability threshold with theoretical results, the critical oscillatory
frequency was mismatched by several orders of magnitude. This shortcoming pointed to the fact that in theoretical studies
binary fluid aspects are often neglected. Through a series of studies, Martinez-Mardones and co-workers [11–15] investi-
gated Rayleigh–Benard convection in viscoelastic liquids taking binary aspects into consideration.

Double diffusive convection is a common feature in binary fluids with competition between heat and solute diffusivities.
In such fluids density variations depend on both thermal and solutal gradients which diffuse at different rates. This leads to
the formation of salt fingers or oscillations in the fluid layer (see, for example Stern [16,17]). Malashetty and Swamy [18]
investigated the onset of double diffusive convection in a viscoelastic fluid layer. They found that there is a competition be-
tween the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through an
oscillatory mode rather than a stationary mode.

While heat and mass transfer occur simultaneously in a moving fluid, the relation between the fluxes and the driving
potentials are quite complex. The energy flux caused by a composition gradient is called the Dufour or diffusion-thermo ef-
fect. Mass fluxes created by temperature gradients give rise to the thermal-diffusion or Soret effect. These effects are collec-
tively known as the cross-diffusion effects. Both Dufour and Soret effects have been extensively studied in gases, while the
Soret effect has been studied both theoretically and experimentally in liquids, see Mortimer and Eyring [19]. Studies have
shown that in areas such as geosciences Dufour and Soret effects can be significant (see Knobloch [20] and the references
therein). Awad et al. [21] performed a linear stability analysis of double-diffusive convection in a porosity porous medium
saturated with a Maxwell fluid and subject to cross diffusion effects. Malashetty and Biradar [22] considered cross-diffusion
effects on the onset of double-diffusive convection in a binary Maxwell fluid in a porous layer.

In this paper we use linear and weakly nonlinear stability analysis to investigate cross-diffusion effects in a binary vis-
coelastic fluid layer. The main objective of the paper is to study the Soret and Dufour effects on the onset of stationary
and oscillatory convection in a viscoelastic fluid layer. We also study cross-diffusion effects on the heat and mass transports
and also analyze the effect of the second diffusing component on chaos.
2. Mathematical formulation

We consider two-component convection in a viscoelastic liquid of Oldroyd-B type occupying a horizontal channel of infi-
nite extent and depth d. A Cartesian coordinate system is taken with the lower plate in the xy-plane and z-axis vertically
upwards. A temperature difference of DT and the concentration difference DC are maintained between lower and upper
plates at z ¼ 0 and z ¼ d respectively as shown in Fig. 1. The gravity ~g ¼ �gk̂ is assumed act vertically downwards. The
Boussinesq–Oberbeck approximation is assumed to be valid for the viscoelastic liquid considered (see Rajagopal et al.
[23]). We also assume that there is coupling between the two diffusing components.
Fig. 1. Schematic diagram of the physical problem.
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The governing equations for the Oldroyd-B liquid in the presence of cross diffusion effect are:
qi;i ¼ 0; ð1Þ

q0
@qi

@t
¼ �p;i � qgdi3 þ s0ij;j; ð2Þ

1þ k1
@

@t

� �
s0ij ¼ 1þ k2

@

@t

� �
l qi;j þ qj;i

� �� �
; ð3Þ

@T
@t
þ qjT ;j ¼ D11T ;jj þ D12C ;jj; ð4Þ

@C
@t
þ qjC ;j ¼ D22C ;jj þ D21T ;jj; ð5Þ
where qi is the ith fluid velocity component, p is the pressure, q is the density, k1 is the stress relaxation coefficient, k2 is the
strain retardation coefficient, l is the fluid viscosity, T and C are respectively the temperature and solute concentrations, D11

and D22 are respectively the thermal and solutal diffusivities, D12 and D21 are parameters quantifying the contribution to the
heat flux due to solutal gradient and to the mass flux due to temperature gradient respectively. The density q of the binary
fluid depends on both the temperature T and the concentration C. For small density variations at a constant pressure, the
density variation are modeled by the equation
q ¼ q0 1� aðT � T0Þ þ a0ðC � C0Þ½ �; ð6Þ
where a and a0 are the coefficients of the thermal and solutal expansions respectively, T0 and C0 are taken as the reference
state.

It is important to notice here the neglect of the convective derivatives in the momentum equation. This is a consequence
of our assumption that thermally induced instabilities dominate hydrodynamic instabilities, i.e., the convective acceleration
term is negligibly small in comparison with the heat advection term. This also means that we are considering small scale
convective motions. Further, in view of the Boussinesq approximation, we have
1
q0

dq
dt
� 1:
This has also been used in arriving at the continuity equation in the form (1). Added to this we note that the coefficient k1

of 1
q0

dq
dt is quite small (see Siddheshwar et al. [7] for further details). With this neglect it becomes apparent that convective

and upper-convective terms cannot appear.
Eliminating s0ij between (2) and (3)
1þ k1
@

@t

� �
q0
@qi

@t
þ pi þ qgdi3

� 	
¼ l 1þ k2

@

@t

� �
qi;jj: ð7Þ
The basic state of the fluid can be described by
qib ¼ ð0; 0; 0Þ; � d
DT

dTb

dz
¼ 1; � d

DC
dCb

dz
¼ 1; q ¼ qbðzÞ and p ¼ pbðzÞ ð8Þ
To determine the stability of the layer we disturb the basic state by an infinitesimal amplitude perturbation, and using (6)
this yields:
1þ k1
@

@t

� �
@q0i
@t
þ 1

q0
p0;i � g aT 0 � a0C0

� �
di3

� 	
¼ m 1þ k2

@

@t

� �
q0i;jj; ð9Þ

@T 0

@t
þ q0iT

0
;j �w0

DT
d
¼ D11T 0;jj þ D12C0;jj; ð10Þ

@C 0

@t
þ q0iT

0
;j �w0

DC
d
¼ D22C 0;jj þ D21T 0;jj; ð11Þ
where m ¼ l
q0

is the kinematic viscosity.
The problem defined through Eqs. (9)–(11) is non-dimensionalized using the following new variables
ðx; y; zÞ ¼ ðx�; y�; z�Þd; ¼ d2

D11
t�; P ¼ d2

lD11
p0; q0i ¼

D11

d
q�i ; T 0 ¼ DTð Þh; C 0 ¼ DCð Þ/: ð12Þ
By substituting (12) in Eqs. (9)–(11) and dropping asterisks for simplicity we obtain the following system:
1þK1
@

@t

� �
1
Pr

@qi

@t
þ P;i � Ra h� N/ð Þdi3

� 	
¼ 1þK2

@

@t

� �
qi;jj; ð13Þ

@h
@t
þ qjh;j �w ¼ h;jj þ Du/;jj; ð14Þ

@/
@t
þ qj/;j �w ¼ Le�1 /;jj þ Sh;jj

� �
; ð15Þ
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where Pr is the Prandtl number, Ra is the Rayleigh number, N is the buoyancy ratio, Du is the Dufour number, S is the Soret
number and Le is the Lewis number. In addition, K1 and K2 are respectively the scaled stress-relaxation parameter (Deborah
number) and the scaled strain-retardation parameter. These parameters are defined as
Pr ¼ m
D11

; Ra ¼ agd3DT
mD11

; N ¼ a0

a
DC
DT

; Du ¼ D12

D11

DC
DT

;

S ¼ D21

D22

DT
DC

; Le ¼ D11

D22
; K1 ¼ k1

D11

d2 ; K2 ¼ k2
D11

d2 :
Taking the curl twice on both sides of Eq. (13) yields
1þK1
@

@t

� �
1
Pr

@

@t
r2w� Rar2

1 h� N/ð Þ
� 	

¼ 1þK2
@

@t

� �
r4w; ð16Þ
where r1 and r are the Laplacian operators in two- and three-dimensions respectively.

3. Linear stability analysis

To discuss the linear stability, we assume that the perturbed quantities can be expressed as follows
wðx; y; z; tÞ
hðx; y; z; tÞ
/ðx; y; z; tÞ

2
64

3
75 ¼

WðzÞ
HðzÞ
UðzÞ

2
64

3
75 expfrt þ i‘xþ imyg ð17Þ
where WðzÞ;HðzÞ and UðzÞ are amplitudes, l and m are dimensionless wave numbers, with k ¼ l̂iþmĵ. The quantity r is a
complex quantity given by r ¼ rr þ ix where rr , the growth rate and x, the frequency of oscillations are real. Substituting
Eq. (17) into (14)–(16), we get
rH�W ¼ d2

dz2 � k2

" #
Hþ DuUð Þ; ð18Þ

rU�W ¼ Le�1 d2

dz2 � k2

" #
Uþ SHð Þ; ð19Þ

r
Pr

d2

dz2 � k2

" #
W þ k2Ra H� NUð Þ ¼ 1þK2r

1þK1r

� �
d2

dz2 � k2

 !2

W: ð20Þ
In general, a wide variety of boundary conditions may be applied to Eqs. (18)–(20), see Sekhar and Jayalatha [24] for a list
of such conditions. Here, we make use of the usual stress-free, isothermal and isohaline boundary conditions:
W ¼ d2W

dz2 ¼ H ¼ U ¼ 0 at z ¼ 0;1: ð21Þ
By assuming a periodic wave solution with sinusoidal variations in ðW;H;UÞ, we can set (see Chandrasekhar [25]);
W;H;Uð Þ ¼ W0;H0;U0;ð Þ sin pz ð22Þ
where W0;H0 and U0 are the amplitudes of the velocity, temperature and concentration perturbations. Clearly these satisfy
the boundary conditions (21). Substituting (22) in Eqs. (18)–(20) we get
�W0 þ rþ d2� �
H0 þ d2DuU0 ¼ 0; ð23Þ

�W0 þ d2SLe�1H0 þ rþ d2Le�1

 �

U0 ¼ 0; ð24Þ

1þK2r
1þK1r

� �
d4 þ r

Pr
d2

� 	
W0 � k2RaH0 � k2RaNU0 ¼ 0: ð25Þ
where d2 ¼ p2 þ k2 is the total wave number. Eqs. (23)–(25) form a homogeneous system in W0; h0 and /0:
1þK2r
1þK1r


 �
d4 þ r

Pr d
2 �k2Ra k2RaN

�1 rþ d2 d2Du

�1 d2SLe�1 rþ d2Le�1

2
664

3
775

W0

H0

U0

2
64

3
75 ¼

0
0
0

2
64

3
75: ð26Þ
For a non-trivial solution to the above system, we require:
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1þK2r
1þK1r


 �
d4 þ r

Pr d
2 �k2Ra k2Rs

�1 rþ d2 d2Du

�1 d2SLe�1 rþ d2Le�1

��������

��������
¼ 0: ð27Þ
Here Rs ¼ RaN is a solute Rayleigh number. Solving the Eq. (27) for Ra we get
Ra ¼
d
k

� �2 r
Pr þ

1þK2r
1þK1r


 �
d2

h i
1 rþ d2Le�1

 �

� DuSLe�1d4
h i

þ Rs 1� d2SLe�1
h i

rþ d2Le�1

 �

� d2Du
; ð28Þ
where 1 ¼ rþ d2.

3.1. Stationary instability (Finger regime)

We observe the onset of stationary convection (the exchange of stabilities) when r ¼ 0. In this case, from Eq. (28) we can
get
Rast ¼ Rs
Le� S

1� DuLe

� �
þ d6

k2

1� DuS
1� DuLe

� �
; ð29Þ
where Ra is the Rayleigh number for exchange stability. The critical wave number kc can be obtained by minimizing Ra with
respect to k, that is, setting @

@k Rað Þ ¼ 0, we find kc to be
kc ¼
pffiffiffi
2
p : ð30Þ
The corresponding critical Rayleigh number is,
Rast
c ¼ Rs

Le� S
1� DuLe

� �
þ 27p4

4
1� DuS
1� DuLe

� �
: ð31Þ
It is to be noted here that in the absence of cross diffusion terms i.e., Du ¼ S ¼ 0 one obtains
Rast
c ¼ RsLeþ 27p4

4
; ð32Þ
which coincides with the result reported by Malashetty and Swamy [18] in the case of double diffusive convection with out
cross diffusion effects.

3.2. Oscillatory convection (Diffusive regime)

Setting rr ¼ 0 we get r ¼ ix. Using this in Eq. (28) the Rayleigh number can be written as
Ra ¼ D1 þ ixD2; ð33Þ
where
D1 ¼
d4Le�2 þx2

d4 Le�1 � Du

 �2

þx2

d2

k2 d4 1þK1K2x2

1þK2
1x2

 !
� 1þ

Du x2 � d4Le�1 1� DuSþ Le�1S

 �
 �

d4Le�2 þx2

0
@

1
A

8<
:

2
4

� x2 1
Pr
þ K2 �K1ð Þd2

1þK2
1x2

 !
� 1�

d4Du 1þ Le�1 1� Sð Þ

 �
d4Le�2 þx2

0
@

1
A
9=
;þ

d2 Le�1 � 1þ Le�1S� Du

 �

d4Le�2 þx2
Rs

3
5; ð34Þ

D2 ¼
d4Le�2 þx2

d4 Le�1 � Du

 �2

þx2

d4

k2

1þ K1K2x2

1þ K2
1x2

 !
� 1�

d4Du 1þ Le�1 1� Sð Þ

 �
d4Le�2 þx2

0
@

1
Aþ 1

Pr
þ K2 �K1ð Þd2

1þ K2
1x2

 !
� 1þ

Du x2 � d4Le�1 1� DuSþ Le�1S

 �
 �

d4Le�2 þx2

0
@

1
A

8<
:

9=
;

2
4

þ
d2 Le�1 � 1þ Le�1S� Du

 �

d4Le�2 þx2
Rs

3
5: ð35Þ
For the onset of oscillatory convection we require D2 ¼ 0 x – 0ð Þ from which we obtain the quadratic equation for x2 in
the form
a2 x2� �2 þ a1x2 þ a0 ¼ 0; ð36Þ
where
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a0 ¼ d6 Le�2Pr � DuPr 1þ Le�1 1� Sð Þ
n o

þ 1þ K2 �K1ð Þd2Pr
� �

Le�2 � DuLe�1 1� DuSþ Le�1S

 �n oh i

þ PrRsk2 Le�1 � 1þ Le�1S� Du

 �

a1 ¼ d2Pr 1þK1K2d
4 Le�2 � Du 1þ Le�1 1� Sð Þ


 �n oh i
þ d2 1þ Duð Þ 1þ K2 �K1ð Þd2Pr

� �
þ d6K2

1 Le�2 � DuLe�1 1� DuSþ Le�1S

 �n o

þ PrRsk2K2
1 Le�1 � 1þ Le�1S� Du

 �

a2 ¼ K1d
2 K1 1þ Duð Þ þK2Pr½ �
and the oscillatory Rayleigh number is given by
Raos ¼ d4Le�2 þx2

d4 Le�1 � Du

 �2

þx2

d2

k2 d4 1þK1K2x2

1þK2
1x2

 !
� 1þ

Du x2 � d4Le�1 1� DuSþ Le�1S

 �
 �

d4Le�2 þx2

0
@

1
A

8<
:

2
4

�x2 1
Pr
þ K2 �K1ð Þd2

1þK2
1x2

 !
� 1�

d4Du 1þ Le�1 1� Sð Þ

 �
d4Le�2 þx2

0
@

1
A
9=
;þ

d2 Le�1 � 1þ Le�1S� Du

 �

d4Le�2 þx2
Rs

3
5 ð37Þ
It is to be noted here that in the absence of cross diffusion terms i.e., Du ¼ S ¼ 0, Eqs. (31) to (37) coincide with that re-
ported by Malashetty and Swamy [18].

3.3. Conditions for finger and diffusive instabilities

The conditions for the onset of finger instability in the case of double-diffusive convection are given by
Ra < 0; Rs < 0; �Rs > � Le�1 � Du

1� SLe�1

 !
Raþ d6Le�1

k2

1� SDu

1� SLe�1

� �
: ð38Þ
Now, for Ra < 0, that is, when the density gradient is statically stable with respect to faster diffusing component, aT ;z is
positive. The third inequality in (38) can be further written as,
Le�1 � Du

 �

� a0S;z
aT ;z

1� SLe�1

 �

>
d6Le�1

Rak2 1� SDuð Þ; ð39Þ
where
a0S;z
aT ;z

¼ Rs
Ra
:

The hydrostatic stability is assumed by �Raþ Rs > 0, i.e., �aT ;z þ a0S;z < 0. For Ra� d6=k2, the inequality (39) takes the
form
Le�1 � Du

 �

� a0S;z
aT ;z

1� SLe�1

 �

> 0: ð40Þ
Thus the condition for the formation of fingers in the presence of cross diffusion terms are
aT ;z > 0; a0S;z > 0; Le�1 � Du

 �

>
a0S;z
aT ;z

����
���� 1� SLe�1

 �

: ð41Þ
The condition for the onset of diffusive instability are given by
Ra > 0; Rs > 0; Ra <
1þK1d

2 1� SLe�1

 �

1þK1d
2 Le�1 � Du

 �

2
4

3
5Rsþ d2

k2

v
1þK1d

2 Le�1 � Du

 �

2
4

3
5; ð42Þ
where v ¼ Le�1Pr�1 1� SDuð Þð1þ Prd2K2Þ þ ð1þ Le�1Þ.
Now, for Ra > 0, that is, when the density gradient is statically stable with respect to the faster diffusing component, aT ;z

is negative. For Ra� d2=b2, the last inequality in (42) takes the form
1þK1d
2 Le�1 � Du

 �h i

� a0S;z
aT ;z

1þK1d
2 1� SLe�1

 �h i

< 0: ð43Þ
Thus the conditions for the onset of diffusive instability in the presence of cross diffusion terms are given by



Fig. 2. Stability boundaries as a function of Du and S for different values of K1 with a0S;z
aT ;z
¼ 0:3.

Fig. 3. Stability boundaries as a function of Du and S for different K1 with a0S;z
aT ;z
¼ �0:3.
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aT ;z < 0; a0S;z < 0;
a0S;z
aT ;z

����
���� 1þK1d

2 1� SLe�1

 �h i

> 1þK1d
2 Le�1 � Du

 �h i

: ð44Þ
It should be noted through Eqs. (41) and (44) that the conditions for finger and diffusive instabilities are independent of
the stress relaxation parameter K2. The stability boundaries as indicated by Eqs. (41) and (44) are shown in Figs. 2 and 3 for
fixed values of Rs=Ra, subject to the static stability constraint �Raþ Rs > 0. The boundaries in case of diffusive instability are
shown for different values of K1. The two stability boundaries are parallel lines through the points
ðLe; Le�1Þ and
1þK1d

2

K1d
2 ;

1þK1d
2Le�1

K1d
2

 !
;

which have slope equal to Rs=Ra.
The stability boundaries show that the finger and diffusive instabilities may not occur simultaneously even though both

types of instability may occur in concentration gradients that are normally conducive to the other type of instability. The two
types of instabilities may occur even when both components have stabilizing effects. It should also be noted that increasing
values of K1 results in expanding the diffusive instability regime or reducing the stable region.
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4. Weakly nonlinear stability analysis

In this section we study the nonlinear stability analysis using a minimal truncated representation of a Fourier series that
consists of two terms. As the linear stability analysis fails to provide insight about the convection amplitudes and the rate of
heat and mass transfer we revert to the nonlinear stability analysis. We restrict ourselves to the case of two-dimensional
rolls, so that all the physical quantities are independent of y. We introduce the stream function w such that
u ¼ �@w=@z; w ¼ @w=@x into Eq. (13), eliminate pressure term to obtain
1þK1
@

@t

� �
1
Pr

@

@t
r2w

 �

� Ra
@

@x
h� N/ð Þ

� 	
¼ 1þK2

@

@t

� �
r4w; ð45Þ

@h
@t
þ @ w; hð Þ
@ x; zð Þ �

@w
@x
¼ r2hþ Dur2/; ð46Þ

@/
@t
þ @ w;/ð Þ
@ x; zð Þ �

@w
@x
¼ Le�1 r2/þ Sr2h


 �
; ð47Þ
Following Siddheshwar et al. [7] we rearrange Eq. (45) as two first-order equations in time as follows:
1
Pr

@

@t
r2w

 �

¼ Ra
@

@x
h� N/ð Þ þKr4wþM; ð48Þ
with M satisfying the equation given below
@M
@t
¼ �M þ 1�Kð Þr4w: ð49Þ
Here K ¼ K2
K1

is the ratio of scaled stress-retardation parameter to that of scaled-relaxation parameter. A minimal double
Fourier series which describes the finite amplitude convection is given by
w x; z; tð Þ ¼ A1 tð Þ sin kxð Þ sin pzð Þ; ð50Þ
h x; z; tð Þ ¼ A2 tð Þ cos kxð Þ sin pzð Þ þ A3 tð Þ sin 2pzð Þ; ð51Þ
/ x; z; tð Þ ¼ A4 tð Þ cos kxð Þ sin pzð Þ þ A5 tð Þ sin 2pzð Þ; ð52Þ
M x; z; tð Þ ¼ A6 tð Þ sin kxð Þ sin pzð Þ; ð53Þ
where the amplitudes Ai; i ¼ 1;2; . . . ;6 are time dependent and are to be determined from the dynamics of the system.
Substituting Eqs. (50)–(53) into the coupled non-linear partial differential Eqs. (46)–(49) and equating the coefficients of like
terms we obtain the following Lorenz system:
dX1

ds
¼ Pr X2 � NX4 �KX1 � 1�Kð ÞX6½ �; ð54Þ

dX2

ds
¼ R0X1 � X2 � DuX4 � X1X3; ð55Þ

dX3

ds
¼ X1X2

2
� bX3 � bDuX5; ð56Þ

dX4

ds
¼ R0X1 � Le�1X4 � Le�1SX2 � X1X5; ð57Þ

dX5

ds
¼ X1X4

2
� bLe�1X5 � bLe�1SX3; ð58Þ

dX6

ds
¼ 1

C
X1 � X6ð Þ; ð59Þ
where
X1 ¼
pk

d2 A1; X2;X3;X4;X5ð Þ ¼ pR0 A2;�A3;A4;�A5ð Þ; X6 ¼
pk

1�Kð Þd6 A6;

s ¼ d2t; R0 ¼ k2

d2 Ra; b ¼ 4p2

d2 ; C ¼ K1d
2 and d2 ¼ k2 þ p2:
The solutions of Eqs. (54)–(59) are uniformly bounded in time and possess many properties of the full problem. Also, the
system (54)–(59) is dissipative with the volume in the phase-space contracting at a uniform rate given by
@

@X1

dX1

ds

� �
þ @

@X2

dX2

ds

� �
þ @

@X3

dX3

ds

� �
þ @

@X4

dX4

ds

� �
þ @

@X5

dX5

ds

� �
þ @

@X6

dX6

ds

� �

¼ � KPr þ 1
C
þ 1þ 1

Le

� �
1þ bð Þ

� 	
: ð60Þ



Fig. 4. Phase portraits at R0 ¼ 5; Le ¼ 2; Pr ¼ 10; Rs ¼ 100, K ¼ 0:6; K1 ¼ 0:5; Du ¼ 0:2 and S ¼ 0:3.
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Consequently, the trajectories are attracted to a set of measure zero in the phase space. In particular, they may be at-
tracted to a fixed point, a limit cycle or, perhaps, a strange attractor. We have a well-developed theory for a Lorenz system
of third order (see references [26–30]). However, for Lorenz systems of higher dimensions or Lorenz like systems, one has to
resort to computational analysis. Extensive computation reveals that the trajectories are never attracted to a strange attrac-
tor though they are attracted to limit cycles, see Fig. 4.

From Eq. (60) we infer that if a set of initial points in the phase space occupies a region Vð0Þ at time s ¼ 0, then after some
time s, the end points of the corresponding trajectories will fill a volume
VðsÞ ¼ Vð0Þ exp � KPr þ 1
C
þ 1þ 1

Le

� �
1þ bð Þ

� �
s

� �
: ð61Þ
The Lorenz system arising due to thermal convection in viscoelastic liquids in the absence of cross diffusion effects has
been studied extensively by Khayat [30–32]. In the present study we observe similar patterns for the onset of chaos, see
Fig. 5. The cross diffusion terms have nothing to contribute to the non-linear dynamics of the thermal convection. This is
due to the fact that they contribute only linear terms to the Lorenz system which may perhaps change the location of critical
points. For this reason we restrict our analysis of the Lorenz system to heat and mass transfer considerations. However, we
make a qualitative discussion of the influence of various factors on chaos in the binary viscoelastic fluid system.

5. Heat and mass transports

The rate of heat and mass transport per unit area, respectively, denoted by H and J are given by
H ¼ �D11
@Ttotal

@z

� �
z¼0
� D12

@Ctotal

@z

� �
z¼0
; ð62Þ

J ¼ �D22
@Ctotal

@z

� �
z¼0
� D21

@Ttotal

@z

� �
z¼0
; ð63Þ



Fig. 5. Phase portraits at R0 ¼ 23; Le ¼ 2; Pr ¼ 10; Rs ¼ 100, K ¼ 0:6; K1 ¼ 0:5; Du ¼ 0:2 and S ¼ 0:3.
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where the angular bracket corresponds to a horizontal average and z is the dimensionless space variable. The total temper-
ature and concentrations Ttotal and Ctotal are given by
Ttotal ¼ T0 � DTð Þzþ DTð Þh t; x; zð Þ; ð64Þ
Ctotal ¼ C0 � DCð Þzþ DCð Þ/ t; x; zð Þ: ð65Þ
Substituting Eqs. (51) and (52) in Eqs. (64) and (65), respectively, and using the resultant equations in Eqs. (62) and (63),
we get
H ¼ DT D11 1� 2pA3ð Þ þ D12 1� 2pA5ð Þ½ �; ð66Þ
J ¼ DC D22 1� 2pA5ð Þ þ D21 1� 2pA3ð Þ½ �: ð67Þ
The Nusselt and Sherwood numbers are respectively define by
Nu ¼ H
D11DT

¼ 1� 2pA3ð Þ þ Du 1� 2pA5ð Þ; ð68Þ

Sh ¼ J
D22DC

¼ 1� 2pA5ð Þ þ S 1� 2pA3ð Þ: ð69Þ
Using on the scaled variable X3;X5ð Þ ¼ �pR0 A3;A5ð Þ we obtain
Nu ¼ 1þ 2
R0

X3

� �
þ Du 1þ 2

R0
X5

� �
; ð70Þ

Sh ¼ 1þ 2
R0

X5

� �
þ S 1þ 2

R0
X3

� �
: ð71Þ
6. Results and discussion

The onset of two-component convection in a binary viscoelastic fluid layer that is heated and salted from below has been
investigated using the linear theory. A minimal representation of Fourier series has been used for a weakly non-linear sta-
bility analysis that results in a sixth-order generalized Lorenz model. The viscoelastic fluid has been assumed to subscribe to
the Oldroyd-B description. Analytical expressions for the critical Rayleigh number and the corresponding wavenumbers for



Fig. 6. Neutral stability curves for different values of (a) Du and (b) S with K1 ¼ 0:3; K2 ¼ 0:25; Pr ¼ 10; Rs ¼ 100 and Le ¼ 2.

Fig. 7. ln RaSt
c as a function of Du for different values of S with Rs ¼ 100 and Le ¼ 1.

Table 1
Values of critical wavenumber kc and critical Rayleigh number Rac in case of overstable mode for Pr ¼ 10; Rs ¼ 100 and Le ¼ 5.

S Du Newtonian K1 ¼ 0:1 K2 ¼ 0:1 Maxwell K1 ¼ 0:1 K2 ¼ 0 Oldroyd K1 ¼ 0:5 K2 ¼ 0:3 Rivlin–Erickson K1 ¼ 0:001 K2 ¼ 0:05

kc Rac kc Rac kc Rac kc Rac

�0.5 0 2.225 896.615 5.479 206.273 2.275 598.655 2.168 978.089
0.2 2.225 880.745 5.392 170.202 2.258 585.260 2.180 904.099
0.5 2.225 857.975 5.310 135.109 2.258 563.222 2.202 813.189
0.8 2.225 836.362 5.256 112.172 2.258 542.197 2.214 740.111
1 2.225 822.555 5.220 100.826 2.258 528.938 2.225 698.869

0 0 2.225 897.524 5.511 216.535 2.269 599.264 2.168 982.505
0.2 2.225 881.497 5.408 179.670 2.258 587.502 2.191 902.757
0.5 2.225 858.501 5.327 143.151 2.258 565.784 2.214 804.666
0.8 2.225 836.675 5.284 118.987 2.258 544.672 2.236 725.730
1 2.225 822.730 5.265 106.957 2.258 531.295 2.247 681.152

0.5 0 2.225 898.433 5.543 226.798 2.281 599.706 2.168 986.921
0.2 2.225 882.249 5.420 189.332 2.270 589.926 2.191 901.404
0.5 2.225 859.028 5.334 151.487 2.258 568.627 2.225 796.099
0.8 2.225 836.988 5.299 126.139 2.258 547.463 2.247 711.236
1 2.225 822.906 5.289 113.444 2.258 533.985 2.270 663.252
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Fig. 8. RaO
c as a function of Du for different values of S in (a) Newtonian, (b) Maxwell (c) Oldroyd and (d) Rivlin–Erickson fluid cases with Pr ¼ 10; Rs ¼ 100

and Le ¼ 5.
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the onset of stationary or oscillatory convection subject to cross diffusion effects were determined using linear stability the-
ory. Heat and mass transports were quantified with the help of weakly non-linear theory. A Lorenz system is obtained in the
case of the weakly nonlinear stability analysis.

The characterization of chaotic binary convection in a two-relaxation-time viscoelastic liquid is quite difficult and prohib-
itive due to the fact that we need to tackle the six-dimensional nonlinear dynamical system. This is further complicated by
the appearance of four new parameters – Lewis number, solutal Rayleigh number, Dufour and Soret parameters. It is now
well known that for thermal convection in an Oldroyd B fluid, the route to and from chaos is similar to that in a Newtonian
fluid but with viscoelastic chaotic behavior characterized by a higher fractal dimension than the Newtonian chaotic behavior.
In view of the fact that a second diffusing component is of dilute concentration in a viscoelastic fluid, it becomes apparent
that parameters arising due to the second diffusing component marginally alter the quantitative picture and with the qual-
itative aspect intact. Thus, in effect, it means that the results discussed by Abu-Ramadan et al. [33] hold good in the present
paper as well. Added to all the above observations made so far it is important to note that the scaled amplitudes X3 and X5

are connected with the Nusselt and Sherwood numbers. In the light of the comments made above, we restrict ourselves to
the analysis of heat and mass transports and draw appropriate inferences from the same. But first we make some general
conclusions from the local linear stability analysis.

The primary objective of this study was to determine the effects of the Soret and Dufour parameters on the stability of
viscoelastic fluid layer heated and salted from below. Consequently, we have not shown the effects of other parameters such
as the Lewis number, Prandtl number and solutal Rayleigh number whose significance has been widely studied in the liter-
ature on double diffusive convection (see Malashetty and Swamy [18]). With this in mind the parameters’ values were cho-
sen to be in keeping with previous works and focused our study on cross diffusion effects.



Fig. 9. Variation of Nu with s for R0 ¼ 5 in (a) Newtonian, (b) Maxwell (c) Oldroyd and (d) Rivlin–Erickson fluid cases.
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We begin with the discussion of cross diffusion effects on the stationary and oscillatory modes of convection. Figs. 6(a)
and (b) show, respectively, the effect of Dufour and Soret parameters on the neutral stability curves in the Ra� k plane. From
Fig. 6(a) it is clear that Du has a stabilizing effect on the onset of convection as increasing values of Du results in increasing
the critical Rayleigh number. Also, for small values of Du the convection initially sets in the stationary mode till it reaches a
critical value Duc beyond which it switches to oscillatory mode. Similar observations can be made with regards to the effect
of Soret parameter on the neutral stability curves Fig. 6(b). In contrast to effects of Du the Soret number has a destabilizing
effect on the onset of convection. Here, also we observe the bifurcation between stationary and oscillatory modes of convec-
tion. Initially the convection sets in the oscillatory mode till the value of S reaches a critical value Sc beyond which it switches
to stationary mode of convection. The critical values of wavenumber kc and overstable Rayleigh number Rac are tabulated in
Table 1 for different values of Du and S. For Newtonian case one can observe that the critical wavenumber remains the same
while for other three kinds of fluids it is sensitive to the parameter values considered.

It should be noted from Eq. (31) that the stationary critical Rayleigh number is independent of the viscoelastic parameters
and therefore our results on stationary convection has to be the same as that of a Newtonian binary fluid layer (see Rudraiah
and Siddheshwar [34] for a discussion of these results). The stationary critical Rayleigh number and critical wave number are
independent of viscoelastic parameters because of the absence of base flow in the present case. This is in contrast to visco-
elastic Taylor–Couette flow, where the base flow depends on viscoelastic parameters, thus leading to critical conditions that
are influenced by elastic effects. It should also be noted from Eq. (31) that the stationary mode of convection is prevalent only
when Du < Le�1. Fig. 7 illustrates the effect of Soret and Dufour parameters on critical stationary Rayleigh number. It is
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evident from this figure that the RaSt
c � Du curve is steep for all values of the Soret parameter S. The effect of increasing S is to

reduce the magnitude of RaSt
c and this is a classical result (see Rudraiah and Siddheshwar [34]).

Unlike RaSt
c , the oscillatory Rayleigh number, RaO

c , depends on the viscoelastic parameters K1 and K2. Fig. 8 shows RaO
c as a

function of Du for different values of S, for Newtonian, Maxwell, Oldroyd-B and Rivlin–Erickson fluids. In the case of a New-
tonian fluid (K1 ¼ K2) the Dufour parameter has a destabilizing effect on RaO

c while the effect of Soret parameter is almost
negligible as observed from Fig. 8(a). The onset of convection in Maxwell fluid (K2 ¼ 0) is more sensitive to the choice of Du
and S than the other three fluids. Fig. 8(b) clearly shows that the Maxwell fluid succumbs to instability faster than the four
fluids considered. The general observation on the cross diffusion effects on RaO

c made in the case of Maxwell fluid holds good
for an Oldroyd fluid (K1 – 0; K2 – 0) and Rivlin–Erickson fluid (K1; K2 � 1 and K� 1) as can be seen from Figs. 8(c) and
8(d). Fig. 8(d) shows that for Du < Duc; S increases RaO

c whereas for Du > Duc it reduces RaO
c . This effect of S is not seen in

the case of Newtonian, Maxwell and Oldroyd fluids. The critical value of Du for the mixed behavior of S in case of Rivlin–
Erickson fluid was found to be Duc ¼ 0:184. As a summary, one can infer the following from Fig. 8:

(i) In the absence of cross diffusion effect (Du ¼ S ¼ 0):
ðRaO
c ÞMaxwell < ðRaO

c ÞOldroyd < ðRaO
c ÞNewtonian < ðRaO

c ÞRiv lin—Erickson:
Fig. 10. Variation Sh with s for R0 ¼ 5 in (a) Newtonian, (b) Maxwell (c) Oldroyd and (d) Rivlin–Erickson fluid cases.



Fig. 11. Variation of Nu and Sh with s in case of Oldroyd-B fluid for R0 ¼ 5.
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(ii) In the presence of cross diffusion effects, we have

ðRaO
c ÞMaxwell < ðRaO

c ÞOldroyd < ðRaO
c ÞNewtonian < ðRaO

c ÞRivlin—Erickson; for Du < 0:25;

ðRaO
c ÞMaxwell < ðRaO

c ÞOldroyd < ðRaO
c ÞRivlin—Erickson < ðRaO

c ÞNewtonian; for Du < 0:25:

At this point we also note that direct, sub-critical and super-critical Hopf and Co-dimension two bifurcations can be stud-
ied in systems as the one considered in this study but our focus is mainly on the influence of the second-diffusing component
and cross-diffusion on heat and mass transports. We now initiate discussion of the results from our nonlinear study. From
Fig. 9 that are plots of Nu versus s for four different fluids and for R0 ¼ 5, the following general conclusion can be made using
Num (a mean defined in any time interval):

(i) In the absence of cross diffusion effect (Du ¼ S ¼ 0):
ðNumÞMaxwell > ðNumÞOldroyd > ðNumÞNewtonian > ðNumÞRivlin—Erickson:
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(ii) In the presence of cross diffusion effects, we have

ðNumÞMaxwell > ðNumÞOldroyd > ðNumÞNewtonian > ðNumÞRivlin—Erickson; for Du < 0:25;
ðNumÞMaxwell > ðNumÞOldroyd > ðNumÞRivlin—Erickson > ðNumÞNewtonian; for Du < 0:25:
A similar conclusion as above can be made on the mean Sherwood number from Fig. 10. It is thus clear that the presence
of the cross diffusion enhances both Nu and Sh in all the four types of fluids chosen. In the case of a Maxwell fluid, unlike the
other three fluids, Nu and Sh do not level-off to the steady state values as s elapses. This is indicative of the fact that early
chaos is precipitated in a single-relaxation-time fluid of the Maxwell type as compared to that in Newtonian, Oldroyd and
Rivlin–Erickson fluids. These results concur with those reported by Siddheshwar et al. [7].

The individual effects of Du and S on the heat and mass transfer in the case of an Oldroyd-B type viscoelastic fluid are
shown in Figs. 11 and 12 for R0 ¼ 5 and R0 ¼ 28 corresponding to the Khayat–Lorenz dynamics. It is clear from Figs. 11(a)
and (c) that the Dufour parameter helps in enhancing both heat and mass transfer. The Soret parameter reduces heat transfer
and increases mass transfer as can be seen via Figs. 11 (b) and (d) respectively. The same trends are observed in other three
types of fluids considered and the plots are not shown for reasons of space. Extensive computation reveals that chaos sets in
at R0 ¼ 28 and beyond, and hence these are depicted by Fig. 12.
Fig. 12. Variation of Nu and Sh with s in case of Oldroyd-B fluid for R0 ¼ 28.
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7. Conclusion

Dufour and Soret parameters have opposite influence on the onset of stationary binary convection in viscoelastic fluids
with RaSt

c increasing with increase in Du. In the case of overstability for all four fluids except Rivlin–Erickson, however,
the Dufour and Soret effects work in tandem in influencing RaO

c . The effect of Soret parameter is to increase RaO
c in the three

fluids but shows a mixed influence in the case of Rivlin–Erickson fluid. The stability boundaries show that finger and diffu-
sive instabilities may not occur simultaneously even though both types of instability may occur in concentration gradients
that are normally conducive to the other type of instability. The two types of instabilities may occur even when both com-
ponents have stabilizing effects. The effect of increasing the Soret number is to reduce Nu and increase Sh while increase in
Du results in an increase in both Nu and Sh. The results for Maxwell, Rivlin–Erickson and Newtonian fluids are obtained as
limiting cases of the present general study involving an Oldroyd fluid. The route to chaos in the binary viscoelastic fluid sys-
tem is similar to that of the single-component viscoelastic fluid system due to the consideration in the study of dilute con-
centration of the second component.
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