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a b s t r a c t

The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a
variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent
the end members of the hydration cycle, both adopt the structure of the 3R1 polytype. In the
intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist.
The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their
basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin.

& 2013 Elsevier Inc. All rights reserved.
1. Introduction

The layered double hydroxide (LDH) of Zn and Al comprises a
stacking of positively charged layers of the composition [Zn2Al
(OH)6]+, with anions intercalated in the interlayer region. A wide
variety of anions like monoatomic halides, simple inorganic anions
like CO3

2−, SO4
2−, NO3

−, IO3
− and organic anions like sulfonates,

phosphonates, and carboxylates can be lodged in the interlayer [1].
By virtue of their interlayer chemistry they find extensive applica-
tions as anion exchangers, adsorbents, catalysts, sensors, drug
delivery agents, and fire retardants [2–4].

The structure of the LDH is modeled on that of the mineral
brucite, Mg(OH)2. Mg(OH)2 comprises a hexagonal close packing of
hydroxyl ions in which alternative layers of octahedral sites are
occupied by Mg2+ ions. This arrangement of atoms leads to a
stacking of charge-neutral metal hydroxide layers having the
composition [MII(OH)2]. When a fraction, x, of the divalent metal
is substituted with a trivalent metal such as Al3+, the layers acquire
a positive charge with a composition [MII

1−xAl x(OH)2]x+. Anions
along with the water molecules enter the interlayer for charge
compensation.

Thiosulfate (S2O3
2−) is one of the simple inorganic anions

with C3v symmetry. Thiosulfate is interesting as it has S in two
different oxidation states and is a well-known redox reagent
[5]. It forms soluble metal complexes [6] and is used for
ll rights reserved.

reu),
dechlorination of water [7]. Owing to these properties, thio-
sulfate finds applications in several fields as a titration stan-
dard [8], as an agent in rapid dechlorination of water [9],
antidote to cyanide poisoning [10], metal cleaning agent [11],
antirheumatic [12], in silver halide photography [13], and in
fabric and paper bleaching [8]. Despite its importance, there
are only a few reports of thiosulfate intercalation into the LDH
gallery. Thomas et al. [14,15] report the synthesis of
thiosulfate-LDH by anion exchange and study the intracrystal-
line oxidation of thiosulfate in the interlayer using H2O2 and I2
to derive sulfate-LDHs devoid of carbonate contamination.
Different conditions yield different polytypes of the sulfate
LDH. Khan et al. [16] report the release kinetics of intercalated
thiosulfate ions from [Mg–Al] and [Li–Al] LDHs into water and
dodecylsulfate solution for its possible applications in textile
industries. However, the authors in both the cases have not
focussed on the structure and hydration behavior of the
thiosulfate-LDH.

Thiosulfate is an oxo-anion whose structure is similar to sulfate
with one of its O atoms replaced by S. Sulfate LDHs are known to
exhibit a wide variety of polytypic structures [17]. They also
exhibit interesting basal spacing dynamics owing to hydration–
dehydration of the interlayer [18]. Given the interesting properties
of the thiosulfate ion and its close structural relationship with the
sulfate ion, in this paper, we investigate the synthesis of thiosul-
fate intercalated LDHs and study their hydration behavior. We
focus on polytypism among S2O3

2−-LDHs and the relative humidity
induced basal spacing dynamics and possible interpolytype
transformations.
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2. Materials and methods

Thiosulfate intercalated LDHs were synthesized by both copre-
cipitation and anion exchange.

2.1. Co-precipitation

In a typical coprecipitation, 50 mL of mixed metal nitrate
solution, ([Zn2+]/[Al3+]¼2) was added to a reaction vessel contain-
ing a Na2S2O3 solution (100 mL) having 10 times excess of the
stoichiometric requirement of the thiosulfate ion. A constant pH
was maintained during the synthesis by simultaneous addition of
NaOH using a Metrohm model 718 STAT titrino operating in the
pH STAT mode. The temperature was kept constant at 60 1C and N2

was bubbled continuously. Preparations were done at different pH
values of 8, 9, and 10. Deionized and decarbonated water was used
throughout the synthesis to avoid possible carbonate contamina-
tion. Half of the resulting slurry was then hydrothermally treated
in mother liquor at 125 1C for 16 h (teflon lined autoclaves, 120 mL
capacity, 50% filling) and the rest aged at 60 1C. The product
obtained was separated by centrifugation followed by repeated
washing with warm water and finally with acetone. The precipi-
tate obtained was then dried at room temperature and stored in a
desiccator.

2.2. Anion exchange

For anion exchange, the [Zn–Al–NO3] LDH precursor (0.5 g) was
suspended in a solution containing sodium thiosulfate taken 20
times in excess of the stoichiometric requirement and stirred for a
period of 40 h at the ambient temperature (25–28 1C). In separate
experiments, the exchange reaction was also carried out at 90 1C.
The solid was then separated from the supernatant by centrifuga-
tion, washed several times with decarbonated water and finally
with acetone and dried in a desiccator.

2.3. Characterization

All samples were characterized by powder X-ray diffraction
using a Bruker D8 Advance powder diffractometer (source Cu Kα
radiation, λ¼1.5418 Å). Data were collected at a continuous scan
rate of 11 2θ min−1.

In situ measurements of PXRD patterns at different relative
humidities were carried out using a Panalytical X'pert MPD Pro
X-ray diffractometer (Cu Kα radiation, λ¼1.5418 Å) equipped with
an X'celerator Scientific RTMS and an Anton Paar temperature
humidity chamber driven by a VTI corp. RH-200 humidity gen-
erator. Measurements were done at different relative humidity
(hereafter abbreviated as RH) values ranging from 5% to 98% at an
interval of 10%. The sample was allowed to equilibrate for a period
of 1 h at each RH value before performing the XRD measurements.

Infrared spectra of the samples were recorded using a Bruker
Alpha-P FTIR spectrometer (ATR mode, diamond crystal, 400–
4000 cm−1, 4 cm−1 resolution). TGA studies were carried out using
a Mettler Toledo 851e TGA/SDTA system. The samples were dried
at 100 1C for 30 min. in the TG balance and then the temperature
was ramped from 100 1C to 800 1C at a heating rate of 5 1C min−1

under N2 flow.
The Zn and Al contents were estimated by atomic absorption

spectroscopy using a Varian Model AA240 atomic absorption
spectrometer. The thiosulfate content was determined by ion
chromatography using a Metrohm Model 861 Advanced Compact
Ion Chromatograph fitted with a Metrosep SUP 5 150 column. For
determining the anion content, a pre-weighed amount of the LDH
was dissolved in a minimum amount of HCl. Standard solutions of
sodium thiosulfate were used for calibrating the chromatograph
response.

2.4. Powder pattern simulations

The PXRD patterns were indexed using the program PROZSKI
[19]. Initial lattice parameters were provided based on the posi-
tions of the 006 and 110 reflections. Later these lattice parameters
are refined to match all the observed reflections using the lattice
constant program APPLEMAN built into the PROZSKI suite of
programs and the figures of merit were determined. While
indexing helps in identification of the unit cell, polytype identifi-
cation was done by simulating the powder pattern using the code
DIFFaX [20]. Within the DIFFaX formalism, a tactoid is treated as a
stacking of layers of atoms and the PXRD pattern is computed in a
recursive way. Model simulations were performed using a single
layer extracted from published structure models of sulfate-LDHs
(polytype 1H: CC No. 75542, polytype 3R1: CC No. 91859). The
interlayer atoms were included, wherein the apical O of the sulfate
ion was replaced by S, thereby assuming the orientation of the
S2O3

2− ion in the interlayer to be the same as that of the SO4
2−.

Patterns corresponding to different polytypes were generated by
stacking the layers with corresponding stacking vectors.
3. Results and discussion

[Zn–Al–S2O3] LDHs were prepared at three different pH values
of 8, 9, and 10. All the samples were further subjected to
hydrothermal treatment to see if there is any improvement in
the crystallinity. While the samples prepared at pH 8 and 9 were
highly disordered and showed no improvement on hydrothermal
treatment, the sample obtained at pH 10 showed a great improve-
ment on hydrothermal treatment (Fig. 1). While even at pH 10, the
pristine sample aged at 60 1C is still turbostratically disordered
with a basal spacing of 8.7 Å, upon hydrothermal treatment,
crystal growth as well as ordering is observed. The signal to noise
ratio in the PXRD pattern is enhanced and reflections correspond-
ing to different hkℓ planes have emerged. We label this phase as
[S2O3–10-HT]. This phase could be indexed to a crystal of rhom-
bohedral symmetry (a¼3.07 Å, c¼26.18 Å; FOM¼23) (Table 1).
The observation of strong 0kℓ reflections indicates that the
structure corresponds to that of the 3R1 polytype. DIFFaX simula-
tion of the profile of the 3R1 polytype is compared with the
observed pattern in Fig. 1.

The sample obtained by anion exchange yields a 8.8 Å-3R1 phase
very similar to the hydrothermally treated sample [S2O3–10-HT]
and therefore all further characterization and in situ measurements
are done using the latter.

[S2O3–10-HT] exhibits the νsym and νasym vibrations of the
S2O3

2− ion at 1000 cm−1 and 1120 cm−1, respectively (Fig. 2).
The S–S stretching vibration expected at 440 cm−1 overlaps with
the M–O bending vibrations of the metal hydroxide layer and thus
cannot be distinguished. The peak at 1360 cm−1 indicates the
presence of carbonate contamination in the sample.

TG-DTG data (Supporting Information, SI. 1) do not show well
resolved sigmoidal steps as in carbonate LDHs, but a continuous
mass loss with many points of inflection. The total mass loss
observed from 30 1C to 800 1C amounts to 42%. The mass loss
below 200 1C is attributed to the loss of adsorbed and intercalated
water molecules. The total water content present in the sample
was calculated using this first mass loss. Mass loss above 200 1C is
attributed to dehydroxylation and loss of the interlayer anions.

SEM images (Fig. 3) show hexagonal platelets characteristic of
LDHs. The in-plane dimension is up to 1 μm and the thickness is



Fig. 1. Left Panel: PXRD pattern of [Zn–Al–S2O3] LDH prepared by coprecipitation at pH 10 and (i) aged at 60 1C, (ii) hydrothermally treated at 125 1C. (iii) PXRD pattern of the
product obtained by anion exchange from a nitrate precursor. Right Panel: DIFFaX simulation of the PXRD pattern of (ii). Reflections marked by asterisk correspond to the
[Zn–Al–CO3] impurity.

Table 1
Observed 2θ values of [Zn–Al–S2O3–10-HT] LDH at different relative humidities
with the corresponding indices obtained using PROSZKI.

Ambient 70 % RH 100 % RH 30 % RH rev

a¼3.07Å a¼3.08Å a¼3.08Å a¼3.08Å
c¼26.18Å c¼10.67Å c¼33.07Å c¼26.2Å
FM¼23.38 FM¼13.6 FM¼17.8 FM¼20.0

2θ (obs) hkℓ 2θ (obs) hkℓ 2θ (obs) hkℓ 2θ (obs) hkℓ

10.1 003 8.3 001 8.06 003 10.1 003
20.3 006 16.6 002 16.1 006 20.2 006
33.8 101 25.1 003 24.2 009 33.8 101
34.4 012 33.6 100 33.7 101 34.4 012
37.9 015 34.7 101 34 012 37.9 015
43.7 018 37.9 102 36.3 015 43.8 018
51.4 1011 42.7 103 40.2 018 51.4 1011
60.2 110 60.1 110 45.4 0011 60.2 110
61.3 113 60.7 111 49.4 1013 61.3 113
64.2 116 62.8 112 51.6 114 64.2 116

65.8 113 60.1 110
60.7 113
62.5 116
65.5 119

Fig. 2. IR spectrum of [S2O3–10-HT] LDH.

Fig. 3. SEM images of the [S2O3–10-HT] LDH.
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∼20–30 nm. Some of the crystallites have well faceted smooth
edges indicating the cessation of crystal growth and attainment of
an equilibrium aspect ratio. Others exhibit jagged edges owing to
incomplete crystal growth and/or redissolution.
3.1. Relative humidity-induced variations

Fig. 4 shows the evolution of PXRD patterns of [S2O3–10-HT]
during the hydration cycle with increasing relative humidity.
While under ambient conditions the LDH has the structure of
the 8.8 Å-3R1 phase, on dehydration at o5% RH there is a
marginal reduction in basal spacing to 8.5 Å.

On equilibration at 10% RH the basal spacing is restored to
8.8 Å. This phase remains stable up to 50% RH. At 60% RH a new set
of basal reflections appear at 10.5 Å (8.51 2θ), 5.3 Å (16.81 2θ) and
3.5 Å (25.51 2θ) in the PXRD pattern indicating the coexistence of
two phases with different basal spacings. At 70% RH only a broad
hump remained at the Bragg angle corresponding to the basal
spacing of the precursor phase and finally at 80% RH a single phase
product with a basal spacing of 10.6 Å is observed. At 98% RH, the
hydration is complete and a basal spacing of 11 Å is observed. The
gradual shift of the newly appearing basal reflection on going from
60% RH to 98% RH indicates a certain degree of random inter-
stratification of the precursor phase in tactoids that have already



Fig. 4. Evolution of the PXRD pattern of the [S2O3–10-HT] LDH at different relative
humidities during the hydration cycle. Fig. 5. PXRD pattern of [S2O3–10-HT] LDH obtained at 498% RH overlaid with the

corresponding DIFFaX simulation.

Fig. 6. Evolution of the PXRD pattern of the [S2O3–10-HT] LDH at different relative
humidities during the dehydration cycle.
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adopted a higher state of hydration. The vanishing degree of
interstratification is mirrored by the coefficient of variation of
the basal reflection series which varies as 0.57% (60% RH), 0.86%
(80% RH), 0.65% (90% RH) and 0.27% (98% RH). In keeping with this
trend, the full widths at half maximum (FWHM) of the basal
reflections is most narrow at o5% RH and at 498% RH, indicating
of some degree of interstratification at intermediate stages [21].

Further in the range of RH 70–80% considerable disorder is
observed with the extinction of hkℓ peaks in the 35–551 range of 2θ,
making polytype identification difficult. Structural order reappears at
98% RH and DIFFaX simulation indicates the formation of a 11 Å-3R1
polytype (Fig. 5).

To summarize, the thiosulfate-LDH expands its basal spacing
from 8.8 Å to 11 Å during the hydration cycle. Further, two
structural transformations are observed in the process

8:8 Å−3 R1-10:6 Å−D-11:0 Å−3 R1ðD : Disordered phaseÞ
Since both the end members adopt the structure of the same

polytype and the stacking sequence of LDH layers relative to one
another is unchanged during hydration, this order–disorder–order
transition is not related to stacking disorders. Rather, the disorder
seen in the diffractograms is due to interstratification of phases
with different basal spacings due to incomplete hydration. The
disruption of periodicity along the stacking direction (cn), and the
non-Bragg nature of the basal distance affects all hkℓ reflections
including those with ℓ¼0. Such an order–disorder–order transi-
tion connected with interstratified structures at intermediate
stages of intercalation has previously been reported for the
intercalation of Cs-hectorite [22].

Evolution of PXRD profile of the sample during the dehydration
cycle (Fig. 6) shows that the fully hydrated 11 Å-3R1 phase remains
stable till 70% RH. At 60% RH in the absence of any perceptible
dehydration the profile shows a broadening of all reflections.
Again this is most likely related to the onset of interstratification
of the dehydrated phase in the matrix of the hydrated phase. At
40% RH, dehydration of the interlayer is observed resulting in a
biphasic state. Complete dehydration is achieved at 30% RH result-
ing in a single phase, 3-dimensionally ordered LDH of 3R1 polytype
and with a 8.8 Å basal spacing. This phase remains stable during
further dehydration to ∼0%. The order–disorder–order transforma-
tion is reversed during dehydration.

The basal spacing changes during reversible hydration are
summarized in Fig. 7. There is considerable hysteresis over one
complete cycle. Clearly, as suggested by computer simulations for
clays [23] hydration/dehydration of layered compounds is con-
nected with an activation barrier and thus hysteresis. The origin of
hysteresis is in the cooperative behavior of water molecules which
generates an activation barrier.
We ask the question: why does the reversible hydration of the
thiosulfate-LDH take place non-uniformly, leading to the co-
existence of two distinct hydration states over a significant range
(40–60%) of the relative humidity?

One possibility is, the differences in the reactivity of different
crystallites arise due to compositional variation between crystal-
lites. Such variations generally occur if there is a miscibility gap
between the simple hydroxides of the constituent cations (Zn2+

and Al3+ in the present case), which leads to nucleation of
crystallites with compositions on either side of the nominal value
(x¼0.33 in the present case). Such behavior, common among
cationic clays, can be discounted in the present context, as the
LDHs of Zn are known to crystallize with a fixed [Zn2+]/[Al3+]¼2
(x¼0.33). Pauling's cation avoidance rule [24] further discounts
the possibility of the stabilization of domains with x40.33.

The other more likely reason for the co-existence of the end
members of the hydration cycle is kinetics. The intercalation
kinetics have been studied in detail for layered silicates and
summarized by Breu et al. [22]. Further Weiss et al. [25] have
studied the influence of particle size on the reaction mechanism of
the intercalation of neutral guest molecules into kaolinite. For
small crystallites in the range 0.2–0.8 μm intercalation follows the
so-called wedge mechanism, while larger crystals follow the ring-
mechanism. The LDH batch used here has a broad particle size
distribution (Fig. 3) and contains particle sizes stretching over both



Fig. 7. Basal spacing evolution of the [S2O3–10-HT] LDH during one complete
hydration–dehydration cycle.
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ranges suggested by Weiss and consequently it might be expected
that for this material a mix of mechanisms result in the co-
existence of crystallites with different states of hydration. von
Reichenbach and Rich [26] have indeed studied cation exchange
(Ca2+ and Ba2+ for K+) of different particle size fractions of mica
and found that cation exchange of small and thin crystallites was
much slower and often incomplete as compared to thicker crystal-
lites. Apparently, the expansion of the crystallite volume increases
lattice strain with a major effect on the intercalation kinetics.

The other possibility is the existence of a solution type
equilibrium between the hydrated and dehydrated phases within
the solid state [27]. This equilibrium can be represented as

11 Å−3R1ðHÞ⇔8:8 Å−3R1ðdeHÞ þ H2O ðH : Hydrated; deH : dehydratedÞ

As the hydrated and dehydrated LDHs are isostructural, differ-
ing only in their c-parameter, they form a homogeneous solid
solution somewhat similar to and altogether more plausible than
the homogeneous intergrowths of periclase (MgO) and brucite
(Mg(OH)2) [28]. The activity of water as reflected in the relative
humidity is the driving force which shifts the equilibrium to the
left during the hydration cycle and towards the right during
dehydration.
4. Conclusions

Thiosulfate intercalated Zn–Al LDHs were synthesized by co-
precipitation and by anion exchange. The LDH undergoes rever-
sible dehydration with the exchange of a molecule of water from
the interlayer with the ambient moisture. There is considerable
hysteresis accompanying this exchange as observed from the basal
spacing dynamics. However the LDH adopts the structure of the
3R1 polytype over the entire range of humidity values from 2%
to 98%.
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