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Linear and non-linear stability analyses of electroconvection under an AC electric field are
investigated using the normal mode method and truncated representation of Fourier series
respectively. The principle of exchange of stabilities is shown to be valid and subcritical
instability is ruled out. Several qualitative results on stability are discussed on the govern-
ing linear autonomous system, and also by using the concept of a self-adjoint operator.
Spectral analysis of electroconvection is also made to provide information on the relative
dominance of various modes on convection. The quantification of heat transfer is done
on the Nusselt number–Rayleigh number plane for steady finite amplitude convection
and through time series plots of the Nusselt number for unsteady finite amplitude convec-
tion. The effect of the electric number on stream line pattern and Nusselt number is delin-
eated. Time series plots of the amplitudes of thermal conduction and convection are also
presented. It is found that the effect of increasing the electric number is to enhance the
amplitudes and thereby the heat transport. The sensitive dependence of the solution of
the Lorenz system of electroconvection to the choice of initial conditions points to the pos-
sibility of chaos.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The occurrence of cellular convection in Newtonian liquid layers heated from below is generally ascribed to two different
mechanisms: the buoyancy and surface tension mechanisms. The buoyancy driven convection is popularly known as ‘‘Ray-
leigh–Bénard Convection (RBC)’’ while the surface-tension driven convection is referred to as ‘‘Marangoni Convection (MC)’’.
In the case of dielectric liquids, thermally and electrically induced gradients of polarization also contribute to the convective
motion besides the two aforesaid candidates pertaining to Newtonian liquids. The Rayleigh–Bénard convection in dielectric
liquids, using the classical linear stability theory, has been exhaustively studied by Takashima [1], Takashima and Ghosh [2],
Takashima and Hamabata [3], Oliveri and Atten [4], Agrait and Castellanos [5], Ko and Kim [6], Stiles [7], Maekawa et al. [8],
Stiles and Kagan [9], Stiles et al. [10], El Adawi et al. [11], Othman and Zaki [12] and Siddheshwar [13].

The study of finite amplitude convection (Veronis [14]) using a truncated Fourier representation, has gained momentum
in recent years owing to its simplicity and nonlinear complexity of the solution. It is found handy by the researchers at least
for four reasons: It can be used (i) to determine the plan-forms of cellular motion that can occur in the fluid, (ii) to explicate
the convective processes of many non-isothermal situations of practical interest, (iii) to quantify the heat transfer and (iv) to
advance a bit closer to the challenging problem of the onset of chaotic motion.

The reported works on nonlinear convection in dielectric liquids are very scant owing to the involvedness of both the gov-
erning equations and the solution procedure. Ko and Kim [6] have studied electrohydrodynamic convective instability in a
. All rights reserved.
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horizontal fluid layer with temperature gradient. Nonlinear evolution of disturbances near the onset of convection is
considered.

Stiles et al. [10] studied the problem of convective heat transfer through polarized dielectric liquids. It is shown that for a
critical voltage, as the gravitational Rayleigh number becomes increasingly negative, the critical wave number at the onset of
convection becomes very large. As the temperature drop between the plates increases the fraction of the heat transfer asso-
ciated with convection is found to pass through a maximum value when the critical horizontal wave number is close to 4
times its value when gravity is absent.

Haque and Arajs [15] have examined convective specific heat transfer in liquids in the presence of non-uniform electric
fields. The heat transfer coefficient has been evaluated under the influence of ac and dc electric fields, and the efficiency ob-
tained in a dc field is found to be higher than in the ac field.

We note that the study of finite amplitude Rayleigh–Bénard convection and heat transport in a dielectric liquid by means
of a minimal Fourier series representation does not seem to have been undertaken. Accordingly, in this paper we concentrate
on a weakly nonlinear local stability analysis of thermal convection in a dielectric liquid permeated by a vertical, uniform AC
electric field.

1.1. Mathematical formulation and solution

Consider an infinite horizontal layer of a Boussinesquian dielectric liquid of depth ‘h’ that supports a temperature gradient
DT and an AC electric field in the vertical direction. The upper and lower boundaries are maintained at constant temperatures
To and To + DT (DT > 0) respectively. The schematic of the same is shown in Fig. 1. For mathematical tractability we confine
ourselves to two-dimensional rolls so that all physical quantities are independent of y, a horizontal co-ordinate. Further, the
boundaries are assumed to be free and perfect conductors of heat. We assume the dynamic viscosity l of the dielectric liquid
to be a constant.

The governing equations describing the Rayleigh–Bénard instability situation in a constant viscosity dielectric liquid are:
Continuity equation
r �~q ¼ 0: ð1Þ
Conservation of linear momentum
qo
@~q
@t
þ ð~q � rÞ~q

� �
¼ �rp� qgk̂þ ð P

!�rÞ E
!þ lr2~q: ð2Þ
Conservation of energy
qoCVE
@T
@t
þ ð~q:rÞT

� �
¼ k1r2T: ð3Þ
Density equation of state
q ¼ qo½1� atðT � ToÞ�: ð4Þ
The effects of heat source and radiation are assumed to be negligible in writing the energy equation (3).
It should be observed that the nonlinear terms ð~q � rÞ~q; ~q � rT and ð P

!�rÞ E
!

are to be retained in the considered nonlin-
ear stability analysis and are the overriding objects of interest in so far as the finite amplitude theory is concerned.

Electric field equations, simplified for a dielectric liquid under an AC electric field, take the form
r:D!¼ 0; r� E
!¼~0; ð5Þ

D
!¼ eo E

!þ P
!
; P
!¼ eoðer � 1Þ E

!
; ð6Þ

er ¼ eo
r � eðT � ToÞ; ð7Þ
z = 0 

z = h

Newtonian dielectric liquid 

x

z

Eok

T  = To

T  = To + ΔT 

y

g

Fig. 1. Configuration of the problem.
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where E
!

is an AC electric field, which is assumed to oscillate sufficiently rapidly so as to make the body force on any free
charges in the liquid inconsequential and the rest of the quantities have their usual meaning. It is expedient to write
eo

r ¼ ð1þ veÞ, where ve is the electric susceptibility, for it enables us to arrive at the conventional definition P
!¼ eove E

!
in

the absence of the temperature dependence of er, that is, when e = 0. In writing Eq. (7) we have assumed that er varies with
the electric field strength quite insignificantly [9].

The electric boundary conditions are that the normal component of the electric displacement D
!

and tangential compo-
nent of the electric field E

!
are continuous across the boundaries.

Taking the components of polarization and electric field in the basic state to be [0,Pb(z)] and [0,Eb(z)], we obtain the qui-
escent state solution
~qb ¼ ð0;0Þ; Tb ¼ To � DT
h z; qb ¼ qo 1þ at

DT
h z

� �
;

E
!

b ¼ ð1þveÞEo

ð1þveÞþeDT
h z

h i
k̂; Pb ¼ eoEoð1þ veÞ 1� 1

ð1þveÞþeDT
h z

h i
k̂;

9=
; ð8Þ
where Eo is the root mean square value of the electric field at the lower surface. On this basic state we superpose finite ampli-
tude perturbations of the form
~q ¼~qb þ ðu0;w0Þ; T ¼ Tb þ T 0; p ¼ pb þ p0; q ¼ qb þ q0;

P
!¼ P

!
b þ P01; P

0
3

� �
; E
!¼ E

!
b þ E01; E

0
3

� �
;

)
ð9Þ
where the prime denotes perturbation. The second of Eq. (6) now leads to
P01 ¼ eoveE01 � eeoT 0E01;

P03 ¼ eoveE03 � eeoEoT 0 � eeoT 0E03;

)
ð10Þ
where it has been assumed that eDT� (1 + ve). Since we consider only two-dimensional disturbances, we introduce the
stream function w0
u0 ¼ @w
0

@z
; w0 ¼ � @w

0

@x
; ð11Þ
which satisfy the continuity equation (1) in the perturbed state. Introducing the perturbed electric potential U0 through the
relation E

!0 ¼ rU0, eliminating the pressure p in Eq. (2), incorporating the quiescent state solution, we obtain the dimension-
less form of the vorticity and heat transport equations as
1
Pr

@

@t
ðr2wÞ ¼ �ð1þ LÞ @T

@x
þ L

@2U
@x@z

þr4wþ L
@ðT; @U

@zÞ
@ðx; zÞ þ

1
Pr

@ðw;r2wÞ
@ðx; zÞ ; ð12Þ

@T
@t
¼ �RT

@w
@x
þr2T þ @ðw; TÞ

@ðx; zÞ ; ð13Þ
where
L ¼ e0e2E2
0DT

atgq0ð1þ veÞh
ðElectric numberÞ;

Pr ¼ l
qok1

ðPrandtl numberÞ
and

r2 ¼ ð@2=@x2Þ þ ð@2=@y2Þ þ ð@2=@z2Þ is the three dimensional Laplace operator. It can easily be verified that
RET

L
¼ RT ;
where
RET ¼
e0asDTV2

l1k1
ðElectric Rayleigh numberÞ:
In Eqs. (12) and (13), the asterisks have been dropped for simplicity and we continue doing so in the remaining part of the
paper. Using Eq. (10) in the first of Eq. (5) and non-dimensionalizing the resulting equation, we obtain
r2U� @T
@z
¼ 0; ð14Þ
where it has been assumed that eDT
RT
� ð1þ veÞ.

Eqs. (12)–(14) are solved using the boundary conditions
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w ¼ r2w ¼ T ¼ @U
@z
¼ 0 at z ¼ 0;1: ð15Þ
From Eq. (15) it is clear that the boundaries are taken to be flat, stress-free and perfect conductors of heat. We also note
that the boundary condition for the electric potential U, which allows periodic solutions in the vertical direction, is tanta-
mount to assuming that the electric susceptibility ve with respect to the perturbed field is large at both the boundaries
[2]. In the next section, we discuss the linear stability analysis, which is of great utility in the local nonlinear stability analysis
to be carried out later on in the paper.

2. Linear stability analysis

In order to study the linear theory we consider the linear version of Eqs. (12)–(14) and assume the solutions to be periodic
waves of the form [16]
w

T

U

2
64

3
75 ¼ ex1t

wo sinpax sinpz

ho cospax sin pz
Uo
p

� �
cospax cos pz

2
64

3
75; ð16Þ
which satisfy the boundary conditions in Eq. (15). In Eq. (16), x1 = xr + ix, in which xr is the growth rate and x is the fre-
quency of oscillations, pa is the horizontal wave number and p is the vertical wave number. wo, ho and Uo are, respectively,
amplitudes of the stream function, temperature and the electric potential. Substituting Eq. (16) into the linearized versions
of Eqs. (12)–(14), we obtain
x1

Pr
þ g2

1

� 	
g2

1wo þ ð1þ LÞpaho þ LpaUo ¼ 0; ð17Þ

RTpawo þ x1 þ g2
1

� �
ho ¼ 0; ð18Þ

ho þ ð1þ a2ÞUo ¼ 0; ð19Þ
where g2
1 ¼ p2ð1þ a2Þ. For a non-trivial solution for wo, ho and Uo, we require
RT ¼
x1 þ g2

1

� � x1
Pr þ g2

1

� �
g2

1ð1þ a2Þ
p2a2½1þ ð1þ LÞa2� : ð20Þ
The onset of convection in dielectric liquids can occur in one of the following ways:

(i) marginal stationary convection (steady convection),
(ii) marginal oscillatory convection (unsteady convection).

In the marginal state the real part of x1 is equal to zero.
The thermal Rayleigh number RT is the eigenvalue of the problem that throws light on the stability or otherwise of the

system. The critical value of RT, i.e., RTc signifies the onset of convection via one of the above modes. RTc of stationary is dif-
ferent from RTc of oscillatory. If RTc of stationary convection is less than that of oscillatory convection, then we say the ‘‘Prin-
ciple of Exchange of Stabilities (PES)’’ is valid. We now move over to the discussion on the stationary instability followed by
that on the validity or otherwise of the PES.

2.1. Marginal stationary state

If x1 is real, then the marginal stationary convection occurs when x1 = 0. This gives the stationary thermal Rayleigh num-
ber [2]
Rs
T ¼

ð1þ a2Þg6
1

p2a2½1þ ð1þ LÞa2� : ð21Þ
The critical wave number ac satisfies the equation
ð1þ LÞ a2
c

� �2 þ 2a2
c þ 1

h i
2a2

c � 1
� �

þ La2
c a2

c � 2
� �

¼ 0: ð22Þ
Eq. (22) clearly shows that ac depends on the electric number L. When we take L = 0, we obtain the results of the classical
Rayleigh–Bénard instability with a2

c ¼ 0:5 and Rs
Tc ¼ 657:5 [16]. Rearranging Eq. (21), we may write
Rs
T ¼

g6
1

ðpaÞ2
� ðpaÞ2

g2
1

RET ;
which coincides exactly with the expression of the stationary Rayleigh number of Roberts [19].
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2.2. Marginal oscillatory state

Taking x1 = ix (x being the frequency of oscillations) in Eq. (5) and separating the real and imaginary parts, we obtain
the oscillatory thermal Rayleigh number
Ro
T ¼
ð1þ a2Þ g6

1 �
x2g2

1
Pr

h i
p2a2½1þ ð1þ LÞa2� þ ixN; ð23Þ
where
N ¼
g4

1 1þ 1
Pr

� �
ð1þ a2Þ

p2a2½1þ ð1þ LÞa2� :
Since RT
o is a real quantity, the imaginary part of Eq. (23) has to vanish. This gives us two possibilities:

(i) x – 0, N = 0 (oscillatory instability),
(ii) x = 0, N – 0 (stationary instability).

Taking N = 0, we get g4
1 1þ 1

Pr

� �
ð1þ a2Þ ¼ 0, which is independent of x. In problems wherein oscillatory convection is pre-

ferred to stationary, the condition N = 0 leads to an expression for x2 that is in turn substituted in the real part of the expres-
sion for Ro

T , thereby yielding the oscillatory thermal Rayleigh number. In view of the fact that N is independent of x, we infer
that oscillatory convection is not possible in the present problem. This essentially means that the PES holds good for the
problem at hand.

In the next section we explore the possibility of cross-interaction of several modes of steady electroconvection by con-
sidering a spectral representation of the stream function w and perturbation temperature T as an infinite series of orthogonal
space functions. To proceed with this approach we first assume steady state and then eliminate U in the linear term between
Eqs. (12) and (14) to obtain
r6wþ L
@3T
@x@z2 � ð1þ LÞ @

@x
ðr2TÞ þ Lr2 @ T; @U

@z

� �
@ðx; zÞ


 �
þ 1

Pr
r2

@ w;r2w
� 	
@ðx; zÞ

0
@

1
A ¼ 0: ð24Þ
Eq. (13) in the steady state is
r2T � RT
@w
@x
þ @ðw; TÞ
@ðx; zÞ ¼ 0: ð25Þ
We now proceed with the spectral analysis of electroconvection by writing RTc for RT suggesting the use of a Rayleigh
number that helps in taking into account the different modes that compete in influencing convection.

2.3. Spectral analysis of electroconvection

The linearized non-dimensional vorticity and heat transport equations (24) and (25) are transformed into the spectral
domain by representing w and T as an infinite series of orthogonal space functions given by
w ¼ �
X1

l¼�1

X1
n¼�1

wc exp iðlaxþ nzÞ; ð26Þ

T ¼ �i
X1

l¼�1

X1
n¼�1

hc exp iðlaxþ nzÞ; ð27Þ
where c = (l,n), l and n are integer multiples of p and ‘a’ is the horizontal wave number.
The basic coupled partial differential equations (24) and (25) are transformed into the spectral domain using Eqs. (26) and

(27) resulting in the following spectral equations:
a6
cwc � al n2L� ð1þ LÞa2

c

h i
hc ¼ 0; ð28Þ

a2
chc þ laRTcwc ¼ 0; ð29Þ
where a2
c ¼ a2l2 þ n2. For a non-trivial solution of the above homogeneous system we require
a6
c �ðn2L� ð1þ LÞa2

cÞal

RTcal a2
c

�����
����� ¼ 0:
This yields us the expression for the modal Rayleigh number RTc in the form
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RTc ¼
a8

c

a2l2 ð1þ LÞa2
c � n2L

h i : ð30Þ
We see from Eq. (15) that RTc is a continuous function of a2. For a given mode c = (l,n), the critical modal Rayleigh number
RTcc and the corresponding critical wave number ac for various values of the parameter L have to be determined in each case
separately. The mode l = p, n = p gives us the expression for the stationary thermal Rayleigh number (Eq. (6)) discussed
earlier.

Our main objective in the next section is to decipher analytically the effect of the electric number, L, on the monotonicity
of the thermal Rayleigh number RT using the concept of self-adjoint operator. In view of the fact that the PES is valid, we
consider only steady motions.

2.4. Parametric perturbation method

We assume the steady solution to the linear version of Eqs. (12)–(14) in the form
w

T

U

2
64

3
75 ¼

wðzÞ sin pax

TðzÞ cospax

UðzÞ cospax

2
64

3
75: ð31Þ
Substituting Eq. (16) into the linear form of Eqs. (12)–(14), we obtain
ðD2 � p2a2Þ2wþ pað1þ LÞT � LpaDU ¼ 0; ð32Þ
RTpaw� ðD2 � p2a2ÞT ¼ 0; ð33Þ
DT � ðD2 � p2a2ÞU ¼ 0; ð34Þ
where D ¼ d
dz. Eliminating U between Eqs. (32) and (34), we obtain
ðD2 � p2a2Þ3wþ pafD2 � ð1þ LÞp2a2gT ¼ 0: ð35Þ
Eq. (33) can be rewritten as
RTpa½D2 � ð1þ LÞp2a2�w� ðD2 � p2a2Þ½D2 � ð1þ LÞp2a2�T ¼ 0: ð36Þ
We now define a symmetric operator L1 as follows:
L1 ¼
RTðD2 � p2a2Þ3RTpafD2 � ð1þ LÞp2a2g

RTpafD2 � ð1þ LÞp2a2g � ðD2 � p2a2ÞfD2 � ð1þ LÞp2a2g

" #
: ð37Þ
We next define a vector V
!

such that V
!¼ w

T

� �
. Eqs. (35) and (36) can now be written as
L1 V
!¼~0: ð38Þ
We define the inner product between two vectors ~a and ~b such that
h~a;~bi ¼
Z

V

~a�Tr �~bdV ; ð39Þ
where V represents the domain of the integral operator in which ~a and ~b are defined, the asterisk represents the complex
conjugate and Tr represents the transpose. As the operator L1 and the boundary conditions on w and T in Eq. (15) are sym-
metric, one may easily prove that L1 is self-adjoint and so are the boundary conditions on w and T in Eq. (15).

To seek information on the variation of RT with respect to L, we differentiate Eq. (38) with respect to L and obtain
L1 V
!

d ¼~ud; ð40Þ
where
~ud ¼
p3a3T

�paRTdw

" #
and the subscript ‘d’ represents the derivative with respect to L. Applying a Fredholm alternative condition to Eq. (40), we
obtain
p3a3
Z

V
w�TdV ¼ �paRTd

Z
V

T�wdV : ð41Þ
From the above equation it is clear that RTd < 0. This means that RT is a decreasing function of L and hence the effect of L is to
destabilize the system.
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The linear theory discussed in a previous section reveals that the stationary mode of instability is preferred to the oscil-
latory one. In deed, the linear theory predicts only the condition for the onset of convection and is silent about the heat trans-
fer. We now embark on a weakly nonlinear analysis by means of a truncated representation of Fourier series for velocity,
temperature and electric fields to find the effect of various parameters on finite amplitude steady convection and to know
the amount of heat transfer. We note that the results obtained from such an analysis can serve as starting values while solv-
ing a more general nonlinear convection problem.

3. Local nonlinear stability analysis

The first effect of nonlinearity is to distort the temperature field through the interaction of w and T, and U and T. The dis-
tortion of temperature field will correspond to a change in the horizontal mean, i.e., a component of the form sin (2pz) will be
generated. Thus a minimal double Fourier series which describes the finite amplitude convection in a dielectric liquid is
w

T

U

2
64

3
75 ¼

AðtÞ sinpax sinpz

BðtÞ cospax sin pz
1
p EðtÞ cos pax cospz

2
64

3
75þ

0
CðtÞ

0

2
64

3
75 sinð2pzÞ; ð42Þ
where the amplitudes A, B, C and E are to be determined from the dynamics of the system. Substituting Eq. (42) into Eqs.
(12)–(14), equating the coefficients of like terms, we obtain the following nonlinear autonomous system (generalized Lorenz
model, Sparrow [17]) of differential equations
_A ¼ �Prg2
1A� paPrð1þ LÞ

g2
1

B� paPrL
g2

1

E� Lp2aPr
g2

1

CE; ð43Þ

_B ¼ �RTpaA� g2
1B� p2aAC; ð44Þ

_C ¼ p2a
2

AB� 4p2C; ð45Þ

0 ¼ Bþ ð1þ a2ÞE; ð46Þ
where the over dot denotes time derivative. It is advantageous to eliminate the variable E between Eqs. (43) and (46) noting
that Eq. (46) does not have a time derivative term on the left side. This process reduces the system of Eqs. (43)–(46) to
_A ¼ �Prg2
1A� paPr½1þ ð1þ LÞa2�

ð1þ a2Þg2
1

Bþ Lp2aPr
ð1þ a2Þg2

1

BC; ð47Þ

_B ¼ �RpaA� g2
1B� p2aAC; ð48Þ

_C ¼ p2a
2

AB� 4p2C: ð49Þ
The third order Lorenz system described by Eqs. (47)–(49) is uniformly bounded in time and possesses many properties of
the full problem. Moreover, the phase-space volume contracts at a uniform rate
@ _A
@A
þ @

_B
@B
þ @

_C
@C
¼ � ðPr þ 1Þg2

1 þ 4p2� �
; ð50Þ
which is always negative and therefore the system is bounded and dissipative. As a result, the trajectories are attracted to a
set of measure zero in the phase-space; in particular, they may be attracted to a fixed point, a limit cycle or perhaps, a
strange attractor. Before solving the nonlinear system of equations, we consider the linear autonomous system and analyze
the critical points. The nature of the critical points obtained from the linear system discloses information about the trajec-
tories in the phase plane. The nature of these trajectories is retained by the nonlinear system but with distortions dictated by
the nonlinear terms.

3.1. Linear autonomous system

The linearized autonomous system is
_A ¼ �Prg2
1A� paPr½1þ ð1þ LÞa2�

ð1þ a2Þg2
1

B; ð51Þ

_B ¼ �RpaA� g2
1B; ð52Þ

_C ¼ �4p2C: ð53Þ
To explore the critical points of the above linear autonomous system of equations, we follow Simmons [18] and write the
auxiliary equation
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�Prg2
1 � n �paPr½1þð1þLÞa2 �

ð1þa2Þg2
1

0

�RTpa �g2
1 � n 0

0 0 �4p2 � n

��������

��������
¼ 0:
On expansion, we obtain
n2 þ ðPr þ 1Þg2
1nþ Prg4

1 �
RTp2a2Pr½1þ ð1þ LÞa2�

ð1þ a2Þg2
1

� �
¼ 0: ð54Þ
Let n1 and n2 be the roots of Eq. (54). We now discuss three cases according to the nature of these roots.

Case (i) n1 and n2 are real and equal.
In this case, we have
ðPr þ 1Þ2g4
1 ¼ 4 Prg4

1 �
RTp2a2Pr½1þ ð1þ LÞa2�

ð1þ a2Þg2
1

� �
:

On simplification, the above yields an expression for RT
RT ¼
½4Pr � ðPr þ 1Þ2�ð1þ a2Þg6

1 : ð55Þ

4p2a2Pr½1þ ð1þ LÞa2�

For the above value of RT, the critical point is a node. In this case the system becomes stable as the paths approach towards
the critical point.

Case (ii) n1 and n2 are real and distinct.
In this case, we have the condition
RT >
½4Pr � ðPr þ 1Þ2�ð1þ a2Þg6

1

4p2a2Pr½1þ ð1þ LÞa2� : ð56Þ
For this range of values of RT, the critical point is a saddle point and the system is unstable as paths never approach the critical
points.
Case (iii) n1 and n2 are imaginary.

The requirement in this case takes the form
RT <
½4Pr � ðPr þ 1Þ2�ð1þ a2Þg6

1

4p2a2Pr½1þ ð1þ LÞa2� : ð57Þ
For this range of values of RT, the critical point is a spiral and the system is asymptotically stable if paths approach the critical
point as t ? �1 and the system becomes unstable as t ?1 if the paths spiral out.

Having made a qualitative analysis of the linear autonomous system, we note that the nonlinear system of autonomous
differential equations (47)–(49) is not amenable to analytical treatment for the general time-dependent variables and we
need to solve it by means of a numerical method. However, in the case of steady motions, these equations can be solved
in closed form. Such solutions prove very useful because they may show that a finite amplitude steady solution to the system
is possible for sub-critical values of the thermal Rayleigh number and that the minimum value of RT for which finite ampli-
tude steady solution is possible lies below the critical values corresponding to a steady infinitesimal disturbance or an over-
stable one. In the case of steady motions, Eqs. (47)–(49) take the form
ð1þ a2Þg4
1Aþ pa½1þ ð1þ LÞa2�B� Lp2aBC ¼ 0; ð58Þ

RTpaAþ g2
1Bþ p2aAC ¼ 0; ð59Þ

8C � aAB ¼ 0: ð60Þ
Writing B and C in terms of A using Eqs. (59) and (60) and substituting the resulting expressions into Eq. (58), we
obtain
A
a4p4ð1þ a2Þg4

1
A2

8

� 	2
þ a2p2

2g6
1ð1þ a2Þ

�RT a2p2½1þ ð1þ LÞa2�
�R2

T a2p2L

8><
>:

9>=
>;

2
64

3
75 A2

8

� 	

þ g2
1 g6

1ð1þ a2Þ � RT a2p2½1þ ð1þ LÞa2�
� �

8>>>><
>>>>:

9>>>>=
>>>>;
¼ 0: ð61Þ
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The solution A = 0 corresponds to pure conduction and the rest of the solutions are given by
A2

8
¼ 1

2p2a2ð1þ a2Þg4
1

� �
�

RTp2a2½1þ ð1þ LÞa2� þ LR2
Tp2a2 � 2ð1þ a2Þg6

1

� paRT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2a2ð1þ a2Þ2 þ L2p2a2ðRT þ a2Þ2

þ2Lð1þ a2Þfp2a2ðRT þ a2Þ � 2g6
1g

s
2
664

3
775: ð62Þ
We take the positive sign in front of the radical in Eq. (62) on the ground that the amplitude of the stream function is real.
The finite amplitude Rayleigh number RTf can be obtained from Eq. (62) by equating the discriminant to zero that gives us the
following expression for RTf
a4p4L2R4
Tf þ 2a4p4Lð1þ ð1þ LÞa2ÞR3

Tf þ a2p2ða2p2½1þ ð1þ LÞa2�2 � 4g6
1ð1þ a2ÞLÞR2

Tf þ 4a2p2ð1þ a2Þg4
1½1þ ð1

þ LÞa2� 1� g2
1

� �
RTf þ 4ð1þ a2Þg10

1 ð1þ a2Þg2
1 � 1

� �
¼ 0: ð63Þ
Computation reveals that RTfc > Rs
Tc , thus ruling out sub-critical instability.

4. Heat transport

In the study of convection in dielectric liquids the quantification of heat transport across the layer plays a crucial role. This
is because the onset of convection, as the thermal Rayleigh number RT is increased, is more readily detected by its effect on
the heat transfer.

The Nusselt number Nu is defined as
NuðtÞ ¼ Heat transport by ðconductionþ convectionÞ
Heat transport by ðconductionÞ ¼

pac
2p

R 2p=pac

0 ð1� zþ TÞ;zdx
h i

z¼0

pac
2p

R 2p=pac

0 ð1� zÞ;zdx
h i

z¼0

: ð64Þ
Substituting T from Eq. (42) into Eq. (62) and then writing C in terms of A using Eqs. (58)–(60), we obtain
Nu ¼ 1þ
2p2a2RT

A2

8

� 	
g2

1 þ a2p2 A2

8

� 	 : ð65Þ
The second term on the right side of Eq. (65) characterizes the convective contribution to the heat transport.

5. Results and discussion

In the paper, AC electroconvection of infinitesimal and finite amplitude disturbances is considered using normal modes
and truncated representation of Fourier series respectively. The principle of exchange of stabilities is shown to be valid in the
case of the linear theory. Using the concept of self-adjoint operator qualitative effect of the effect of electric number (L) on
the onset of convection is studied. Using a spectral representation relative domination of different modes of convection is
also considered. The nonlinear theory helps in deciding whether subcritical motion is possible in the case of AC electrocon-
vection. It also helps in quantifying heat transfer and in understanding the transition from periodic oscillations to a behavior
that is apparently chaotic. Table 1 documents the fact that the effect of increasing electric number is to decrease the critical

value of the thermal Rayleigh number RS
Tc

� 	
and increase in the value of critical wave number (ac), and there by the critical

wave length (kc). The above result on RS
Tc was also shown by using the concept of self-adjoint operator. Further, from Table 1

we see that the results of Roberts [19] can be recovered from the present study.
The variation of the modal Rayleigh number RTc versus a2 for some modes is shown in Fig. 2. Both even and odd parity

modes are covered in the figure. The relative domination of different modes is brought out clearly in the figure. We note that
(p,p) is the most fundamental mode and is not damped out by any higher mode. The effect of L clearly is to ensure that the
mode (p,p) picks up instability earlier than the other modes. This essentially means that L – 0 favors the fundamental mode
Table 1
Critical thermal Rayleigh number Rs

Tc

� �
, critical wave number (ac) and critical wavelength (kc) as a function of the electric number L (or

electric Rayleigh number RE) for stationary instability in a constant viscosity dielectric liquid.

L present paper RE Roberts [19] Rs
Tc ac kc ¼ 2p

pac

0 0657.51 657.511 0.500 4.000
10 1293.90 129.390 0.956 2.092

100 1527.90 15.279 0.995 2.010
500 1551.50 3.105 0.999 2.002

1000 1555.00 1.555 0.999 2.002
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Fig. 2. Plot of RTc vs. a2 (for both even and odd parity modes).
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(p,p) in effecting instability in the form of stationary convection. This justifies the choice of the normal mode solution used
in the paper for studying linear stability.

Fig. 3 is a plot of the stream lines for different values of L and RT, using Eq. (62) for obtaining A. These figures reiterate
remarks on kc presented earlier in the context of Table 1.

We consider Nusselt number plots of both steady and unsteady finite amplitude electroconvection. The realm of steady
nonlinear electroconvection warrants the quantification of heat transfer in the Nusselt–Rayleigh plane for different
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Fig. 3. Streamlines for different values of L in the case of steady finite amplitude convection.
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values of L. We observe from Fig. 4 that the Nusselt number increases with increase in RT for all values of L. Further the
effect of increasing L is to increase the Nusselt number. We also notice that for large RT, Nu approaches the asymptotic value
3. It can also be seen that Nu becomes independent of RT for large values of L. Computations further reveal that steady finite
amplitude subcritical instabilities can be ruled out in the case of AC electroconvection.
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Fig. 4. Plot of the Nusselt number Nu vs. the thermal Rayleigh number RT for different values of L in the case of steady finite amplitude convection.
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For unsteady finite amplitude convection we have the plots of Nu versus t for different values of L and these are depicted
in Figs. 5–7. Before we discuss the results we note that the choice of RT = 658 has been made with the intention of having
time series plots in the convective regime of electroconvection for small and large L. In this regime Nu takes a value greater
than 1 to signify that heat transport is by conduction and convection. When RT < RTc we have the conduction regime and on-
set at RT = RTc. The value of the critical Rayleigh number for different values of L is recorded in Table 1. The transients in the
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Fig. 6. Variations in the Nusselt number, Nu, with time for different initial conditions and for L = 100, RT = 658 and Pr = 10.
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Figs. 5–7 clearly demonstrate the approach of Nu towards the value 3 for large values of L as discussed earlier in the context
of Fig. 4.

The sensitive dependence on the initial conditions is considered in Fig. 7 by studying the variation of Nu with time for
fixed value of RT and Pr, and different values of L. The chosen initial conditions are A(0) = 0, B(0) = 1.0001 and C(0) = 0, the
departure from the earlier chosen initial conditions of (A,B,C = 0,1,0). As the system is sensitive to the initial conditions,
we may conclude that the time evolution eventually leads to chaotic motion. Due to the destabilizing nature of L on the onset
of electroconvection (see Table 1), it is obvious that chaos is realized earlier in the case of L – 0 compared to that in the case
of L = 0.

Some general results from the linear and non-linear stability analyses are:

(i) [pac]L=0 < [pac]L–0,
(ii) Rs

Tc

� �
L¼0 > Rs

Tc

� �
L–0,

(iii) [Nu]L=0 < [Nu]L–0 and
(iv) Chaos manifests earlier in electroconvection compared to that in classical Rayleigh–Bénard convection.
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