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In this paper, we give an exact analytical solution of the Falkner–Skan equation for all values of b.

Generalized similarity transformations are used to convert the Prandtl’s boundary layer equations

into a non-linear ordinary differential equation which accounts two important flow parameters: the

pressure gradient parameter b and velocity ratio parameter E. Our exact solution method embeds a

known closed-form solution for b¼�1 as a special case. We also give the Dirichlet’s series solution to

the problem for E¼ 0, which is particularly useful when the derivative boundary condition at infinity is

zero. We compare the results of both methods with that of direct numerical solution, and found that

there is a good agreement between both the results. The results are presented in the form of velocity

profiles and skin friction coefficient. Finally, the physical significance of the flow parameters is

discussed in detail.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Study of boundary-layer flows of a viscous and incompressible
fluid over a continuously stretching surface has significant applica-
tions in engineering and industrial processes, such as an aerodynamic
extrusion of plastic sheets, liquid film in condensation processes,
cooling of a metallic plate in a cooling bath, wire drawing, drawing of
plastic films, metal spinning, roofing shingles, insulating materials,
cooling of films or sheets, conveyor belts, metallic plates, etc., and
in the applications of glass, and polymer industries as well. In all
the above applications, the stretching sheet moves with a constant
stretching speed and with parallel to its plane. Both the kinematics of
stretching sheet and the concurrent heating or cooling during such
processes have qualitative influence on the final products. Because of
these significant applications, the governing physical problem is
converted into an equivalent mathematical one which is necessarily
the most celebrated third order non-linear ordinary differential
equation: the Falkner–Skan equation which arises in the two-dimen-
sional boundary layer flow of viscous fluid with stream-wise pressure
gradient. The Falkner–Skan equation plays a considerable role in the
development of boundary layer theory in fluid mechanics. The
mathematical treatment of existence and uniqueness results for the
Blasius problem, a special case of the Falkner–Skan equation, was
established by Weyl [1]. Coppel [2] proved the following important
theorem on existence and uniqueness. It states that for all non-
negative f ð0Þ and f 0ð0Þ, the second derivative f 00ðZÞ is positive, zero or
negative throughout the interval 0rZr1 according as f 0ð0Þ is less
than, equal to or greater than 1. With this restriction on f 00ðZÞ, the
ll rights reserved.
solution is unique. Coppel [2] solved the Falkner–Skan equation for
b¼�1 exactly in terms of parabolic cylinder functions. Full numer-
ical solution of the Falkner–Skan equation for all values of b was
given by Hartree [3], Cebeci and Keller [4] and many more, using the
well-known shooting technique. Asaithambi [5] has solved the
Falkner–Skan equation numerically using finite difference scheme
which is different from shooting technique. In the solution method,
an infinite domain was converted into the finite one to achieve the
best accuracy.

Because of these significant applications, the Falkner–Skan flow
problem has been studied in different contexts. The Falkner–Skan
flow in the second grade fluid (Rajagopal et al. [6]), viscoelastic
fluid (Olagunju [7]), FENE-P model (Anabtawi and Khuri [8]), heat
transfer in nanofluids (Yacob et al. [9]), etc., has been studied.

Due to the high non-linearity of the problem, an exact solution of
the Falkner–Skan equation has not been given in the literature for all
values b. It does not admit any exact analytical solution except in
very special case. However, Riley and Weidman [10] have given an
exact analytical solution of the Falkner–Skan equation for b¼�1 in
terms of error and exponential functions which was replica of the
solution given by Yang and Chien [11] for different boundary
conditions. Most of the solutions are given for b¼�1 for different
cases in the literature. Liao [12] developed and implemented success-
fully a homotopy analysis method for the solution of the Falkner–
Skan equation for general value of b. Fang and Zhang [13] have given
an exact solution of the Falkner–Skan equation for b¼�1 and
explored a different branches of solutions. Recently, Sachdev et al.
[14] have found a new way of solving the Falkner–Skan equation for
general b. In their study, exact analytical solution for b¼�1 is
obtained in terms of error and exponential functions which is then
used to give exact solution for general b. Kudenatti and Awati [15]
have applied the above method, as pioneered by Sachdev et al. [14]
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for the solution of the Falkner–Skan equation for general b for a fixed
plate and the plate with suction or injection.

Afzal [16] recently has given a new version of the Falkner–
Skan equation relating free stream velocity to composite refer-
ence velocity i.e. sum of the velocities of stretching boundary and
free stream. In a boundary layer flow, moving boundary with
speed Uw is subjected to a free stream speed U1. For Uw4U1
or UwoU1, these two problems are physically different which
require two sets of boundary layer equations and boundary
conditions. Afzal [16] proposed the reference velocity U(x) as
UðxÞ ¼UwþU1 which leads to a single set of boundary layer
equation along with the boundary conditions, irrespective of
whether Uw4U1 or UwoU1 (see Section 2 for details).

In the present paper, we give an exact analytical solution of the
Falkner–Skan equation for all values of b using the method pioneered
by Sachdev et al. [14]. We solve this problem for general b both
analytically, in circumstances in which the problem can be solved for
the range of 0oEo 1

2, and numerically for the range 1
2 oEo1. In the

present study, Afzal’s [16] work on the solution of the Falkner–Skan
equation for b¼�1 has been extended for general values of b.

The organization of the paper is as follows. The two-dimen-
sional laminar boundary layer equations and similarity transfor-
mations are given in Section 2 to derive the Falkner–Skan
equation with relevant boundary conditions. However, this deri-
vation can directly be taken from the Afzal [16], but to make this
paper self-contained, it is derived in the present paper. An exact
solution of the Falkner–Skan equation for b¼�1 is also given in
Section 2. Section 3 is devoted to give an exact solution of the
Falkner–Skan equation for all general values of b. In Section 4, we
derive another version of the Falkner–Skan equation for E¼ 0. We
then apply the Dirichlet series; one of the semi-analytic and
highly efficient techniques, for its solution. Section 5 devotes for
comparison of the results obtained by our exact and Dirichlet
series method with that of direct numerical solution of the
Falkner–Skan equation and also with earlier results. The conclud-
ing section summarizes the major results of the present study.
2. Formulation of the problem

The two-dimensional laminar boundary layer equations for
viscous and incompressible fluid subjected to a pressure gradient
and stretching of the boundary surface are
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where u and v are the stream wise and normal velocities in x and
y respectively, r is the density of the fluid, p is the pressure
gradient, dp=dx¼�rU1ðdU1=dxÞ, U1 is the velocity at the edge
of the boundary layer of thickness d, and n is the kinematic
viscosity. The relevant boundary conditions are given as follows:

u¼UwðxÞ, v¼ 0 at y¼ 0; u¼U1ðxÞ as
y

d
-1, ð3Þ

where Uw(x) is the velocity of the stretching surface. Using similarity
transformations as in Afzal [16] in the above systems (1)–(3), we get

f 000ðZÞþ f ðZÞf 00ðZÞþbðE2�f 02ðZÞÞ ¼ 0, 0 ¼
d

dZ
, ð4Þ
f ðZÞ ¼ EZþ d
E�

d
E

exp
�d2

2E3

 !
þ

ffiffiffiffiffiffiffiffiffi
2pE
p d

4E2
erf

d
E
ffiffiffiffiffi
2E
p

� � !
exp

X2

2E

 !
�

ffiffiffiffiffiffiffiffiffi
2pE
p d

4E
with the boundary conditions

f ð0Þ ¼ 0, f 0ð0Þ ¼ 1�E, f 0ðþ1Þ¼ E, ð5Þ

where E¼U1=ðU1þUwÞ and b¼ 2m=ð1þmÞ. For E¼ 1, Eqs. (4)
and (5) reduce to the classical Falkner–Skan equation and for Eo0
and E41, both the free stream and the wall are moving in negative
x-direction. For 0oEo1 both the wall and the free stream are
moving in positive x-direction. The Falkner–Skan equation is one of
the most celebrated boundary layer equations which describes the
viscous two-dimensional laminar boundary layer flow over a semi-
infinite flat plate under stream-wise pressure gradient. The Falkner–
Skan equation includes many special cases such as a flat plate
boundary layer flow when b¼ 0 (the Blasius flow), the case b40
corresponds to a favorable external pressure gradient in the stream
direction, for bo0, the flow has an adverse pressure gradient, the
stagnation flow towards a flat plate when b¼ 1. Although, the
mathematical equation for two cases E¼ 0 and E¼ 1 looks similar
but their physical behavior is entirely different which is obvious from
the boundary conditions. In the following section, we give an exact
analytical solution of systems (4) and (5) for general b in the range
0oEo 1

2.

2.1. The exact solution for b¼�1

Twice integration of systems (4) and (5) for b¼�1 with
respect to Z gives the Riccati equation of the type

f 0ðZÞþ f 2
ðZÞ
2
¼
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Solution of Eq. (6) is
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provided d2
¼ 2E2ð1�2EÞ and erfðZÞ ¼ ð2=

ffiffiffiffi
p
p
Þ
R Z

0 e�t2
dt. It is impor-

tant to note that the above exact analytical solution (7) is the
correct one as the same solution that is obtained by Afzal [16] has
wrongly typed or given (see Eq. (11) of that paper).

The axial velocity gradient at the wall is given by Eq. (7)

f 00ð0Þ ¼ d¼ 72E
ffiffiffiffiffiffiffiffiffiffi
1

2
�E

r
: ð8Þ

Eq. (8) shows that there are two solutions for Eo 1
2, and solution

does not exist for E4 1
2. It may be observed that f ðZÞ ¼ Z=2 for

E¼ 1
2 is the exact solution of (4) and (5). This is a critical solution

which changes the analytic character of the solution across the
parametric value E¼ 1

2.
This paper devices a method that helps in obtaining a new

exact analytical solution of the Falkner–Skan equations (4) and
(5) for general values of b. In the following section this has been
achieved using the method pioneered by Sachdev et al. [14].
3. The exact solution for general b

Observe that we have obtained a closed form solution (7) of
the Falkner–Skan equations (4) and (5) for b¼�1 which can be
rewritten as
2
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where X ¼ EZþd=E. This, for convenience, can be rewritten again as

f ðZÞ ¼ EZþ d
E
�

d
EGðZÞ

, ð10Þ

for general values of b. The function GðZÞ easily generalizes the
solution of the Falkner–Skan equation for general b. Substituting (10)
into (4), we get the following equation for GðZÞ:
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and the boundary conditions (5) become

Gð0Þ ¼ 1, G0ð0Þ ¼
d

2E2
, Gðþ1Þ¼1, ð12Þ

where G¼ GðZÞ. It readily follows from (10) that a closed form
solution of (11) and (12) for b¼�1 is given by
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The error and exponential functions in the above expression are
entire functions. As these functions may be expanded in Taylor series
about Z¼ 0 which have an infinite radius of convergence, we expect
the similar analysis for other values b. This motivates us to write the
series representation as

GðZÞ ¼
X1
n ¼ 0

anZn, ð14Þ

for general b. Substituting the series (14) into (11) and equating the
like powers of Z to zero, we get
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and the general recurrence relation to obtain the remaining coeffi-
cients

anþ3 ¼
E

dð1þnÞð2þnÞð3þnÞ

�
Xn

k ¼ 0

d2

E2
ðkþ1Þððb�2Þðn�kþ1Þakþ1an�kþ1

  
þðkþ2Þakþ2an�kÞþ
Xk

m ¼ 0

ðmþ1Þðkþ1�mÞð

�
6d
E ðk�mþ2Þak�mþ2an�k

�
�

6d
E ðn�kþ1Þakþ1�manþ1�k

þ
2d2

E2
akþ1�man�k

!
amþ1

!

þ
Xn�k

m ¼ 0

ðkþ1Þ 2bdakþ1�
d2

E2
ðkþ2Þakþ2

 !
aman�k�m

 !!

þ
Xn�1

k ¼ 0

Xk

m ¼ 0

2dðmþ1Þðkþ1�mÞamþ1akþ1�man�1�k

 

�
d
E
Xn�k

m ¼ 0

ðkþ1Þðkþ2Þðkþ3Þamakþ3an�k�m

�
Xn�k�1

m ¼ 0

dðkþ1Þðkþ2Þamakþ2an�k�m�1

!!
for n¼ 1;2,3, . . . :

ð16Þ

Notice from (16) that all the coefficients an have been obtained
in terms of the unknown a2. This unknown a2 characterizes the
coefficient of skin friction, must be obtained such that the
derivative condition at 1 is satisfied (see the last boundary
condition in (5)). This is equivalent to determine the value of
either a2 of the series (14) or f 00ð0Þ of systems (4) and (5) because
these are intrinsically related to each other through Eq. (10):

a2 ¼ f 00ð0Þþ
d3

2E3

 !
=2Ed: ð17Þ

The coefficients an involve two arbitrary constants, namely, d and
f 00ð0Þ. To determine one of the unknown constants a2 or f 00ð0Þ and
d, we match the series expansion of the closed form solution (13)
with that of series (14) with b¼�1, which gives the same
constant as d¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�2EÞ

p
. The other constant a2 or f 00ð0Þ remains

to be determined. To determine the constant f 00ð0Þ, integrate (4)
from Z¼ 0 to Z¼1 and using the conditions (5), we getZ 1
0
ðf 0ðZÞ�f 02ðZÞÞ dZþb

Z 1
0
ðE2�f 02ðZÞÞ dZ¼ f 00ð0Þ: ð18Þ

Since, left hand side of (18) also involves f 00ð0Þ, it can be solved
iteratively. Our results for f 00ð0Þ thus obtained agrees well with
that obtained by numerical solution of Falkner–Skan equations
(4) and (5) for all values of b. However, in order to effectively
illustrate the method used to find f 00ð0Þ, we rewrite the above
integral relation (18) asZ Zmax

0
ðf 0ðZÞ�f 02ðZÞÞ dZþb

Z Zmax

0
ðE2�f 02ðZÞÞ dZ¼ f 00ð0Þ, ð19Þ

where Zmax ¼ lim Z-1. Since, f 00ð0Þ appears on both sides of the
above relation, it has to be solved iteratively for all involved
parameters. The solution of the above asymptotic integral relation
is too complicated by the fact that the boundary condition is specified
at infinity. In the integrations, infinity is numerically approximated by
the large value of independent variable (i.e. Zmax). There is no such
priori general method for estimating this value. Selecting too small
value for Zmax does not assure convergence to the required accuracy.
And also selecting too large value for Zmax results either in asymptotic
divergence series or in slow convergence of the series to satisfy
derivative boundary condition at infinity. Hence, a method must be
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Fig. 1. (a) Velocity profiles for the pressure gradient parameter b¼�1. (b) Velocity profiles for the pressure gradient parameter b¼ 0. (c) Velocity profiles for the pressure

gradient parameter b¼ 1:0. (d) Velocity profiles for the pressure gradient parameter b¼ 2:5.
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velocity ratio parameter E.

Table 1

Comparison of skin friction coefficient f 00ð0Þ obtained by our method

(Eqs. (11)–(15)) with that of direct numerical solution.

b E Present method

(Eqs. (11) and (15))

Numerical

method

�1.0 0.1 0.126491 0.126496

0.2 0.219089 0.219090

0.3 0.268328 0.268327

0.4 0.252982 0.252982

0.5 0.0 0.0

0.0 0.1 �0.492625 �0.494005

0.2 �0.363901 �0.363420

0.3 �0.237219 �0.237159

0.4 �0.115811 �0.115816

0.5 0.0 0.0

0.5 0.1 �0.675918 �0.675009

0.2 �0.513980 �0.513391

0.3 �0.346194 �0.346629

0.4 �0.175403 �0.175339

0.5 0.0 0.0

1.0 0.1 �0.823981 �0.823675

0.2 �0.633671 �0.633832

0.3 �0.432951 �0.432614

0.4 �0.221982 �0.221089

0.5 0.0 0.0

1.5 0.1 �0.951872 �0.951911

0.2 �0.736812 �0.736547

0.3 �0.505918 �0.505225

0.4 �0.259021 �0.259374

0.5 0.0 0.0

2.5 0.1 �1.169812 �1.169574

0.2 �0.909281 �0.909461

0.3 �0.626233 �0.626627

0.4 �0.323034 �0.323012
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devised to logically estimate the value of Zmax to get f 00ð0Þ up to
required accuracy. In the integration, the initial approximation of
f 00ð0Þ ¼ 0:126491 is chosen from exact analytical solution for b¼�1
and E¼ 0:1 for all other parameter b and E to ensure the fast
convergence. For small value of Zmax, the series is well behaved and
can be integrated. So, in the process, once f 00ð0Þ is assumed and the
Pade’s approximants which extend the region of validity of conver-
gence, are used, the integral relation can be integrated without any
difficulty to determine a nearly correct value of f 00ð0Þ. With fewer
iterations, f 00ð0Þ can be obtained up to any desired accuracy.

The results obtained by the method described above have been
used to plot Figs. 1(a)–(d) and 2 and in Table 1.
0.5 0.0 0.0
4. Solution for e ¼ 0

Flows in the continuously stretching surface have been studied
in the past due their industrial applications. Since, the surface is
flexible, the filament may be stretched during the course of
ejection and so only the surface velocity deviates without being
uniform. This problem has been extensively studied since Sakiadis



Table 2

Comparison of skin friction coefficient f 00ð0Þ obtained by the Dirichlet series (22)

with that of direct numerical solution.

b a b0 Dirichlet series (22) Numerical method

�0.5 �1.58147 1.250974 �0.370497 �0.370399

0.0 �1.318844 1.142742 �0.627504 �0.627562

0.5 �1.135838 1.062777 �0.829946 �0.829953

1.0 �1.0 1.0 �0.999999 �1.00000

1.5 �0.894650 0.948719 �1.148596 �1.148608

2.0 �0.810312 0.905616 �1.281879 �1.281838

2.5 �0.741037 0.868672 �1.403451 �1.403451

3.0 �0.683102 0.836422 �1.515839 �1.515863

4.0 �0.5914341 0.782446 �1.719713 �1.719736

5.0 �0.5220041 0.7386349 �1.902512 �1.902537

10.0 �0.3307588 0.5987858 �2.631830 �2.635153
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Fig. 3. Velocity profiles for the pressure gradient parameter b.
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[17] investigated the boundary layer flow on a continuous solid
surface with constant speeds. Numerous papers are available on
stretching sheet problems under different contexts, for example,
Crane [18], Zaturska and Banks [19], Guedda [20], Bataller [21],
Bognar [22] and references therein. Most of these analyses have
been given by numerical methods such as R–K methods along
with shooting algorithm, Keller-box method, finite difference
method, etc. Boundary layer equations in the stretching sheet
do not, in general, admit any closed-form solution for involved
parameter except in a very-special-case because of their high
non-linearity, and also, the infinite domain demands special
mathematical tools for further analysis. Therefore, we present
below a elegant method called the Dirichlet series (or exponential
series ) for the solution of the boundary layer flow problems.

The Dirichlet series solution method ideally suits for specific
type of boundary condition where derivative condition at far
distance is zero. An advantage of this method is that it helps in
obtaining the derived quantities such as velocity profiles (f 0ðZÞ)
and skin friction (f 00ð0Þ), directly compared to pure numerical
methods. Because of these significant advantages, Kravnchenko
and Yablonskii [23] were the first to use the Dirichlet series for
solving third order non-linear boundary value problem over
infinite domain. A general discussion of the convergence of the
Dirichlet series may be found in Riesz [24].

For E-0, the Falkner–Skan equations (4) and (5) take the
form of

f 000ðZÞþ f ðZÞf 00ðZÞ�bf 02ðZÞ ¼ 0, ð20Þ

and the boundary conditions

f ð0Þ ¼ 0, f 0ð0Þ ¼ 1, f 0ðþ1Þ¼ 0: ð21Þ

We seek Dirichlet series solution for Eq. (20) in the form

f ðZÞ ¼ b0 1þ
X1
n ¼ 1

bnane�nb0Z

 !
, ð22Þ

where the constants b041 and a are to be determined. Note that
the above base function automatically satisfies the derivative
boundary condition at infinity. Substituting this base function
(22) in systems (20) and (21), we get the following recurrence
relation:

�
X1
n ¼ 1

n3bnane�nb0Zþ
X1
n ¼ 1

n2bnane�nb0Zþ
X1
n ¼ 2

X1
k ¼ 1

k2bkbn�kane�nb0Z

�b
X1
n ¼ 2

X1
k ¼ 1

kðn�kÞbkbn�kane�nb0Z ¼ 0, ð23Þ

to obtain the coefficients bn as a function of unknown constants b0

and a. Note, however, that for n¼1, the above recurrence relation
satisfies the relation: �b1aþb1a¼ 0. Therefore, we rewrite the
above recurrence relation (23) as

bn ¼
1

n2ðn�1Þ

Xn�1

k ¼ 2

ðk2
�bkðn�kÞÞbkbn�k, ð24Þ

for n¼ 2;3,4, . . .. We know that the radius of convergence of
the Dirichlet series can be obtained, and our computations show
that, if 9b19o1, then the series converges absolutely for Z4
�ðlnðlim9bn=bnþ19Þ�ln9a9Þ. Detailed convergence criterion of the
above series can be found in Riesz [24].

It is important to obtain the shear stress at the surface f 00ð0Þ as

f 00ð0Þ ¼ b3
0

X1
n ¼ 1

n2bnan: ð25Þ

However, as noted earlier, the series (22), as it is, contains two
free-parameters b0 and a which are yet to be determined. To
determine these constants, we make use of other two initial
conditions in (21) namely

f ð0Þ ¼ b0 1þ
X1
n ¼ 1

bnan

 !
¼ 0, ð26Þ

f 0ð0Þ ¼�b2
0

X1
n ¼ 1

nbnan ¼ 1: ð27Þ

We use Newton’s method for non-linear equations to determine
these unknown parameters up to required accuracy for all values
of b. The results thus obtained for various values of b by the
present Dirichlet series solution are seen to agree with those
produced by the numerical solution of the boundary layer
systems (20) and (21) and are presented in Table 2. From this
table, the skin friction value f 00ð0Þ compares well with that of
numerical solution for all values of b. This explicates the advan-
tages of the method over pure numerical methods. Once the
constants a and b0 are determined, it is important to investigate
the velocity behavior. We plot the variation of velocity profiles
f 0ðZÞ for different values of b which are shown in Fig. 3.

Note that systems (20) and (21) admit an analytical solution
for b¼ 1

f ðZÞ ¼ 1�e�Z, ð28Þ

and for b¼�1

f ðZÞ ¼
ffiffiffi
2
p

tanh
Zffiffiffi
2
p

� �
: ð29Þ

It is worth mentioning here that the closed-form solution (28) has
been recovered from the present Dirichlet’s method that gives for
a¼�1, b0 ¼ 1 and n¼1 which complements our confidence on
the method. Compared to available numerical method for its
solution, the Dirichlet’s series gives the most accurate solution up
to required accuracy with fewer number of coefficients in the
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series. Thus, this method can be extended to an ordinary differ-
ential equation of the type (20) along with the boundary condi-
tions wherein the derivative condition at infinity should be zero.

Finally, our attention is to discuss the important results
obtained in the previous two sections for different stretching
parameter b and wall stretch parameter E which are given in the
graphical as well as table form that provide additional insights
into the problem under investigation.
5. Results and discussion

We have presented a new exact solution to the Falkner–Skan
equation (4) for general values of pressure gradient parameter b
in the range 0oEo 1

2 (Section 3), and the Dirichlet series method
to the boundary layer problem (20) for general values of b for
E¼ 0 (Section 4). Exact solution to systems (4) and (5) has been
given analytically for 0oEo 1

2 and numerically for 1
2 oEo1. Note

that for E¼ 1
2, the obvious exact solution f ðZÞ ¼ Z=2 has also been

used to plot the graphs. The exhaustive analysis both analytically
and numerically has been given for the Blasius equation (with
b¼ 0) in different frameworks, and hence no special comments
are required. In order to validate our analytical results, we present
our analytical results graphically in the form of velocity profiles
f 0ðZÞ in Figs. 1(a)–(d), 2 and 3 and of the skin friction coefficient
f 00ð0Þ in Tables 1 and 2.

In Fig. 1(a), the velocity profiles f 0ðZÞ against Z are displayed for
decelerated flow b¼�1 for different values of E. It is observed
from figure that the horizontal velocity profiles go asymptotically
to their respective velocity ratio parameter E. It is also seen that as
the value of E increases from 0.1 to 0.5, velocity profiles show
gradual variation. In Fig. 1(b)–(d), we display the variation of
velocity profiles f 0ðZÞ for several sets of values of accelerated flow
b ð40Þ and E. From these figures, the velocity profiles f 0ðZÞ satisfy
the respective derivative boundary condition as Z-1 for all
values b and E which guarantees our confidence on this new exact
solution method. The Falkner–Skan equation modified by the
velocity ratio parameter E exhibits a very interesting velocity
profiles in the boundary layer flow. Because of the last two
boundary conditions in (5), the velocity profiles f 0ðZÞ for E4 1

2

and for Eo 1
2 are seen to cross each other at some value of Z, say

Z0. For the Blasius flow b¼ 0, they cross at the point Z0C1,
whereas for accelerated flow b40, Z0o1 always. As b increases,
the momentum boundary layer thickness decreases, physically
meaning that, the effect of stretching parameter b is to accelerate
the velocity of the fluid flow which enhances the thickness of the
boundary layer. This can be clearly seen from Fig. 2. This typical
trend is observed for all values of E.

In Table 1, we compare the value of skin friction coefficient
f 00ð0Þ obtained by the present method (through Eqs. (10) and (14))
with the direct numerical solution of the Falkner–Skan problem
for various values of b and E. We see that there is an excellent
agreement between two methods. Also, as expected, when b
increases, the skin friction value in absolute also increases.
However, when E increases for particular value of b, the skin
friction coefficient decreases. Further, our computations show
that when f 00ð0Þ is accurate enough, the corresponding desired
derived quantities can be found without much difficulty. This can
be seen from the particular velocity profile in figures above.

On the other hand, once the unknown parameters a and b0 in
the series (22) are calculated, we can easily compute the velocity
profiles, skin friction coefficient etc. The stretching sheet problem
(20) and (21) has been solved by this Dirichlet series method for
all values of stretching parameter b, and thus, the results in the
form of horizontal velocity profiles are presented in Fig. 3. In this
case, when b40, the surface is accelerated, b¼ 0 implies a
continuous movements of the flat surface and when bo0, the
surface is decelerated. We observe from Fig. 3 that as the
parameter b increases, the momentum boundary layer thickness
decreases, and eventually tends to zero as the distance increases
from the initial boundary. This phenomenon can be observed for
all values of b. Table 2 compares the values of f 00ð0Þ obtained by
the Dirichlet series method with the direct numerical solution of
the problem. It is observed that results are quite remarkable. It
is also observed that as b increases, the absolute value of the
boundary layer thickness also increases.
6. Conclusions

We have presented a new exact solution of the boundary layer
flow over a semi-infinite flat plate. The flow is governed by the
Falkner–Skan family of equations. The closed-form solution is
obtained for b¼�1 in terms of error and exponential functions
which is rewritten to obtain an exact solution for all values of b.
We have also presented the Dirichlet series solution for the
problem in E¼ 0 limit and explored that such problems can be
solved without much difficulty. Results thus obtained are demon-
strated in the form of velocity profiles and skin friction, and are
compared with the direct numerical solution of the problem.
There is a good agreement between the both solutions. It is found
that the effect of pressure gradient parameter is to decrease the
thickness of boundary layer. We hope to extend our present
analysis by including the effect of magnetohydrodynamic bound-
ary layer flow over a continuously stretching plate which is
essentially governed by the Falkner–Skan family of equations
with more general boundary conditions.
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