
Opuscula Mathematica • Vol. 32 • No. 4 • 2012

BOUNDS ON PERFECT k-DOMINATION IN TREES:
AN ALGORITHMIC APPROACH

B. Chaluvaraju and K.A. Vidya

Abstract. Let k be a positive integer and G = (V,E) be a graph. A vertex subset D of a
graph G is called a perfect k-dominating set of G if every vertex v of G not in D is adjacent
to exactly k vertices of D. The minimum cardinality of a perfect k-dominating set of G is the
perfect k-domination number γkp(G). In this paper, a sharp bound for γkp(T) is obtained
where T is a tree.

Keywords: k-domination, perfect domination, perfect k-domination.

Mathematics Subject Classification: 05C69, 05C70.

1. INTRODUCTION

All graphs considered here are finite, undirected with no loops or multiple edges.
Let n = |V | and m = |E| denote the number of vertices and edges of a graph G,
respectively. In general, we use 〈X〉 to denote the sub graph induced by the set of
vertices X and N(v) and N [v] denote the open and closed neighborhoods of a vertex
v, respectively. Let deg (v) be the degree of vertex v and δ(G) = δ the minimum
degree and ∆(G) = ∆ the maximum degree. For graph-theoretical terminology and
notation not defined here we follow [9].

A set D of vertices in a graph G is a dominating set if every vertex in V −
D is adjacent to some vertex in D. The domination number γ(G) is the minimum
cardinality of a dominating set of G. A minimum dominating set of a graph G is called
a γ-set of G. For a complete review on the topic of domination, see [1, 10] and [11].

For a positive integer k, a vertex subset D of a graph G is called a k-dominating
set of G, abbreviated k-DS, if any vertex v of V not in D is adjacent to at least k
vertices of D. The minimum cardinality of a k-DS of G is the k-domination number
γk(G) [7]. A vertex subset D of a graph G is called a perfect dominating set of G
if any vertex v of G not in D is adjacent to exactly one vertex in D. The concept
of perfect domination was introduced by Cockayne, Hartnell, Hedetniemi and Laskar

707

http://dx.doi.org/10.7494/OpMath.2012.32.4.707

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72800348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

708 B. Chaluvaraju and K.A. Vidya

[3]. For more details on perfect domination and its related parameters, see [2, 5, 6]
and [12].

For a positive integer k, a vertex subset D of a graph G is called a perfect
k-dominating set of G, abbreviated PkD-set, if any vertex v of G not in D is ad-
jacent to exactly k elements of D. The minimum cardinality of a PkD-set of G is the
perfect k-domination number γkp(G) [7]. In fact when k = 1, perfect 1-dominating
set (P1D) of G is the perfect dominating set of G. Note that every nontrivial graph
G has a PkD-set since V (G) is such a set. Also there are graphs whose only perfect
k-dominating set is V . A graph for which γkp(G) < n is called a PkD-graph. A tree
for which γkp(T) < n is called a PkD-tree. The concept of perfect k-domination was
studied by Chaluvaraju, Chellali and Vidya [4].

A possible application to perfect k-domination is a specialist giving radiation (or
some powerful drug) to a patient. In order to be effective there must be precisely
k units administered to the neighboring cells (any more is very dangerous). The
cells where the drug is directly given are, unfortunately, weakened or harmed and to
minimize the number of damaged cells we wish to minimize the number of spots/cells
where the drug is given. Thus we would want a minimum perfect k-dominating set.

In this paper we have studied perfect k-domination in trees as a special case and we
have developed an algorithm to find the k-domination number of a tree and another
algorithm to check whether a tree is a PkD-tree or not. Extending this algorithm we
can also find a minimal PkD-set for a tree. Using these algorithms we establish a
sharp bound for γkp(T).

We recall that α0(G) is the vertex covering number and β0(G) is the independence
number of a graph G.

Observation 1.1. For every bipartite graph β0(G) ≥ dn/2e and therefore for every
tree β0(G) ≥ dn/2e > (n− 1)/2. Similarly α0(G) > (n− 1)/2.

Theorem 1.2 ([9]). For any graph G,

α0(G) + β0(G) = n = α1(G) + β1(G).

Theorem 1.3 ([4]). For any non trivial graph G,

n− (m/k) ≤ γkp(G) ≤ n.

Theorem 1.4. For any PkD-tree T :

(i) γkp(T) ≥ α0(T),
(ii) γkp(T) ≥ β1(T).

Proof. By Observation 1.1, we have n − ((n − 1)/k) ≤ γkp(T), since m = n − 1.
Therefore using Theorem 1.2 and Theorem 1.3,

γkp(T) ≥ n− ((n− 1)/k) ≥ n− ((n− 1)/2) ≥ n− β0(T) ≥ α0(T).

Similarly (ii) follows.

Bounds on perfect k-domination in trees: An algorithmic approach 709

Theorem 1.5. Let T be a PkD-tree. Then at least one of the following holds:

(i) There exists at least one vertex of degree k in T .
(ii) There exists at least two vertices u and v in T of degree k + 1 such that every

vertex in the u-v path has degree greater than k + 1.

Proof. Let D be a PkD-set of a PkD-tree T . Suppose (i) does not hold. Then we have
to prove that (ii) holds. Hence we consider the following cases.

Case 1. There exist at least one vertex of degree k + 1 in V −D.
Let u be a vertex of degree k + 1 in V − D. Since u ∈ V − D and deg(u) = k + 1,
u is adjacent to a vertex u1 ∈ V − D. Again since u ∈ V − D, deg(u1) ≥ k + 1. If
deg(u1) = k + 1, (ii) holds. If not, u1 is adjacent to at least one vertex u2 ∈ V −D.
Again continuing the same arguments we can conclude that (ii) holds, since T is a
finite graph.

Case 2. V −D does not have a vertex of degree k + 1.
Let u be a vertex in V −D of degree greater than k+1. Then u has at least 2-neighbors
in V −D. Let u1 be one such neighbor. Since u1 ∈ V −D and deg(u1) > k + 1, u1
has a neighbor u2 ∈ V −D and deg(u2) > k + 1. This argument never ends and so
contradicts the fact that T is finite. Thus the only possibility, is case 1 for which (ii)
holds.

2. CHARACTERIZATIONS OF GRAPHS WITH DISJOINT PkD-SETS

In the previous paper [4] we obtained some bounds on a perfect k-domination number.
Now naturally comes the interesting question, when will a graph have two disjoint
perfect k-dominating sets? Though we couldn’t characterize all the graphs with this
property, we found some observations related to this question.

Observation 2.1. A graph will have two disjoint perfect k-dominating sets only if
k ≤ δ, since all the vertices with degree less than k belongs to every PkD-set. Thus a
tree will not have more than one disjoint perfect k-dominating set.

Lemma 2.2. If G has two disjoint PkD-sets D1 and D2, then they are of the same
cardinality.

Proof. If possible let D1 and D2 be two disjoint PkD-sets with |D1| = r and |D2| = s,
r 6= s. Then to satisfy the perfectness condition of vertices in D1, there should be
ks-edges from D1 to D2. Similarly to satisfy the perfectness condition of D2 there
should be kr-edges from D2 to D1. This implies kr = ks, which is a contradiction
since r 6= s. Thus two disjoint PkD sets will have the same cardinality.

Theorem 2.3. In a graph G, if there exist a PkD-set which is disjoint from all other
PkD sets, then all the PkD-sets of G have the same cardinality.

Theorem 2.4. If G has two disjoint PkD-sets D1 and D2 for k > ∆/2, then
γkp(G) = n/2.

710 B. Chaluvaraju and K.A. Vidya

Proof. Let D1 and D2 be two disjoint PkD-sets. Suppose γkp(G) < n/2. Then there
exists at least one vertex which does not belong to both the PkD-sets. Then that vertex
is adjacent to k vertices in D1 as well as k vertices in D2. Therefore ∆ ≥ 2k. Thus
k < ∆/2. Hence if G has two disjoint PkD-sets for k > ∆/2, then γkp(G) = n/2.

Corollary 2.5. A graph with odd number of vertices does not have two disjoint
PkD-sets for k > ∆/2.

Theorem 2.6 ([4]). The perfect k-dominating set is NP-complete.

Though the problem of finding a perfect k-dominating set is NP-Complete for
general graphs, it might be possible to find polynomial time algorithms for finding
the perfect k-domination number in some subclasses. As an initiative to this study,
we take the subclass of trees, and study the perfect k-domination in trees.

To find a lower bound for γkp(T), we developed the following algorithm. From the
definitions we know γk(T) ≤ γkp(T). Given a tree and a number k, the algorithm
below gives the k-domination number of the tree. For this algorithm, first we have
to assign numbers to the vertices in such a way that the tree will be a rooted tree
at vertex v1 and the assigned number to the vertices will increase as we go to the
upper branches of the tree in a Breadth First Search fashion. For more details on
NP-completeness see [8].

Algorithm to find k-domination number of a tree:

Step 1. Assign a label Lv[i] = N to every vertex. (′N ′ stands for ′not sure to be
in D′ and ′S′ stands for ′sure to be in D′, where D is the PkD-set.)

Step 2. Assign a number Dv for each vertex, where Dv[i] denotes number of vertices
adjacent to vi with Lv[i] = S, excluding its parent vertex. First we set the value of
Dv[i] to 0 for every i and using the following procedure, we will find exact values of
Dv[i] for each vertex.

Step 3. Starting from the top numbered vertex, we will check Dv of each vertex.
For a vertex vi with Lv[i] = ′N ′:

(i) If Dv[i] = k − 1, we can take that vertex out from D to V −D and change the
label of its parent vertex to ′S′.

(ii) If Dv[i] < k−1, then that vertex vi has to be included in D. So change the label
Lv[i] = ′N ′ to ′S′ and we will increase the number Dv of its parent vertex by 1.
Continue the process with the next vertex vi−1.

(iii) If Dv[i] ≥ k, we include that vertex in V − D. Continue the process with next
numbered vertex (it may not be its parent vertex).

For the vertex vi with Lv[i]=′S′, increase the number Dv of its parent vertex by 1.
Continue the process with the next vertex vi−1.

Step 4. Follow these steps till we reach the last vertex v1. Since it does not have
a parent vertex, necessary changes in conditions of step 3 are done:

Bounds on perfect k-domination in trees: An algorithmic approach 711

(i) If Dv[1] ≤ k−1, then v1 has to be included in D. So change the label Lv[1] = ′N ′

to ′S′.
(ii) If Dv[1] ≥ k, we include that vertex in V −D.

Step 5. All the vertices with label ′S′ form a k-dominating set of G. The number of
vertices with label ′S′ gives the k-domination number of the tree.

From the algorithm we get the k-domination number of the tree. Let a = γk(T).
Then clearly a ≤ γkp(T).

Correctness of the algorithm:

Case 1. Let u be a vertex with Dv[i] < k− 1. Then u belongs to all the k-dominating
sets of G. This justifies the inclusion of u in D.

Case 2. Let u=vi be the first vertex for which Dv[i] ≥ k − 1. In the algorithm,
we have included u in V − D. Then let u /∈ D where D is a k-dominating set of
G. Now we have to check whether there exists a minimum dominating set D1 with
|D1| < |D| and u ∈ D1. If u ∈ D1, then u is included in D1, only for taking its parent
vertex v, out of D1. But then the k-domination number is not reduced, since u is
added to D1, though v is taken out of it. Other vertices are included in D or V −D
irrespective of the status of u. This proves the correctness of the algorithm by taking
u /∈ D. Continuing this process we get the k-domination number of the tree.

As mentioned earlier there are graphs whose only perfect k-dominating set is V .
A tree for which γkp(T) 6= n is called a PkD-tree. So given a tree and k, first we have
to find whether the tree is a PkD-tree or not. The algorithm below finds whether a
tree is a PkD-tree or not.

Algorithm to check whether the given tree is PkD tree or not:

Step 1. Given a tree assign numbers to the vertices in such a way that the tree will
be a rooted tree at vertex v1 and the assigned number to the vertices will increase
as we go to the upper branches of the tree in a breadth first search fashion. (As in
previous algorithm)

Step 2. Assign a label Lv[i] = S to every vertex. (′N ′ stands for ′not sure to be
in D′ and ′S′ stands for ′sure to be in D′, where D is the PkD-set.) Now we will try
to remove at least one vertex from D to V −D, so that T is a PkD-tree.

Step 3. Assign two numbers Dv and Nv for each vertex, where Dv[i] denotes number
of vertices adjacent to vi, which are ′sure to be in D′, excluding its parent vertex.
Similarly Nv[i] denotes number of vertices adjacent to vi, which are ′not sure to be in
D′, excluding its parent vertex. First we set those values to 0 and using the following
procedure, we will find exact values of Dv[i] and Nv[i] for each vertex.

712 B. Chaluvaraju and K.A. Vidya

Step 4. Starting from the top numbered vertex, we will check Dv and Nv of each
vertex. For a vertex vi:

(i) If Dv[i] is k−1, we can take that vertex out from D to V −D since vi is adjacent
to k vertices with label ′S′ (including its parent vertex) and so T is a PkD-tree.
So change Lv[i] = N .

(ii) If Dv[i] is less than k − 1 or greater than k, that vertex has to be in D and so
we will increase Dv of its parent vertex by 1 and continue the process with next
vertex vi−1.

(iii) If Dv[i] is equal to k, we can add that vertex in V − D provided its parent
vertex is also in V − D. In that case, we change labels of both vertices to ′N ′
and continue the process with the next numbered vertex. Let vm be the parent
vertex of the vertex vi.

Case 1. If Dv[m] = k − 1, then we can include vi, vm and all other vertices
with label ′N ′ in V −D. Then T is a PkD-tree.

Case 2. If Dv[m] < k − 1, check Nv[m] > k − 1 − Dv[m]. If yes, from Nv[m]
neighbors of vm with label ′N ′, change the label of k − 1 −Dv[m] neighbors to
′S′. Then we can include vi, vm and all other vertices with label ′N ′ in V −D.
Then T is a PkD-tree. If Nv[m] < k − 1 − Dv[m], change the label of vm and
label of all the vertices in its branches to ′S′ and continue as in step 4 (ii).

Case 3. If Dv[m] > k change the label of vm and label all of the vertices in
its branches to ′S′ and continue as in step 4 (ii).

Case 4. If Dv[m] =k, we have to continue the same process as in step 4 (iii).

Step 5. At any stage if we get a result T is a PkD tree, the process is stopped. Let T ′
be the connected induced subgraph of T whose perfect k-domination number is less
than |T ′|. Otherwise follow these steps till we reach the last vertex v1. Since it does
not have a parent vertex, necessary changes in conditions of step 4 are done. Thus we
can check whether the given tree is a PkD tree or not.

The algorithm can be extended to find a minimal perfect k-dominating set of T .
Even after getting the result that T is a PkD-tree before reaching v1, if we continue
following this algorithm till we reach v1, after fixing the labels of the connected in-
duced subgraph T ′ of T whose perfect k-domination number is less than |T ′|, we get
a minimal perfect k-dominating set of T . Let ′d′ be the cardinality of this minimal
perfect k-dominating set. Since minimal perfect k-domination number is greater than
or equal to the minimum perfect k-domination number, we have γkp(T) ≤ d.

Correctness of the algorithm:

Here we modify the algorithm for k-domination to include the perfectness condition.
But deciding whether a vertex u is to be included or not to be included inD, is difficult.
So instead of finding minimum k-perfect dominating set, we try to find a connected

Bounds on perfect k-domination in trees: An algorithmic approach 713

induced subgraph T ′ of T whose perfect k-domination number is less than |T ′|. We
continue this process till the last vertex and the resulting k-perfect dominating set
will be a minimal k-perfect dominating set, but need not be the minimum.

Thus using the above two algorithms we get a bound for γkp(T), that is given a
tree and a number k we get two numbers ’a’ and ’d’ such that a ≤ γkp(T) ≤ d, which
gives an upper and lower bound for the problem. Also the bounds are sharp as we can
see from the following example. Consider the star K1,t. Let k = t. Then γk(T) = t
and so a = t, and also d = t. Therefore the bounds are sharp.

Complexity of the algorithm:

After assigning numbers to the vertices of the tree, each vertex is checked only once
to find the Dv of the vertex. So complexity of the algorithm is of O(n).

Acknowledgements
We are grateful to the referees for their careful reading with corrections and useful
comments.

REFERENCES

[1] B.D. Acharya, H.B. Walikar, E. Sampathkumar, Recent developments in the theory
of domination in graphs, Mehta Research Institute, Allahabad, MRI Lecture Notes in
Math., 1979.

[2] D. W. Bange, A.E. Barkauskas, P.J. Slater, Efficient dominating sets in graphs, [in:]
R.D. Ringeisen, F.S. Roberts, eds, Applications of Discrete Mathematics (SIAM,
Philadelphia, 1988), 189–199.

[3] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi, R. Laskar, Perfect domination in graphs,
J. Combin. Inform. System Sci. 18 (1993), 136–148.

[4] B. Chaluvaraju, M. Chellali, K.A. Vidya, k-Perfect domination in graphs, Australasian
Journal of Combinatorics 48 (2010), 175–184.

[5] I.J. Dejter, J. Pujol, Perfect Domination and Symmetry, Congr. Numer. 111 (1995)
18–32.

[6] M.R. Fellows, M.N. Hoover, Perfect domination. Australasian Journal of Combinatorics
3 (1991), 141–150.

[7] J.F. Fink, M.S. Jacobson, n-domination in graphs, [in:] Y. Alavi and A. J. Schwenk,
eds, Graph Theory with Applications to Algorithms and Computer Science, Wiley,
NewYork, 1985, 283–300.

[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness. W.H. Freeman, San Francisco, 1979.

[9] F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969.

[10] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs,
Marcel Dekker, Inc., New York, 1998.

714 B. Chaluvaraju and K.A. Vidya

[11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in graphs: Advanced topics,
Marcel Dekker, Inc., New York, 1998.

[12] M. Livingston, Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990), 187–203.

B. Chaluvaraju
bchaluvaraju@yahoo.co.in

Department of Mathematics
Bangalore University
Central College Campus
Bangalore -560 001, India

K.A. Vidya
vidya.mnj@gmail.com

Department of Mathematics
Bangalore University
Central College Campus
Bangalore -560 001, India

Received: September 27, 2010.
Revised: January 14, 2012.
Accepted: April 3, 2012.

