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a  b  s  t  r  a  c  t

A  new  protocol  toward  the  synthesis  of  cobalt  nitroprusside  (CoNP)  coordination  nanoparticles  has  been
described  based  on  drop-by-drop  (DbD)  method  without  using  any  additives.  It  was  also  prepared  by
sonication  as well  as  bulk  mixing  methods  for comparison  purpose.  The  prepared  complex  was  charac-
terized  by  Infrared  spectroscopy  (FTIR),  XRD  and  cyclicvoltammetry  (CV) techniques.  The  CoNP  complexes
prepared by  different  synthetic  approaches  were  used  as  modifier  molecules  to fabricate  carbon  paste
electrodes  (CPE’s)  toward  electrochemical  oxidation  of sulfite.  The  experimental  results  revealed  that
the cobalt  nitroprusside  nanoparticles  (n-CoNP)  prepared  by  drop-by-drop  method  showed  a  consider-
able enhancement  in  the  electrocatalytic  activity  when  compared  to its counterparts  prepared  by  other
approaches.  Electrochemical  behavior  of  the  n-CoNP  CPE  was  studied  and  used  as  an electrochemical
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sensor  for  the  quantification  of  sulfite  at trace  level.  It  showed  a  linear  response  over  the  concentration
range  1–5.9  × 10−5 M and  2–8  × 10−3 M of  sulfite.  The  limit  of  detection  and  limit  of  quantification  were
found to  be  0.4 × 10−5 M and  2.29  × 10−5 M respectively.  The  interference  of  various  organic  acids  and
inorganic  ions  commonly  present  in  different  food  and  water  sample  matrices  were  studied.  The n-CoNP
modified  electrode  was  used  for  the  quantification  of  sulfite  in  different  food  samples  and  the  results
were  in  good  agreement  with  those  obtained  by the  standard  iodometric  protocol.
. Introduction

Polycyanide metal complexing reagents, with a general for-
ula [M(CN)5L]n− where M = Fe, Ru, Os and L a variable ligand

H2O, CN−, NH3, amines, NO, NO2
−, N-heterocyclic molecules,

O, etc.) has received much attention and systematic investiga-
ion of their electronic structure and reactivity are persuaded
1]. Pentacyanonitrosylferrate [Fe(CN)5NO]2− is also referred as
itroprusside (NP) is one of the important ligands of the above
entioned family because of its ability to complex with various

ransitional metal ions. Metal nitroprussides (MNP) have received
reat attention of the scientific community as electrochemical
ensors recently due to its versatility and electrocatalytic activ-
ty [2–6]. MNP  complexes where M = Sn, Ni, Zn, Cd, Co, Pb, etc.

ere prepared as thin films on the surface of various electrodes
sing different strategies and successfully used for the quantifi-
ation of wide range of analytes like ascorbic acid, hydrazine,

-cysteine, hydrogen peroxide, sulfide, sulfite, etc. [2,3,7–12]. In
ecent years carbon paste electrodes (CPE) have been extensively
sed over surface modified rigid electrodes for the determination
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of wide range of analytes due to their easy fabrication, wide poten-
tial window, easy surface renewability and low residual currents
[13].

Nano scale sized metallic particles are attracting considerable
attention for their intriguing properties and potential applica-
tions [14]. Recently, materials in the nanometer range have
shown superior or advantageous functional properties for a wide
range of technological applications, including catalysis, optics,
microelectronics, and chemical/biological sensors. Metal nanopar-
ticles as catalysts have been vigorously investigated because of
their specific properties such as large surface area and their
superior properties which are different from their bulk coun-
terparts [15]. Inorganic nanoparticles are very useful candidates
for electrochemical studies owing to their outstanding activ-
ity and catalytic power [16–18]. The large surface-to-volume
ratio and the active sites of these nano-sized metal parti-
cles in electrocatalysis constitute a part of the driving force
in developing the nanosized electrocatalysts. The application
of the carbon paste electrodes modified with nanostructures
exhibit considerable improvement in the electrochemical behav-

ior of compounds [19,20]. The presence of nanoparticles in
electrochemical sensors can decrease the over-potentials of
many analytes at common unmodified electrodes. In particular,
these analytical devices when modified with metal nanoparticles

https://core.ac.uk/display/72800322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.electacta.2012.08.105
http://www.sciencedirect.com/science/journal/00134686
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ave attracted a remarkable interest to realize electrochemical
ensors.

Sulfite is well known for its use in food and beverage indus-
ries as a preservative. Sulfite prevents oxidation, inhibit bacterial
rowth, enzyme activity causing browning and to inhibit the
rowth of microorganisms during storage [21]. Despite these great
dvantages, the sulfite content in food and beverages should be
trictly limited due to its potential toxicity and harmful effects
oward hypersensitive people. Before 1986 sulfites were consid-
red incorrectly harmless for consumers and they received the
Generally Recognized As Safe” (GRAS) status. In the same year US
ood and Drug Administration (FDA) revoked the GRAS status and
equired sulfite declaration on the label of any food item contain-
ng 10 ppm levels of sulfite [22]. Sulfite is considered as one among
he well known food allergens. Sulfite hypersensitivity is usually,
ut not exclusively, found within the chronic asthmatic population.
dverse reactions to sulfites in nonasthmatics are extremely rare.
sthmatics who are steroid-dependent or who have a higher degree
f airway hyper reactivity may  be at greater risk of experiencing a
eaction to sulfite-containing foods. Even within this limited pop-
lation, sulfite sensitivity reactions vary widely, ranging from no
eaction to severe. These manifestations may  include dermatolog-
cal, respiratory or gastrointestinal symptoms [23,24]. In order to
uantify such trace level sulfite there is a significant progress in

ts quantification technology. Several methods have been reported
or the quantification of sulfite from a variety of sample matri-
es [21]. These methods are mainly based on techniques like
lectrochemical [25–33],  biosensors [34], chromatography [35],
hemiluminescence [36–38] and spectrophotometry [39]. Among
hese, electrochemical methods find widespread use due to their
implicity, easy modification and easy adoptability. Chemically
odified electrodes (CMEs) have become significant ones in recent

ears due to their tailoring made properties which imparts selec-
ivity as well as analyte specificity.

Pouranghi-Azar and Sabzi [40] have used the glassy carbon elec-
rode electrochemically modified with CoNP complex to oxidize
ulfite. A pioneering work on the synthesis of cyano-bridged coor-
ination polymer nano objects like Prussian blue and its analogues
ave been reported in recent years [41,42].  Different techniques
uch as reverse micelle, ionic liquid by using stabilizing ligands
n solution have been developed to prepare metal nanoparticles
43–45]. Very few reports appeared on the direct synthesis of Prus-
ian blue analogue nanoparticles without any templating and/or
dditives [46,47].

In most of the earlier mentioned protocols metal nitroprussides
re electrochemically coated onto the rigid electrode surface and it
as been used as an electrochemical sensor. The surface renewal is
uite cumbersome in all these rigid surface modified electrochemi-
al sensors. In order to overcome the surface renewability problem
f this type of electrodes, an attempt has been made for the first
ime to synthesize CoNP nanoparticles in solution phase without
ny additives. Then the synthesized CoNP nano particles have been
sed as a modifier in designing an electrochemical sensor for the
ulfite quantification. The proposed sensor has been successfully
pplied for the measurement of sulfite from a variety of food stuff
nd water samples.

. Experimental

.1. Apparatus
All the samples were characterized by X-ray diffraction (Bruker
XS Model D8 Advance powder X-ray diffractometer, Cu K� source

 = 15.418 nm,  �–2� geometry). IR spectra were recorded using a
ruker Alpha-T FTIR spectrometer (Diamond crystal ATR mode,
chimica Acta 85 (2012) 579– 587

resolution 4 cm−1, 400–4000 cm−1). Scanning electron micro-
graphs were obtained using Quanta-200 scanning electron
microscope by dispersing sample conducting carbon tape and sput-
ter coating with gold to improve the conductivity.

Cyclic voltammetry experiments were performed using CH
Instruments electrochemical work station (Model CHI 619B, CH
Instruments, TX, USA) in a standard three electrode cell. A car-
bon paste electrode as a working electrode, Pt wire as the counter
electrode and Ag/AgCl served as the reference electrode.

2.2. Chemicals and reagents

Sodium sulfite Na2SO3, cobalt chloride hexahydrate
CoCl2·6H2O, sodium nitroprusside dihydrate Na2[Fe(CN)5NO]
·2H2O, potassium chloride KCl were all analytical grade and were
used as received. Potassium nitrate KNO3 (0.5 M) was prepared
using 0.05 M acetic acid–0.05 M sodium acetate buffer solution of
pH 5. All solutions were prepared using double distilled water.

2.3. Synthesis of cobalt pentacyanonitrosylferrate

CoNP was synthesized by precipitation using three different
procedures: Drop by drop, sonication and bulk mixing at a tem-
perature of 5–10 ◦C.

Drop by drop (DbD) method: 10 ml  aqueous solution of 0.01 M
sodium nitroprusside was  taken in a dropping funnel and it was
added dropwise to 10 ml  of 0.02 M aqueous solution of cobalt chlo-
ride taken in a beaker which was  thermostated at 5–10 ◦C under
vigorous stirring. The solution turns turbid due to the formation of
cobalt nitroprusside complex. It is referred as n-CoNP in all further
studies.

Sonication method: 10 ml  each of aqueous solutions of 0.01 M
cobalt nitroprusside and 0.02 M cobalt chloride were mixed at
5–10 ◦C and sonicated for 30 min. It is designated as s-CoNP.

Bulk mixing method: In this method, 10 ml  of aqueous solutions
of 0.01 M sodium nitroprusside and 0.02 M cobalt chloride which
were maintained at 5–10 ◦C were mixed immediately in a beaker.
The resulting compound has been designated as b-CoNP.

In all the three cases, the pH of the solutions were maintained in
acidic condition to avoid the formation of metal hydroxides and the
resultant precipitates were left overnight without disturbing. After
24 h the supernatant liquid was  decanted and the residue was  cen-
trifuged. The prepared CoNP compound was initially washed with
plenty of water then finally with alcohol. The residue was collected
in a petridish and dried at room temperature. The resulted CoNP
particles from all the three procedures were used as a modifier in
fabricating carbon paste electrodes.

2.4. Electrode preparation

The modified carbon paste electrode was prepared manually by
thoroughly mixing the dispersed graphite powder with n-CoNP at
15:1 mass ratio and subsequently adding 38% (m/m) of mineral oil.
The resultant mixture was  ground in an agate mortar for 10–15 min.
The obtained paste was packed into the capillary tube from the
wider end. A copper wire was  inserted from the opposite end of
the capillary to obtain the electrical contact. Similarly b-CoNP and
s-CoNP modified CPE electrodes were prepared. Bare carbon paste
electrode was  prepared by following the above procedure. All these
electrodes were dried for 24 h at room temp and the resistivity was
measured using a multimeter, which has been found to be 10–12 �.
3. Results and discussion

Cobalt nitroprusside complex has been synthesized from three
different approaches. The complex resulted from all the three
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ig. 1. SEM images of cobalt nitroprusside particles prepared by three approaches
-CoNP) methods.

pproaches has been characterized by the IR spectroscopy to con-
rm the presence of expected functional groups. The SEM was used
o understand the surface morphology and the difference in the
rain size and by the XRD pattern to get the information about

he phase purity. CPE’s were prepared using the entire three CNP
omplexes to study the electrochemical behavior of the synthe-
ized materials. Then the electrocatalytic activity of the n-CoNP,
-CoNP and b-CoNP to oxidize the sulfite has been compared using
 by drop (a and d, n-CoNP), sonication (b and e, s-CoNP) and bulk mixing (c and f,

the modified CPEs. The n-CoNP modified CPE showed a better cat-
alytic activity toward the oxidation of sulfite compared to other two
CoNP modified CPEs. Scan rate studies have been done to under-
stand the electrode process. Then optimization of electrolyte, pH

and interference of various ions generally present in the food prod-
ucts has been carried out. To check the applicability of the n-CoNP
complex, sulfite has been quantified in various food samples using
the CPE modified with the same.
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n-CoNP CPE compared to other two electrodes.
Fig. 2. FTIR spectrum of n-CoNP compound.

.1. Surface morphology of cobalt nitroprusside particles

The morphology and grain sizes of the prepared CoNP particles
ere studied by recording the SEM images for all the three types.

he surface morphology of cobalt nitroprusside particles was of
lmost same for all the three types. However, they differed in grain
izes. Accordingly the particles of all the three types composed of
ell dispersed spheres. The n-CoNP contains very small particles,
here as s-CoNP comprised of small particles and medium sized
articles and more number of bigger particles can be seen in case
f b-CoNP. The SEM images are shown in Fig. 1(a)–(f) under two
ifferent magnifications.

.2. IR study

The CoNP prepared by drop by drop, sonication and bulk mix-
ng methods were characterized by FTIR spectroscopy technique.
he sharp peak at 1617 cm−1 is due to the NO (nitrosyl) stretching
ibration. However an intense peak at 2183 cm−1 can be related to
he stretching frequency of CN (cyanide) group. The broad band at
376 cm−1 was due to OH (hydroxyl) group stretching vibration.
he peaks assigned are in good agreement with the reported liter-
ture [48]. These studies revealed that the compound is a hydrated
ne (Fig. 2).

.3. XRD study

X-ray diffraction was used to identify the phase purity of synthe-
ized CoNP complex. The XRD pattern of the as synthesized sample
s shown in Fig. 3. Sharp reflections were observed at d-spacing
orresponding to the n-CoNP phase. The sharp reflections indicate
hat the as synthesized product is highly crystalline. Same kind of
-ray patterns (Bragg reflections in all the samples were observed
t same 2� values) were obtained for s-CoNP and b-CoNP (data
ot shown). The average crystallite size of n-CoNP was calculated
sing the Scherrer formula and it has been found that the crystallite
ize varies within 53–55 nm.  Obtained XRD pattern of the n-CoNP
atches with the crystallographica pdf no. 80-2395.

.4. Electrochemical behavior of cobalt nitroprusside modified

arbon paste electrode

Cyclic voltammogram of CoNP CPE’s were recorded in the scan
ange between 0 and 1 V vs. Ag/AgCl electrode in 0.5 M KNO3 as
Fig. 3. XRD spectrum of n-CoNP compound.

a supporting electrolyte at a scan rate of 0.5 V s−1 (Fig. 4). The
voltammograms exhibit a pair of peaks with a formal potential
E◦ = (Epa + Epc)/2 of 0.48, 0.54, 0.53 V respectively for n-CoNP, s-
CoNP, b-CoNP compounds. The peaks are well resolved and the
ratio of the anodic to cathodic peak currents were found to be
almost unity which indicates that the process is reversible and
the peaks are due to [Fe(II)(CN)5NO]/[Fe(III)(CN)5NO] redox cou-
ple. The redox potentials of all the CoNP nanoparticles prepared by
the three approaches were in good agreement with the literature
[2].

The electrocatalytic activity of CoNP particles prepared by the
three approaches was  examined by studying the cyclic voltam-
metry in presence of sulfite. The cyclic voltammograms of the three
CPE’s modified with n-CoNP, s-CoNP and b-CoNP in the absence and
presence of 3.4 mM sulfite are shown in Fig. 5. The electrochemical
response, i.e. increase in the anodic peak current due to electro-
catalytic oxidation of sulfite was considerably greater in case of
Fig. 4. Cyclic voltammograms of CoNP-modified carbon paste electrodes in 0.5 M
KNO3.



S. Devaramani, P. Malingappa / Electrochimica Acta 85 (2012) 579– 587 583

Fig. 5. (a) Cyclic voltammogram of n-CoNP modified CPE (A) in absence of sulfite
(B)  in presence of 3.4 mM sulfite. (b) Cyclic voltammogram of s-CoNP modified CPE
(A) in absence of sulfite (B) in presence of 3.4 mM sulfite. (c) Cyclic voltammogram
of  b-CoNP modified CPE (A) in absence of sulfite (B) in presence of 3.4 mM sulfite.
Fig. 6. Cyclic voltammograms of n-CoNP modified CPE in the absence (a) and pres-
ence (b) of 3.4 mM sulfite. Cyclic voltammograms of bare CPE in the absence (c) and
presence (d) of 3.4 mM sulfite.

3.5. Electrocatalytic oxidation of sulfite at nano cobalt
nitroprusside modified carbon paste electrode

In order to understand the electrocatalytic activity of n-CoNP
CPE, the voltammetric behavior of the electrode in presence of
sulfite was  compared with that of the bare electrode. Fig. 6
illustrates the overlaid cyclic voltammograms of n-CoNP modified
and bare carbon paste electrode in the absence and presence of
3.4 mM sulfite in 0.5 M KNO3 as an electrolyte. It is clear that the
presence of CoNP nanoparticles as a modifier in the electrode sig-
nificantly improves the anodic current of the modified electrode in
presence of sulfite. These studies revealed that the modified elec-
trode with n-CoNP spheres acts as an efficient electrocatalyst and
improves the analytical performance of the electrode compared
to bare electrode. The reaction between the sulfite and modifier
molecule is a one electron transfer process and it follows hetero-
geneous EC catalytic mechanism.

The overall reaction can be expressed as below

2Co[FeIII(CN)5NO] + 2K+ + HSO3
− + H2O → 2KCo[FeII(CN)5NO]

+ SO4
2− + 3H+

3.6. Optimization study

The experimental variables like scan rate, pH effect and the
nature of electrolyte were optimized to get a maximum electro-
chemical response of the n-CoNP CPE.

3.6.1. Effect of scan rate
The effect of scan rate was  studied by varying the sweep

rates from 10 to 1000 mV  s−1 (Fig. 7(a)). The peak currents of the

voltammogram are linearly related with scan rate upto 100 mV  s−1

(Fig. 7(b)) indicating that the process is surface confined redox reac-
tion. However at high scan rates, i.e. above 100 mV s−1 the peak
currents were proportional to the square root of scan rate (Fig. 7(c))
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Fig. 7. (a) Overlaid cyclic voltammograms of n-CoNP CPE in 0.5 M KNO3 at varied
scan rates, (b) plot of current vs. scan rate and (c) plot of current vs. square root of
scan rate of n-CoNP CPE in 0.5 M KNO3.
Fig. 8. (a) Overlaid cyclic voltammograms of n-CoNP CPE at different scan rates in
presence of 1 mM sulfite and (b) plot of current vs. square root of scan rate.

this means the process is diffusion controlled. It can be assumed
due to relative slow diffusion of cations into a limited reaction
layer. The ratio of Ipa and Ipc remains almost equal to unity at dif-
ferent scan rates indicating that the reaction is surface bound in
nature.

Fig. 8(a) shows the cyclic voltammograms of n-CoNP modified
carbon paste electrode in 0.5 M KNO3 solution at different scan
rates in the presence of 1 mM sulfite. Linear dependence of the peak
currents, Ipa and Ipc on the square root of scan rate was  obtained
(Fig. 8(b)). This indicates that the electrode process is controlled by
mass diffusion which is suitable behavior for quantitative applica-
tion.

3.6.2. Effect of pH
The effect of pH on the electrochemical behavior of n-CoNP mod-

ified electrode was  studied by varying the electrolyte pH values
ranging from 1 to 8. In all cases formal potential of redox cou-
ple remains unchanged and there was  no significant change in the

peak current in the 1–5 pH range. There after decrease in the peak
current with increase in pH value was observed and peaks were
completely disappeared at pH 8. This may  be explained due to inter-
action between the hydroxyl ions in the solution and the metal ions
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Table  1
Interference study of cations, anions and organic acids generally present in food and
water samples.

Interferents Tolerance limit (ppm)

Na+, K+, SO4
2− , CO3

2− , CI− , citric, tartaric acid 1000
Glucose, fructose, sucrose 1000
Oxalic acid 200
Lactic acid 100
Bromide 300
Nitrate 1000
Nitrite 15
Nitritea 200
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Fig. 9. (a) Overlaid voltammograms of n-CoNP CPE in presence of 0, 2, 4, 6, 8 mM
Sample was  treated with 3 ml  of 2% sulfamic acid before its electrochemical mea-
urement.

f the complex in the electrode to form the metal hydroxides. Hence
H of the electrolyte solution was maintained at 5 throughout the
tudies.

.6.3. Effect of supporting electrolyte
The electrolyte cations play an important role on the electro-

hemical behavior of CoNP and its analogues. Electrolyte cations
nter or leave the MNP  surface to maintain the electroneutrality of
he metal nitroprussides during the electrochemical process. Effect
f alkali metal cations have been well studied on the electrochem-
cal behavior of CoNP [49]. We  have examined the effect of Li+,
a+ and K+ cations by using their respective salt solutions at 0.5 M
oncentration. Well defined peaks with high peak current values
ere observed in case of potassium nitrate. Therefore 0.5 M KNO3
as used as an electrolyte in the further electrochemical investi-

ations of n-CoNP CPE for sulfite quantification using the proposed
lectrochemical sensor.

.7. Interference study

The suitability of the developed electrochemical sensor mainly
epends on the effect of interfering species present in the real sam-
les along with the analyte. In order to apply the developed sensor
or real sample analysis the effect of common interferents that
re present in various food samples were studied by spiking these
pecies in the form of its corresponding salts. The organic acids such
s ascorbic acid, lactic acid, citric acid, tartaric acid and oxalic acid,
ugars such as glucose, fructose, sucrose and some inorganic ions
uch as bromide, chloride, nitrite, sodium, potassium, carbonate,
ulfate were studied at different concentration level. The tolerance
imits of common interferents are listed in Table 1. Among the inter-
ering species studied, nitrite interfered seriously even at 15 ppm
evel causing more than ±2% error which was overcome by treating
he sample with 3 ml  of 2% sulfamic acid. Sulfamic acid reacts with
itrite and converts it to nitrogen. Majority of the species did not

nterfere even at 100-fold excess.

.8. Calibration plot

Eight ml  of 0.5 M potassium nitrate solution was  transferred
nto a three electrode 10 ml  electrochemical cell. The initial and
nal potentials were adjusted to 0–1.0 V vs. Ag/AgCl respectively
nd the voltammograms were recorded at a scan rate of 0.5 V s−1.
he experiment was repeated in presence of sulfite at different
oncentrations and the increase in peak current values were pro-
ortional to the sulfite concentration (Fig. 9). A calibration graph
as constructed by plotting the peak currents vs. the sulfite con-
entration. A linear response was obtained in the concentration
ange 1–5.9 × 10−5 M as well as 2–8 × 10−3 M.  The standard devi-
tion (SD) and regression coefficient (r2) values were found to be
.011, 0.250 and 0.998, 0.98 for lower and higher end calibration
sulfite concentrations in 0.5 M KNO3 as electrolyte at scan rate 0.5 V s−1 and (b)
calibration graph was constructed by plotting obtained current response vs. sulfite
concentration.

graphs respectively. Linear regression equations Y = 1.409 + 8.586X
and Y = −0.071 + 0.331X are obtained for the lower and higher end
calibration graph respectively. The limit of detection (LOD) and
limit of quantification (LOQ) were found to be 0.4 × 10−5 M and
2.29 × 10−5 M respectively for the lower end calibration graph.

3.9. Application study

The applicability of the proposed electrochemical sensor has
been examined by measuring the sulfite content from a variety
of food stuff sample matrices such as dry fruits, sugar, wine and
water samples. Various sample solutions were prepared following
the standard procedure and analyzed by the proposed electrochem-
ical sensor as well as standard iodometric method [50]. The validity
of the proposed method has been checked by the recovery study.
Known concentrations of sulfite were spiked with the samples and
total sulfite content was analyzed.

3.9.1. Sugar samples
Commercially available 25 g of sugar sample was dissolved in

distilled water and made up to 100 ml.  One ml aliquot of sugar
solution was analyzed by the proposed electrochemical sensor.
3.9.2. Dried grapes
Ten grams of dried grapes were taken in a 250 ml beaker and

soaked by adding 25 ml  of 2 M NaOH solution. After 30 min  the
grapes were smashed gently using glass rod then it was  allowed to
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Table 2
Determination of sulfite in food and water samples.

Sample Proposed method Standard method Recovery (%)

Original sulfite Added sulfite Total sulfite Proposed method Standard method

Sugara 19 ± 2.3 10 28.8 ± 1.9 30.1 ± 1.8 97.2 102.7
Dry  grapesa 19.5 ± 2.1 – – 19.2 ± 2.3 –
Wineb 12.3 ± 2.1 10 21.8 ± 2.0 22.6 ± 1.5 97.7 101.8
Tap  waterb – 7.5 7.4 ± 2.0 7.5 ± 1.9 98.6 100.0
Drinking waterb – 3.7 3.8 ± 1.9 4.0 ± 1.8 102.7 108.1
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ll the values are average of the three measurements ± RSD.
a Concentration of sulfite is expressed in mg/100 g.
b Concentration of sulfite is expressed in mg/100 ml.

tand for 2 h. The contents in the beaker were thoroughly mixed and
ltered quantitatively using whatman filter paper. The filtrate was
eutralized by concentrated sulfuric acid and the pH was adjusted
o 5 and the solution was made up to known volume. One ml  of the
iluted filtrate was used for the analysis by the proposed method
y following the procedure described as above.

.9.3. Wine and water samples
White wine and water samples were also analyzed for sulfite

ontent without any pretreatment. 0.5 and 1.0 ml  volumes of wine
nd water samples were analyzed by the proposed method.

Sulfite in all the above samples has been quantified using the
tandard iodometric method by taking the suitable volume of
liquot from the samples.

The results obtained by the proposed electrochemical and
tandard iodometric method have been shown in Table 2. There is

 good agreement in the results obtained by the proposed method
nd the iodometric method.

. Conclusions

We have proposed a simple methodology to prepare CoNP nano
articles without the use of any additives. The nano CoNP complex
as characterized by SEM, FTIR, XRD and CV study. The synthe-

ized CoNP nanoparticles were used as an indicator species toward
he electrocatalytic oxidation of sulfite in the form of modified
arbon paste electrode. The n-CoNP CPE showed a considerably
nhanced electrocatalytic activity in presence of sulfite when com-
ared to s-CoNP and b-CoNP. The n-CoNP modified CPE exhibits one
lectron transfer process with heterogeneous EC catalytic mecha-
ism. A linear response was obtained in the concentration range
–5.9 × 10−5 M as well as 2–8 × 10−3 M.  The limit of detection (LOD)
nd limit of quantification (LOQ) were found to be 0.4 × 10−5 M
nd 2.29 × 10−5 M respectively for the lower end calibration graph.
odified CPE showed the linear range and detection limit compa-

able [25,26] and better [51–53] than the reported electrochemical
ethods.
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