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a b s t r a c t

A numerical solution for the steadymagnetohydrodynamic (MHD) non-Newtonian power-
law fluid flow over a continuouslymoving surfacewith species concentration and chemical
reaction has been obtained. The viscous flow is driven solely by the linearly stretching
sheet, and the reactive species emitted from this sheet undergoes an isothermal and
homogeneous one-stage reaction as it diffuses into the surrounding fluid. Using a similarity
transformation, the governing non-linear partial differential equations are transformed
into coupled nonlinear ordinary differential equations. The governing equations of the
mathematical model show that the flow and mass transfer characteristics depend on
six parameters, namely, the power-law index, the magnetic parameter, the local Grashof
number with respect to species diffusion, the modified Schmidt number, the reaction rate
parameter, and the wall concentration parameter. Numerical solutions for these coupled
equations are obtained by the Keller–Boxmethod, and the solutions obtained are presented
through graphs and tables. The numerical results obtained reveal that the magnetic field
significantly increases the magnitude of the skin friction, but slightly reduces the mass
transfer rate. However, the surfacemass transfer strongly depends on themodified Schmidt
number and the reaction rate parameter; it increases with increasing values of these
parameters. The results obtained reveal many interesting behaviors that warrant further
study of the equations related to non-Newtonian fluid phenomena, especially shear-
thinning phenomena. Shear thinning reduces the wall shear stress.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

During the past three decades, the study of heat, mass, and momentum transfer in boundary layer flow over a
continuously moving surface through a quiescent liquid has attracted considerable attention. This interest is due to several
important applications in electrochemistry and polymer processing (see [1,2]) industries. Flows due to a continuously
moving surface are often encountered in the aerodynamic extrusion of plastic sheets, the boundary layer along liquid
film in condensation processes, the cooling and drying of papers and textiles, and glass fiber production. In view of these
applications, Sakiadis [3] initiated a theoretical study for the momentum transfer occurring in the boundary layer adjacent
to a continuous surface moving steadily through an otherwise quiescent fluid environment, and this was experimentally
verified by Tsou et al. [4]. Crane [5] extended the work of Sakiadis by assuming that the velocity of the sheet varies linearly
with the distance from the slit. Thereafter, numerous investigations were made on the stretching sheet problemwith linear
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Nomenclature

b Stretching rate, a positive constant
B0 Magnetic field
C Species concentration in the fluid
Cw Species concentration near the plate
Cf Skin friction
C∞ Species concentration with fluid far away form the plate
D Chemical molecular diffusivity
E Constant
f Dimensionless velocity variable
g Acceleration due to gravity
Gcx Modified Grashof number
h(x) Heat transfer coefficient
H0 Applied transverse magnetic field
k1 Chemical reaction parameter
l Characteristic length
Mn Magnetic parameter
n Power-law index
Nsc Generalized modified Schmidt number for power-law fluids
Rex Local Reynolds number
r Species concentration parameter
Shw(x) Sherwood number
x Horizontal distance
y Vertical distance
u Velocity in the x-direction
U Velocity of the sheet
v Velocity in the y-direction

Greek symbols

β∗ Coefficient of expansion with concentration
β Chemical reaction rate parameter
η Similarity variable
γ Kinematic viscosity
ψ Stream function
ρ Density
σ Electrical conductivity
τxy, τij Shear stress
φ Dimensionless concentration variable
δij Kronecker delta
µ∗ Consistency index of the power-law fluid

Subscripts

w,∞ Conditions at the surface and in the free stream
η Differentiation with respect to η

stretchingunder different physical situations [6–9]. It iswell known that a number of industrial fluids such asmoltenplastics,
polymeric liquids, and foodstuffs (or slurries) exhibit non-Newtonian fluid behavior. Therefore, heat and mass transfer in
non-Newtonian fluids is of practical importance. Many different types of non-Newtonian fluid exist, but the simplest and
most common type is the power-law fluid for which the rheological equation of state between the stress components τ and
strain components e is defined by (see [10])

τij = −Pδij + K
− −

elmelm
 n−1

2
eij,

where P is the pressure, δij is the Kronecker delta, and K and n are respectively the consistency and the flow behavior indices
of the fluid. Such fluids are known as power-law fluids. For n > 1, the fluid is said to be a dilatant or shear-thickening fluid;
for n < 1, the fluid is called a shear-thinning or pseudo-plastic fluid, and for n = 1, the fluid is simply a Newtonian
fluid. Several studies in the literature suggest the range 0 < n < 2 for the value of power-law index n. Schowalter [11]
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studied the application of boundary layer theory to pseudo-plastic fluids. Acrivos et al. [12] investigated the momentum
and heat transfer in the laminar boundary layer flow of non-Newtonian fluids past external surfaces. Similarity solutions
for non-Newtonian power-law fluids were obtained by Lee and Ames [13]. Andersson and Dandapat [14] studied the flow
of a power-law fluid over a stretching sheet. Sahoo et al. [15] considered the momentum and heat transfer in a power-law
fluid from a continuous moving plate with non-uniform surface velocity distributions.

Even though the above-mentioned papers do not consider the situations where hydromagnetic effects arise, in recent
years,we find several applications in the polymer industry (where one dealswith stretching of plastic sheets) andmetallurgy
where hydromagnetic techniques are being used. To be more specific, it may be pointed out that many metallurgical
processes involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid, and that, in
the process of drawing, these strips are sometimes stretched. Mention may be made of drawing, annealing, and thinning
of copper wires. In all these cases, the properties of the final product depend to a great extent on the rate of cooling by
drawing such strips in an electrically conducting fluid subject to a uniformmagnetic field. Another important application of
hydromagnetic flows to metallurgy lies in the purification of molten metals from non-metallic inclusions by the application
of a magnetic field. In view of this, the study of the magnetohydrodynamic (MHD) flow of a non-Newtonian fluid over a
stretching sheet has been carried out bymany researchers [16–21]. By taking the advantage of themathematical equivalence
of the thermal boundary layer problem with the concentration analog, results obtained for the heat transfer characteristics
can be carried directly over to the case ofmass transfer by replacing the Prandtl numberwith the Schmidt number. However,
the presence of a chemical reaction term in the mass diffusion equation generally destroys the formal equivalence with the
thermal energy problem, and, moreover, generally prohibits the construction of similarity solutions. Therefore, the study
of heat and mass transfer with a chemical reaction is of great practical importance to engineers and scientists because of
its almost universal occurrence in many branches of science and engineering. The effects of a chemical reaction depend on
whether the reaction is heterogeneous or homogeneous. This depends on whether the reactions occur at an interface or as
a single-phase volume reaction. A reaction is said to be of first order if the rate of reaction is directly proportional to the
concentration. All industrial chemical processes are designed to transform cheaper raw materials to high-value products,
usually via a chemical reaction.

The first step in any reaction engineering analysis is formulating a mathematical framework to describe the rate and
mechanisms by which one chemical species is converted into another in the absence of any transport limitations (chemical
kinetics). Analysis of the transport processes and their interaction with chemical reactions can be quite difficult, and is
intimately connected to the underlying fluid dynamics. Such a combined analysis of chemical and physical processes
constitutes the core of chemical reaction engineering. In many industrial processes involving flow and mass transfer over a
moving surface, the diffusing species can be generated or absorbed due to some kind of chemical reaction with the ambient
fluid [22]. This generation or absorption of species can affect the flow and accordingly the properties and quality of the final
product. Hence, it is important to take into account the effect of the chemical reaction in addition to the effect of diffusion of
the species in analyzing the mass transfer phenomenon. The available literature [23–29] on flow and mass transfer reveals
that not much work has been carried out for power-law fluids. Recently, Cortell [29] investigated the MHD flow and mass
diffusion of chemical species with first-order and higher-order reactions of an electrically conducting fluid of second grade
in a porous medium over a stretching surface.

The physical situation described in all the above studies is related to the flow and mass transfer characteristics over a
stretching sheet. In the present investigation, we are interested in modeling the steady two-dimensional boundary layer
flow andmass transfer of a non-Newtonian power-law fluid induced by a flat surface. This is a generalization of the work of
Andersson et al. [16] to the case of MHD flow over a stretching sheet in the presence of species concentration and a chemical
reaction. The presence of the power-law index and the chemical reaction term in the momentum and the mass diffusion
equations leads to coupled, non-linear partial differential equations (PDEs). These PDEs are converted to coupled non-linear
ordinary differential equations (ODEs). To deal with the coupling and the non-linearity in the boundary value problem, a
numerical finite difference scheme called the Keller–Box method is adopted. The results are analyzed for several sets of
values of the governing parameters on the flow and mass transfer characteristics.

2. Mathematical analysis

Let us consider the steady incompressible flow of a viscous electrically conducting power-law fluid over a stretching
sheet with a magnetic field of strength B0 (applied normal to the surface), as shown in Fig. 1. The flow is generated due
to the stretching of the sheet (caused by the simultaneous application of two equal and opposite forces along the x-axis,
keeping the origin fixed). The continuous stretching sheet is assumed to have a linear velocity U(x) = bx and species
diffusion Cw(x) = C∞ + E

 x
l

r , where b is the linear stretching rate, x is the distance from the slit, E is a constant whose
value depends upon the properties of the fluid, r is the species concentration parameter, and l is the characteristic length. An
appropriate mass transfer analog to the problemwould be the flow along a flat plate that contains a species A that is slightly
soluble in fluid B. The concentration at the plate surface would be Cw , and the solubility of A in B and the concentration of
species A far away from the plate would be C∞. Let the reaction of species A with B be a first-order homogeneous chemical
reaction with rate constant k1. It is desired to analyze the system by the boundary layer method. It is assumed that the
concentration of the dissolved A is small enough and the physical properties ρ, γ , and D are virtually constant throughout
the fluid. It is also assumed that the magnetic Reynolds number Rem is very small, i.e., Rem = µ0σbl ≪ 1, where µ0 is
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the magnetic permeability and σ is the electric conductivity. Further, since there is no electric field, the electric field due to
polarization of charges is negligible. Under these assumptions, and invoking the usual boundary layer approximations, the
flow can be shown to be governed by the following system of coupled partial differential equations alongwith the necessary
conditions:

∂u
∂x

+
∂v

∂y
= 0, (2.1)

u
∂u
∂x

+ v
∂u
∂y

= −γ
∂

∂y


−
∂u
∂y

n

−
σB2

0

ρ
u + gβ∗ (C − C∞) , (2.2)

u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2

− k1C, (2.3)

u(x, 0) = U(x) = bx, (2.4a)
v(x, 0) = 0, (2.4b)

C(x, 0) = Cw(x)

= C∞ + E

x
l

r
, (2.4c)

u(x, y) → 0, C(x, y) → C∞ as y → ∞. (2.4d)

In the above equations, u and v are the velocity components along the x-axis and the y-axis, respectively. γ is the kinematic
viscosity of the fluid, n is the power-law index, ρ is the fluid density, g is the acceleration due to gravity, β∗ is the volumetric
concentration coefficient, D is the chemical molecular diffusion coefficient of the diffusing species in the fluid, and k1
denotes the reaction rate constant of a first-order homogeneous and irreversible reaction. A rigorous derivation together
with the subsequent analysis of the boundary layer equations for power-law fluids was recently provided by Denier and
Dabrowski [30]. They focused on boundary layer flow driven by a free stream, U(x) ≈ xm, i.e., Falkner–Skan type. Such
boundary layer flows are driven by a stream-wise pressure gradient −

dp
dx = ρ du

dx set up by the external free stream, outside
the viscous boundary layer. In the present context, no driving pressure gradient is present. Instead, the flow is driven solely
by a flat surface, which moves with a prescribed velocity U(x) = bx. The first term in the right-hand side of Eq. (2.2), the
shear rate, is assumed to be negative throughout the boundary layer since the stream-wise velocity component u decreases
monotonically with the distance y from themoving surface (for a continuous stretching surface). Here, Eq. (2.4d) claims that
the stream-wise velocity and the species diffusion vanish outside the boundary layer, Eq. (2.4c) is the species concentration
of the reactant which is maintained at a prescribed surface value Cw and is assumed to vary as a function of x, and the
requirement Eq. (2.4b) signifies the importance of the impermeability of the stretching surface, whereas Eq. (2.4a) ensures
no slip at the surface. As in [13], the following transformation is introduced:

η =
y
x
(Rex)

1
n+1 , ψ(x, y) = Ux(Rex)

−1
n+1 f (η), φ(η) =

C − C∞

Cw − C∞

, (2.5)

where η is the similarity variable,ψ(x, y) is the stream function, and f and φ are the dimensionless similarity function and
mass concentration, respectively. The velocity components u and v are given by

u =
∂ψ

∂y
v = −

∂ψ

∂x
. (2.6)

The local Reynolds number is defined by

Rex =
U2−nxn

γ
. (2.7)

The mass conservation equation (2.1) is automatically satisfied by Eq. (2.6). By assuming the similarity function f to depend
on the similarity variable η, the momentum equation (2.2) and the mass transfer equation (2.3) transform into a coupled
non-linear ordinary differential equation:

n(−f ′′)n−1f ′′′
− f ′2

+


2n

n + 1


ff ′′

− Mnf ′
+ Gcxφ = 0 (2.8)

φ′′
+ NSc


2n

n + 1
f φ′

− rf ′φ


= βNscφ, (2.9)

where Mn =
σB20
ρb is the magnetic parameter, Gcx =

gβ∗(Cw−C∞)xb−n

γRex
is the local modified Grashof number with respect to

species diffusion, NSc =
bx2
D (Rex)

2
n+1 is the modified Schmidt number for power-law fluids, and β =

k1
b is the reaction rate
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Fig. 1. Physical model and coordinate system.

parameter. Eqs. (2.8) and (2.9) are solved numerically subject to the following transformed boundary conditions obtained
from Eq. (2.4) using (2.5). The conditions are

f = 0 at η = 0 (2.10a)

f ′
= 1 at η = 0, (2.10b)

φ = 1 at η = 0, (2.10c)

f ′
→ 0, φ → 0 as η → ∞. (2.10d)

It should be noted that the velocity U = U(x) is used to define the dimensionless stream function f in Eq. (2.5) and the local
Reynolds number in Eq. (2.7) describes the velocity of the moving surface that drives the flow. This choice is in contrast
to conventional boundary layer analysis, in which the free stream velocity is taken as the velocity scale. Although the
transformation defined in Eqs. (2.5) and (2.7) can be used for any arbitrary variation of U(x), the transformation results
in a true similarity problem only if U varies as bx. Such surface velocity variations are therefore required for the ordinary
differential equation (2.8) to be valid. Non-similar stretching sheet problemswhich require the solution of partial differential
equations rather than ordinary differential equations were considered by several researchers for Newtonian fluids. We
noticed that in the absence of mass transfer and a magnetic parameter, Eqs. (2.8) and (2.9) reduce to those of Andersson
and Dandapat [14], while for a Newtonian fluid (n = 1) in the presence of mass transfer, the equations reduce to those of
Andersson et al. [26]. Also, in the presence of a magnetic parameter for the power-law fluid flow, without mass transfer, the
Eq. (2.8) reduces to those of Cortell [18] and Andersson et al. [31].

The physical quantities of interest include the velocity components u and v, the skin friction coefficient Cfx and the mass
transfer rate Shw(x) at the wall. In terms of the transformation variables, these quantities can be written as

u = Uf ′, (2.11)

v = −U(Rex)
−1
n+1

[
2n

n + 1
f + η


1 − n
1 + n


f ′

]
(2.12)

1
2
Cf [Rex]

1
n + 1

= [−f ′′(0)]n (2.13)

ShxRe
−1
n+1
x = −φ′(0). (2.14)

3. Numerical procedure

The system of transformed coupled non-linear ordinary differential equations (2.8) and (2.9) together with the boundary
conditions (2.10) is solved numerically by an efficient finite difference scheme known as the Keller–Boxmethod [31–33] for
different values of the physical parameters. The numerical solutions are obtained in four steps, as follows.

• Reduce Eqs. (2.8) and (2.9) to a system of first-order equations;
• write the difference equations using central differences;
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Table 1
Comparison of skin friction f ′′(0) values with those of Andersson et al. [31] and Cortell [18] for Gcx = 0.0.

Mn n = 0.4 n = 0.6 n = 0.8 n = 1.0 n = 1.2 n = 2.0

Andersson et al. [31]
0.0

−1.273 −1.096 −1.029 −1.000 −0.987 −0.980
Cortell [18] −1.2730 – – −1.000 – −0.9797
Present results −1.27345 −1.09838 −1.02897 −1.000 −0.98738 −0.98035
Andersson et al. [31]

0.5
−1.851 −1.4649 −1.3086 −1.2247 −1.1752 −1.0926

Cortell [18] −1.8111 – – −1.2247 – −1.0296
Present results −1.8154 −1.4649 −1.3086 −1.2247 −1.1754 −1.0926

Fig. 2a. Velcoity profiles for different values of n with Mn = 0.0 and Gcx = 0.0.

• linearize the algebraic equations by Newton’s method, and write them in matrix-vector form; and
• solve the linear system by the block tridiagonal elimination technique.

For the sake of brevity, further details on the solution process are not presented here. It is also important to note that the
computational time for each set of input parameter values should be short. Because the physical domain in this problem is
unbounded,whereas the computational domain has to be finite, we apply the far-field boundary conditions for the similarity
variable η at a finite value denoted by ηmax. We ran our bulk computations with the value ηmax = 10, which is sufficient
to achieve the far-field boundary conditions asymptotically for all values of the parameters considered. For the numerical
calculations, a uniform step size of 1η = 0.01 is found to be satisfactory, and the solutions are obtained with an error
tolerance of 10−6 in all cases. To assess the accuracy of the present method, a comparison of the skin friction between the
present results and previously published results is made, for a special case (no mass transfer), and is shown in Table 1.

4. Results and discussion

In order to have an insight into the effects of the parameters on the MHD flow and mass transfer characteristics, we
present the numerical results graphically in Figs. 2–5 and in Tables 2 and 3 for several sets of values of the parameters.
Velocity profiles are presented in Figs. 2a–2d and concentration species distribution profiles are depicted in Figs. 3–5.

We can have a glimpse of the physical layout of the boundary layer structure which develops near the slit by observing
the horizontal velocity profiles in Figs. 2a–2d. Figs. 2a–2d illustrate the effects of the power-law index n, magnetic parameter
Mn, and modified Grashof number Gcx on the horizontal velocity f ′. It is noticed from the Fig. 2a that the velocity profile
f ′ decreases with increasing values of n in the boundary layer, but this effect is not very prominent near the wall. The
effect of increasing values of n is to reduce the velocity, thereby reducing the boundary layer thickness, i.e., the thickness
is much larger for shear-thinning (pseudo-plastic) fluids (0 < n < 1) than for Newtonian (n = 1) and shear-thickening
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Fig. 2b. Velocity profiles for different values of Gcx and Mn with NSc = 1.0, r = 1.0, and β = 1.0.

Fig. 2c. Velocity profiles for different values of Gcx and Mn with NSc = 1.0, r = 1.0, and β = 1.0.

(dilatant) fluids (1 < n < 2), as clearly seen in Fig. 2a. The effect of the magnetic parameter Mn and modified Grashof
number Gcx on the velocity f ′ is depicted in Figs. 2b–2d. It is observed that the f ′ decreases with an increase in Mn due to
the fact that the introduction of a transverse magnetic field, normal to the flow direction, has a tendency to create a drag,
known as the Lorentz force, which tends to resist the flow. This behavior occurs in all three cases, namely, shear-thickening,
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Fig. 2d. Velocity profiles for different values of Gcx and Mn with NSc = 1.0, r = 1.0, and β = 1.0.

Fig. 3a. Concentration profiles φ versus η for different values of nwith Gcx = 0.0 and Mn = 0.0.

Newtonian and shear-thinning fluids. These results are consistent with the results of Anderson et al. [31]. An increase in
the value of Gcx leads to an increase in the mass transfer gradient. This leads to the enhancement of the velocity profile
f ′ due to the enhanced species diffusion, and thus increases the boundary layer thickness. This behavior can also be seen
in Newtonian fluids for n = 1, shear-thinning (pseudo-plastic) fluids for n < 1, and shear-thickening (dilatant) fluids for
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Fig. 3b. Concentration profiles φ versus η for different values of NSc and Mn with Gcx = 0.0, r = 1.0, and β = 1.0.

Fig. 3c. Concentration profiles φ versus η for different values of NSc and Mn with Gcx = 0.0, β = 1.0, and r = 1.0.

n > 1 (see Figs. 2b–2d, respectively). Figs. 2b–2d reveal that the boundary layer thickness is larger for shear-thinning fluids
as compared to Newtonian and shear-thickening fluids.

The graphs for the species concentration distribution φ for several sets of values of the non-dimensional parameters
are presented in Figs. 3–5. The general trend from the concentration profiles φ shows that the species distribution is unity
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Fig. 3d. Concentration profiles φ versus η for different values of NSc and Mn with Gcx = 0.0, β = 1.0, and r = 1.0.

Fig. 4a. Concentration profiles φ versus η for different values of NSc and Gcx with Mn = 0.0, β = 1.0, and r = 1.0.

at the wall with the change of physical parameters and tends asymptotically to zero as the distance increases from the
boundary. The effect of the power-law index, n, on the concentration species distribution φ in the boundary layer is shown
in Fig. 3a. The effect of an increase in the values of n leads to thinning of the species distribution boundary layer. This
behavior is very noticeable in shear-thinning and shear-thickening fluids. In Figs. 3b–3d, the profiles for the concentration
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Fig. 4b. Concentration profiles φ versus η for different values of NSc and Gcx with Mn = 0.0, β = 1.0, and r = 1.0.

Fig. 4c. Concentration profiles φ versus η for different values of NSc and Gcx with Mn = 0.0, β = 1.0, and r = 1.0.

species distribution φ are plotted for different values of modified Schmidt number NSc in the presence/absence of Mn for
shear-thinning (Fig. 3b), Newtonian (Fig. 3c), and shear-thickening (Fig. 3d) fluids. It is observed that an increase inMn leads
to an increase in the concentration. This is because the Lorentz force increases the friction between the layers, and this is
responsible for an increase in concentration φ. However, an increase of the value of the modified Schmidt number Nsc leads
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Fig. 5a. Concentration profiles φ versus η for different values of r and β with Gcx = 0.0, Mn = 1.0, and NSc = 1.0.

Fig. 5b. Concentration profiles φ versus η for different values of β and r with Gcx = 0.0, NSc = 1.0, and Mn = 1.0.

to a decrease of the thickness of the concentration boundary layer. This is due to the thinning of the concentration boundary
layer with the introduction of species diffusion. This phenomenon occurs for shear-thickening (see Fig. 3b), Newtonian
(see Fig. 3c), and shear-thinning (see Fig. 3d) fluids. By comparing these figures, we see that the concentration boundary
layer thickness is larger for shear-thinning fluids than for the Newtonian and shear-thickening fluids.
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Fig. 5c. Concentration profiles φ versus η for different values of β and r with Gcx = 1.0, Mn = 1.0, and NSc = 1.0.

Table 2
Skin friction and mass transfer gradient for several sets of values of the physical parameters.

Nsc β r Mn Gcx n = 0.8 n = 1.0 n = 1.2
f ′′(0) ϕ′(0) f ′′(0) ϕ′(0) f ′′(0) ϕ′(0)

1.0 1.0 1.0

0
−0.5 −1.27088654 −1.423024 −1.197986 −1.439168 −0.63374633 −1.492982
0 −1.03002477 −1.4448913 −1.00006318 −1.459439 −1.157468 −1.450724
1 −0.60791487 −1.4801828 −0.63374637 −1.492982 −0.987383 −1.469818

1.0
−0.5 −1.7755839 −1.372818 −1.59455919 −1.395419 −1.4802514 −1.415179
0 −1.544125 −1.393875 −1.41421366 −1.414214 −1.333014 −1.429549
1 −1.1198733 −1.4297158 −1.07219779 −1.446799 −1.0144068 −1.459888

Nsc Gcx β Mn r f ′′(0) ϕ′(0) f ′′(0) ϕ′(0) f ′′(0) ϕ′(0)

1.0 −0.5

0.0

0.0
−1 −1.4744947 −0.0820259 −1.34098339 −0.154732 −1.26106811 −0.219564
0 −1.42712963 −0.5024353 −1.29997051 −0.579856 −1.23105419 −0.625866
1 −1.36961126 −0.9050402 −1.26890254 −0.941886 −1.20380557 −0.988173

1.0
−1 −1.88961136 −0.1622099 −1.67625248 −0.226013 −1.53962576 −0.297629
0 −1.86004245 −0.5275533 −1.65359342 −0.589658 −1.52245402 −0.651764
1 −1.83595955 −0.8502349 −1.63945073 −0.891564 −1.50791633 −0.967822

1.0

0.0
−1 −1.23887444 −0.8595579 −1.61953044 −0.874294 −1.50044334 −0.893634
0 −1.21614492 −1.1653026 −1.6061051 −1.146077 −1.48954093 −1.165961
1 −1.19842923 −1.4390568 −1.59442222 −1.395741 −1.48007047 −1.415839

1.0
−1 −1.61958182 −0.8741826 −1.24077618 −0.860318 −1.19054615 −0.878865
0 −1.60613751 −1.1459873 −1.21920943 −1.165234 −1.17238474 −1.180051
1 −1.59444451 −1.395673 −1.2016108 −1.395741 −1.15745211 −1.450780

The effects of the modified Grashof number Gcx and modified Schmidt number NSc on the concentration φ for shear-
thinning (n = 0.8), Newtonian (n = 1), and shear-thickening (n = 1.8) fluids are shown respectively in Figs. 4a–4c.
Increasing the value of Gcx results in a decrease in the concentration boundary layer thickness, associated with an increase
in the wall mass transfer gradient, and hence produces an increase in the surface mass transfer rate. Also the effects of
species diffusion are found to be more pronounced for a fluid with smaller NSc. This is because the concentration gradient
accelerates the dispersion of the species. This observation is true even in the cases of Newtonian and shear-thinning fluids.
The concentration profilesφ across the flow field are plotted in Figs. 5a–5c for different values of the reaction rate parameter
β and the wall concentration parameter r . From these graphs we observe that the effect of increasing the value of β is to
decrease the concentration in the flow files. However, the values for the mass concentration are higher for negative values
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of β as compared to positive values of β . Physically, β < 0 represents a generative chemical reaction, i.e., the species which
diffuses from the stretching sheet is produced by a chemical reaction in the free stream, and β > 0 a destructive chemical
reaction i.e., one that reduces the thickness of the concentration layer and increases the wall transfer, as shown in these
figures. This behavior occurs for both zero and non-zero values of r . From the graphical representation we also observe that
an increase in r leads a decrease in the concentration profile φ, and that the magnitude of the wall concentration gradient
increases with the wall concentration. This is due to the fact that when r > 0 the species diffuses from the stretching sheet
into the ambient medium and when r < 0 the species diffuses into the stretching sheet from the ambient medium.

The values of −f ′′(0) and −φ′(0), respectively, which signify the local skin friction coefficient, Cf , and the mass transfer
gradient, are recorded in Tables 2 and 3 for different values of the governing parameters. From Table 2, we observe that
−f ′′(0) increases with an increase in the magnetic field parameter Mn for various values of n. It is interesting to note that
the magnitude of the wall surface gradient decreases gradually with increasing n and Gcx. The effect of the power-law index
on −f ′′(0) is more significant in a shear-thinning fluid (n < 1) than in a shear-thickening fluid (n > 1). It is further noticed
that the effect of n is to increase themagnitude of thewall mass transfer gradient whereas the reverse trend is seenwithMn.
This result has a significant role in industrial applications to reduce the power supply expenditure by stretching the sheet
just by increasing the magnetic parameter Mn. Further, it can be seen from Table 3 that the effects of increasing values of
the reaction rate parameter β , wall concentration parameter r and the modified Schmidt number NSc are to decrease the
mass transfer gradient at the wall.

5. Conclusion

In this work, we have explored the influence of the reaction rate parameter on the MHD flow and mass transfer of a
power-law fluid over a stretching sheet. Similarity transformations are used to reduce the partial differential equations
into ordinary differential equations. Numerical solutions for the velocity and species distribution are obtained for different
values of the pertinent parameters using the Keller–Box method. Based on the computational results the new findings are
as follows.

• The effect of increasing the values of the power-law index and the magnetic parameter is to reduce the fluid velocity
profile and hence reduce the boundary layer thickness.

• The effect of the magnetic field is to enhance the wall mass transfer gradient and hence enhance the species distribution.
• An increase of the reaction rate parameter and wall concentration parameter reduces the thickness of the species

distribution. This holds good for all values of the power-law index.
• An increase in themodified Grashof number enhances the velocity boundary layer thickness; whereas quite the opposite

is true for the mass concentration.
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