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ZnO nanowires, nanorods and microrods have been prepared by an organic-free

hydrothermal process using ZnSO4 and NaOH/NH4OH solutions. The powder X-ray

diffraction (PXRD) patterns reveal that the ZnO nano/microrods are of hexagonal

wurtzite structure. The Fourier transform infrared (FT-IR) spectrum of ZnO powder

shows only one significant spectroscopic band at around 417 cm�1 associated with

the characteristic vibrational mode of Zn–O bonding. The thickness 75–300 nm for

ZnO nanorods and 0.2–1.8mm for microrods are identified from SEM/TEM images.

UV–visible absorption spectra of ZnO nano/microrods show the blue shift. The UV band

and green emission observed in photoluminescence (PL) spectra are due to free exciton

emission and singly ionized oxygen vacancy in ZnO. Finally, the mechanism for organic-

free hydrothermal synthesis of the ZnO nano/microrods is discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, nanostructural materials having high
surface to volume ratio are of great consideration in the
light of their significant potential applications in electro-
nics, optoelectronics and catalysis [1]. Due to decrease in
particle size, more and more novel properties resulting
from quantum effects have been observed [2]. Nanocrys-
talline metal oxides play a very important role in many
areas of chemistry, physics and materials science. These
can adopt a vast number of structural geometries with an
electronic structure that can exhibit metallic, semicon-
ductor or insulator characteristics [3]. Binary oxides such
as ZnO, CdO, SnO2 and In2O3 have distinctive properties
and are now widely used as transparent conductive oxide
materials and gas sensors [4]. These oxides have two
unique structural features: mixed cation valencies and an
adjustable oxygen deficiency, which are the bases for
ll rights reserved.
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creating and tuning many novel materials properties [5].
ZnO is a well-known n-type wide band gap semiconduc-
tor (Eg=3.37 eV) with a large exciton binding energy of
60 meV [6]. As a result the material is transparent to
visible light but not to UV light. Furthermore, ZnO is
biocompatible and it exhibits both piezo- and pyro-
electric properties [7]. ZnO is one of the ‘hardest’
materials in the II–VI compound family. As a result, ZnO
devices do not suffer from dislocation degradation during
operation [8]. ZnO with various morphologies such as
nanowires, nanorods, nanobelts, nanotubes and nanote-
trapods [9–11] have been prepared by a number of
methods. Recent examples of the utilization of ZnO
nanorods are found in hybrid and dye-sensitized solar
cells, field-emitting cathodes, chemical sensors, low-
voltage and short-wavelength electro-optical devices such
as light emitting diodes and diode lasers, surface acoustic
wave filters and varistors [12–18], etc. ZnO is a potential
sensor of NH3 and a photocatalyst to reduce the emission
of NOx. Due to higher solubility of ZnO in water,
conventional synthesis of nanostructural materials has
been considered to be especially difficult in the absence of
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any organics [14]. Template assisted sol–gel process,
solvothermal, thermal evaporation, metal organic chemi-
cal vapour deposition, spray pyrolysis and microwave
techniques are some of the other synthetic routes used
[13,14,19–21]. Recently, ZnO nanorods are synthesized by
the hydrothermal method using zinc chloride with 25%
ammonia [22]. Ken Elen et al. [7] explained the various
parameters in view of reducing the diameter of the ZnO
nanorods synthesized by the hydrothermal method. They
considered 28–4 fractional factorial design of experiment
which is applied to identify the important parameters that
affect the average diameter of ZnO rods. The absence of an
additive simplifies the procedure and the use of water as
the reaction medium makes the process ecologically less
demanding. Hydrothermal synthesis is becoming popular
for environmental reason, since water is used as a reaction
solvent than organics. This method has been widely used
to prepare nanomaterials due to its simplicity, high
efficiency and low cost.

Herein, we report the preparation of ZnO nano/
microrods by an organic-free hydrothermal method. In
order to understand the behavior of 1-D ZnO nano/
microrods; the effects of mineralizer, temperature, con-
centration of the starting solution and the treatment time
on their morphology have been investigated. The effect of
particle size on the intensity of PL spectra at room
temperature is investigated.
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Fig. 1. Powder XRD patterns of ZnO nano/microrods prepared at

(a) 180 1C for 6 h using NH4OH; (b) 180 1C for 20 h using NaOH and (c)

200 1C for 20 h using NaOH.
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Fig. 2. FTIR spectrum of ZnO nanorods prepared at 200 1C for 20 h using

NaOH.
2. Experimental details

In a typical hydrothermal process [23–25], 1 g
ZnSO4 �7H2O (3.47 mmol) is dissolved in 25 ml of distilled
water. To this, 10 ml of 2 M NaOH aqueous solution is
introduced resulting in the formation of white precipitate.
The white precipitate is stirred for 5 min with a magnetic
stirrer and transferred into Teflon-lined stainless steel
autoclaves with a capacity of 25 ml, sealed and main-
tained at different temperatures (180–200 1C) for several
hours (6–24 h). Similar experiments are carried out using
ammonia solution instead of NaOH. To this solution,
ammonium hydroxide is added drop by drop to adjust the
pH value of the solution. A white precipitate is obtained
when the pH of the solution reaches 9. The obtained
product is retrieved from the solution by centrifugation
and washed with distilled water followed by ethanol and
finally dried in air.

Zinc sulphate and sodium hydroxide are purchased
from E. MERCK chemicals. Powder X-ray diffraction (XRD)
data are recorded in y–2y coupled mode on Philips X’pert
PRO X-ray diffractometer using graphite monochroma-
tized Cu Ka radiation (l=1.541 Å).The Fourier transform
infrared spectrum of the sample is collected using Thermo
Nicollet FT-IR spectrometer. The absorption spectra of the
samples are measured on a UV-3101 Shimadzu visible
spectrometer. Scanning electron micrograph images are
taken with JEOL (JSM-840A) scanning electron microscope
(SEM). Transmission electron microscopy (TEM) images
are observed with a JEOL 100 CX electron microscope.
Photoluminescence studies are carried out on a Perkin-
Elmer LS-55 luminescence spectrometer using Xe lamp
with an excitation wavelength of 325 nm at room
temperature.
3. Results and discussion

Fig. 1 shows the powder XRD patterns of the samples
prepared at 180–200 1C for 6–20 h. All the diffraction
peaks in the pattern can be indexed as the pure hexagonal
phase of ZnO with space group P63mc. These peaks are
free from Zn(OH)2 impurities within the detection limit of
the XRD technique. This indicates that sample is
composed of wurtzite structural ZnO with the lattice
constants a=3.249 and c=5.206 Å which are consistent
with the values in the standard card (JCPDS 36-1451).

Fig. 2 shows the FT-IR spectrum of ZnO nanorods in the
range 2000–300 cm�1. There is only one significant
spectroscopic band around 417 cm�1 associated with
the characteristic vibrational mode of Zn–O bonding
[26]. UV–visible spectra of the ZnO nanorods (Fig. 3(a))
and microrods (Fig. 3(b)) prepared at 200 and 180 1C for
20 h using NaOH exhibits a strong absorption between
362 and 371 nm which corresponds to a band gap of 3.43
and 3.34 eV. It is known that bulk ZnO (3.2 eV) has
absorption at 387 nm in the UV–visible spectrum and is
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obviously larger than the as-prepared ZnO nanorods
(362 nm) and microrods (371 nm). Compared to the bulk
ZnO, the observed blue shift in ZnO nanorods and
microrods may be due to the size effect [27].

Fig. 4 shows SEM images of ZnO nano/microrods
prepared using NaOH as mineralizer at 180–200 1C for
6–20 h. By controlling the experimental conditions
(temperature and duration), we have successfully
prepared ZnO nano/microrods of various morphologies
through the hydrothermal method. Fig. 4(a) shows the
low magnification image of the multipods or star-like
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Fig. 3. UV–visible spectra of ZnO (a) nanorods prepared at 200 1C for

20 h and (b) microrods prepared at 180 1C for 20 h using NaOH.
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Fig. 4. SEM images of ZnO nano/microrods prepared using NaOH a
morphologies. Inset of Fig. 4(a) reveals that the number of
arms from 5 to 10 have a common origin with almost
equal length and thickness of about 150–400 nm. Each
multipod or star-like morphology is composed of sub-
micrometer sized rods which form radiating structures
[28]. One can also feel that these star-like particles or
intertwined ellipsoid or intertwined needles depending
on the lengths of the branches which are formed at 180 1C
for 6 h. The formation of star-like structures may be
explained by the coalescence of several nuclei [29].
The growth of these star-like ZnO particles does not
follow the simple LaMer and Dinegar theory [30], as it
appears that there are several nucleation events. Den
Ouden and Thompson have shown that monodisperse
populations can form even though nucleation extends
over a period of time, if the particle growth is slow
relative to nucleation. After the first nucleation, the
particles begin to grow by diffusion of the reactants
through solution to the surface of the growing particles
[31]. As the hydrothermal duration increases, the as-
obtained product is still retained its morphology, but
further nucleation occurs leading to the formation of
microrods. ZnO microrods (Fig. 4b) of about 0.6–1.8mm in
thickness and 3–11mm in length having hexagonal cross-
section with sharp edges and tips are formed at 180 1C for
20 h. Such hexagonal morphology is consistent with the
idealized growth behavior of the ZnO crystal described
by Laudise and Ballman [32] who deemed that ZnO prefer
to grow along the [0 0 0 1] direction. The crystal facet with
faster growth velocity tends to disappear and the facet
t (a) 180 1C for 6 h; (b) 180 1C for 20 h and (c) 200 1C for 20 h.
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with slower growth velocity is prone to remain. Hence
sharp tips are formed during the nano/microrods growth.
In particular, these results can usually be found in the
synthesis of nano/microrods with monoclinic and
hexagonal phase [33]. Increasing the hydrothermal
treatment temperature to 200 1C for 20 h resulted in the
production of smooth surface hexagonal cross nanorods
(Fig. 4c) with sharp tips having a thickness of about
150 nm and several micrometers in length. It was also
found that the assembly pattern of ZnO architectures
became looser with the prolonging of reaction time. i.e.,
assembly structure of original ZnO products which were
formed quickly in the beginning of the reaction
temperature [34].

Fig. 5 reveals SEM images of the samples prepared
at 180 1C for 6–24 h using NH4OH as mineralizer. The
thickness of the microrods (Fig. 5(a)–(c)) is in the range
0.2–1.8mm and the length is about 1.8–6.2mm. When the
growth time is increased to 24 h, flake-like structures
were observed (Fig. 5(d)). It is interesting to note that
the diameter of the rods is reduced by decreasing the
concentration of ZnSO4 (0.347 mmol) and increasing the
temperature. SEM images (Fig. 6a) show that the products
prepared at 200 1C for 6 h are composed of ZnO multipod
a

c

Fig. 5. SEM images of the ZnO microrods/flakes prepared usin
structures, appears like flowers in which each pod radially
grows from one center. The thickness of each rod is almost
uniform along its length and the typical thickness of the
rod range from 75 to 150 nm and length of each rod is
about 0.5–2.5mm. Fig. 6(b) shows large quantities of ZnO
nanowires prepared at 200 1C for 20 h with very high
aspect ratio. Thicknesses of the nanowires vary from 70 to
140 nm and several micrometers in length are observed.

The EDS/TEM sample of ZnO nanorods prepared at
200 1C for 20 h (concentration of ZnSO4 is 0.347 mmol) is
shown in Fig. 7, which is the direct evidence that led to
the conclusion that except Zn and O (elements of ZnO), no
other elements existed. The copper peak in the spectrum
is attributed to the copper meshes of the TEM grid. The
morphology and structure of individual ZnO nanorods
have been characterized with further detail using TEM,
which are shown in Fig. 8. Fig. 8(a) shows that nanowires
are straight and uniform along their entire length.
From Fig. 8(b), it can be seen that an end of the ZnO
nanowires is pointed like a sword with thickness of about
50–100 nm. The SAED dot pattern (Fig. 8(c)) indicates that
the nanorods are single crystal in nature and can be
indexed as hexagonal ZnO phase which is in accord with
the XRD results in Fig. 1.
b

d

g NH4OH at 180 1C for (a, b) 6 h; (c) 20 h and (d) 24 h.
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Fig. 6. SEM images of the ZnO nanorods/wires prepared in low concentration (0.347 mmol) using NaOH at 200 1C for (a) 6 h and (b) 20 h.

4000

3000
Zn

Zn

ZnCu

2000

1000

C
ou

nt
s

0 10

Energy (keV)

20 30 40

Fig. 7. EDS spectrum of ZnO nanorods prepared at 200 1C for 20 h.
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Laudise and Ballman [32] and Laudise et al. [35] were the
first to describe the idealized growth habit of a ZnO crystal,
prepared by the hydrothermal method in an alkaline
medium. A possible growth mechanism for the formation
of the nano/microrods can be explained on the basis of the
polar structure of ZnO. ZnO exhibits a hexagonal wurtzite
structure consisting of planes of tetrahedrally coordinated
O2� and Zn2+ ions, stacked alternately along the polar
c-axis. The tetrahedral coordination in ZnO results in
piezoelectric and pyroelectric properties due to the absence
of inversion symmetry. The oppositely charged ions produce
positively charged Zn-(0 0 0 1) and negatively charged O-
(0 0 0–1) surfaces, resulting in a normal dipole moment and
spontaneous polarization along the c-axis as well as a
variance in surface energy [36]. In the hydrothermal process,
the growth unit of ZnO is [Zn(OH)4]2� , which leads to the
different growth rate of planes shown in the following:
V(0 0 0 1)4V(0 1–1 0)4V(0 0 0 1). As we know, more rapid
the growth rate is, quicker the disappearance of the plane.
Therefore, the (0 0 0 1) plane, the most rapid growth rate
plane disappears in the hydrothermal process, which leads
to the pointed shape in an end of the c-axis. However, the
plane, the slowest growth rate plane, is maintained in the
hydrothermal process, which leads to the plain shape in
another end of the c-axis [1,28,37,38]. The idealized growth
habit of ZnO [39] is as shown in Fig. 9.

In principle, the crystal growth process includes nuclei
and growth units. In our experiment due to different pH
values, the quantity of Zn(OH)2 and of the growth unit
[Zn(OH)4]2� which contribute, respectively, to the nucleation
and growth of ZnO are also different in the aqueous solution.
Based on the well known behavior of Zn in alkaline media,
we presume that when the pH value is equal to 11 using
NaOH as mineralizer, a small quantity of Zn(OH)2 and a large
quantity of growth unit [Zn(OH)4]2� are obtained [40]. Thus
in the hydrothermal process, the quantity of the correspond-
ing ZnO nuclei is smaller. Therefore, there is enough growth
unit [Zn(OH)4]2� to make ZnO nanorods grow from the
circumference of the ZnO nuclei. In this experiment, OH� is
first introduced into Zn2+ aqueous solution, and then
Zn(OH)2 colloids formed, according to the reaction

Zn2 +
(aq)+2OH�2Zn(OH)2(s) (1)

If the pH value in the aqueous solution is about 11,
Zn(OH)2 is the main composition. During the hydrother-
mal process, part of the Zn(OH)2 colloids dissolves into
Zn2 + and OH� . When the concentration of Zn2 + and OH�

reaches the super-saturation degree of ZnO. ZnO nuclei is
formed according to reaction 4. Thus, the growth units of
[Zn(OH)4]2� formed [1,40] according to reaction 3. The
possible reaction mechanism is

Zn(OH)2-Zn2 + +2OH� (2)

Zn(OH)2+2OH�2[Zn(OH)4]2�[Zn(OH)4]2�2Zn2 +

+4OH� (dissolution) (3)

Zn2 +
(aq)+2OH�-ZnO(s)+H2O (nucleation) (4)

As the hydrothermal treatment temperature reaches
200 1C, in addition to pH factor (i.e. nuclei and growth
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Fig. 8. TEM images of the single ZnO nanowire prepared in low concentration (0.347 mmol) using NaOH at 200 1C for 20 h.
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Fig. 9. Idealized growth habit of the ZnO crystal.
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unit), active sites are generated around the circumference
of ZnO nuclei, so that the ZnO will preferentially grown on
the active sites along the (0 0 0 1) direction [41]. The
mechanism is illustrated in Fig. 10.

In the case of ammonia as a mineralizer, the pH value
is equal to 9. Larger quantity of growth unit Zn(OH)2 and a
smaller quantity of [Zn(NH3)4]2 + are obtained. During the
hydrothermal treatment, even if [Zn(NH3)4]2 + decompose
to free Zn2 +, the quantity of growth unit [Zn(OH)4]2� is
not enough. Therefore, microrods are formed [22,40]. The
possible reaction mechanism is

Zn2 + +4NH3 �H2O-[Zn(NH3)4]2 + +H2O(s)[Zn(NH3)4]2 +

+2OH�-ZnO+4NH3+H2O (5)

In order to assess the crystalline quality and investigate
the optical properties of the nanorods, PL spectra are taken
using Xe lamp as the excitation source of 325 nm. Figs. 11
and 12 show PL spectra of the samples prepared at different
conditions. Fig. 11(a) and (c) shows strong UV emission at
398 nm and Figs. 11(b), 12(a)–(c) show strong violet
emission at 403–405 nm. The emission in the UV region is
attributed to the recombination between electrons in the
conduction band and holes in the valence band [42]. Violet
emission is attributed to the exciton transition [43]. The
weak green band emission at 484 nm corresponds to the
singly ionized oxygen vacancy in ZnO and this emission
results from the recombination of a photogenerated hole
with the singly ionized charge state of the specific defect.
Oxygen vacancies have been considered as the most
common defects and usually act as radiative centers in
luminescence process. In addition, ZnO nanocrystals with
high aspect ratio should also favor the existence of large
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Fig. 10. Schematic growth diagram of ZnO nano/microrods prepared by surfactant-free hydrothermal process.
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Fig. 11. Photoluminescence spectra of ZnO nano/microrods using NaOH

at (a) 180 1C for 6 h; (b) 180 1C for 20 h and (c) 200 1C for 20 h.
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Fig. 12. Photoluminescence spectra of ZnO microrods/flakes using

NH4OH at 180 1C for (a) 6 h; (b) 20 h and (c) 24 h.
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quantities of oxygen vacancies. The strong UV emission and
weak green emission in PL spectra indicate that the ZnO
nano/microrods have a good optical quality with few
oxygen vacancies [44]. Blue emission at 421 nm is electron
transition from the shallow donor level of Zn interstitials to
the valence band. The excellent room temperature UV
emission property should be attributed to the high purity
and perfect crystallinity of the as-synthesized ZnO nanorods.
Therefore, the obtained ZnO nanorods are promising as a
high performance optical material.

4. Conclusions

In summary, by means of an organic-free hydrother-
mal process, ZnO nanowires, nanorods and microrods
with the hexagonal structure have been prepared. It is
found that nature of the mineralizer, reaction temperature
and treatment time have significant influence on the
morphology of ZnO nanowires, nanorods and microrods.
Powder XRD results show that the nano/microrods are
hexagonal and single crystal in nature. SEM/TEM images
reveal that the thickness of the nanowires/rods is in
the range 75–300 nm and microrods are in the range
0.2–1.8mm. It was interesting to note that the nanorods
had grown from one center to form radial clusters, which
consist of more than four rods grown from the center at
different directions. The sample prepared at 200 1C for
20 h shows a smooth polished surface. It is possible to
reduce the thickness of the ZnO rods by decreasing the
concentration and increasing the temperature. UV–visible
spectra of the ZnO nanorods and microrods show blue
shift compared to bulk ZnO. The PL spectra of the ZnO
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nanorods consist of an intense UV emission at 398 nm and
microrods possess violet emissions at 405 nm.
Acknowledgements

The author G.T. Chandrappa is thankful to the Department
of Science and Technology, NSTI Phase-IV, New Delhi,
Government of India for the financial support to carryout
this research. We also thank Prof. Sarala Upadhya, Depart-
ment of Mechanical Engineering, UVCE, Bangalore University
for her help in recording SEM images.

References

[1] Zhang H, Yang D, Ji Y, Ma X, Xu J, Que D. J Phys Chem B 2004;
108:3955.

[2] Zhang H, Yang D, Li S, Ma X, Ji Y, Xu J, et al. Mater Lett 2004;
59:1696.

[3] Garcia MF, Arias MA, Hanson JC, Rodriguez JA. Chem Rev
2004;104:4063.

[4] Ginley DS, Bright C. Mater Res Soc Bull 2000;25:15.
[5] Wang ZL. Adv Mater 2003;15:432.
[6] Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Kashiwaba Y, Haga K.

Nanotechnology 2004;15:S382.
[7] Elen K, Rul HV, Hardy A, Van Bael MK, Haen JD, Peeters D, et al.

Nanotechnology 2009;20:055608.
[8] Xia LL, Xin TQ, Lu SC, Chun LY. Chin Phys Lett 2005;22:998.
[9] Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P. Adv Mater

2001;13:113.
[10] Guo L, Ji YL, Xu H. J Am Chem Soc 2002;124:14864.
[11] Lepot N, Van Bael MK, Van den Rul H, Haen JD, Peeters R, Franco D,

et al. Mater Lett 2007;61:2624.
[12] Lao JY, Wen JG, Ren ZF. Nano Lett 2002;2:1287.
[13] Heo YW, Norton DP, Tein LC, Kwon Y, Kang BS, Ren F, et al. Mater

Sci Eng R 2004;47:1.
[14] Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov MA, Dogan S, et al.

J Appl Phys 2005;98:041301.
[15] Law M, Greene LE, Johnson JC, Saykally R, Yang PD. Nat Mater
2005;4:455.

[16] Kim DH, Jang HS, Lee SY, Lee HR. Nanotechnology 2004;15:1433.
[17] Wang CH, Chu XF, Wu MW. Sensors Actuators B 2006;113:320.
[18] Park WI, Kim JS, Yi GC, Bae MH, Lee HJ. Appl Phys Lett 2004;

85:5052.
[19] Vayssieres L. Adv Mater 2003;15:464.
[20] Audebrand N, Auffredic JP, Louer D. Chem Mater 1998;10:2450.
[21] Wang ZL. J Phys Condens Matter 2004;16:R829.
[22] Xu CX, Wei A, Sun XW, Dong ZL. J Phys D Appl Phys 2006;39:

1690.
[23] Chandrappa GT, Steunou N, Livage J. Nature 2002;416:702.
[24] Nagaraju G, Thipperudraiah KV, Chandrappa GT. Mater Res Bull

2008;433:297.
[25] Nagaraju G, Tharamani CN, Chandrappa GT, Livage J. Nanoscale Res

Lett 2007;2:461.
[26] Gu F, Wang SF, Lu MK, Zhou GJ, Xu D, Yuan DR. Langmuir

2004;20:3528.
[27] Wang C, Shen E, Wang E, Gao L, Kang Z, Tian C, et al. Mater Lett

2005;59:2867.
[28] Krishnan D, Pradeep T. J Cryst Growth 2009;311:3889.
[29] Ruth A, McBride, Kelly JM, McCormack DE. J Mater Chem

1996;13:1196.
[30] LaMer V, Dinegar RH. J Am Chem Soc 1950;72:4847.
[31] Zou G, Li H, Zhang Y, Xiong K, Qian Y. Nanotechnology

2006;17:S313.
[32] Laudise RA, Balmann AA. J Phys Chem 1960;64:688.
[33] Wen F, Li W, Moon J, Kim JH. Solid State Commun 2005;135:34.
[34] Zuo A, Hu P, Bai L, Yuan F. Nanoplates Cryst Res Technol

2009;44:613.
[35] Laudise RA, Kolb ED, Caporaso AJ. J Am Ceram Soc 1964;47:9.
[36] Wang ZL. Mater Sci Eng R 2009;64:33.
[37] Komarneni S, Bruno M, Mariani E. Mater Res Bull 2000;35:1843.
[38] Yadav RS, Pandey AC. Physica E 2008;40:660.
[39] Li WJ, Shi EW, Zhong WZ, Yin ZW. J Cryst Growth 1999;203:186.
[40] Zhang H, Yang D, Ma X, Ji Y, Xu J, Que D. Nanotechnology 2004;

15:622.
[41] Gao P, Ying C, Wang S, Ye L, Guo Q, Xie Y. J Nanoparticle Res

2006;8:131.
[42] Wang J, Gao L. J Mater Chem 2003;13:2551.
[43] Monticone S, Tufeu R, Kanaev AV. J Phys Chem B 1998;102:2854.
[44] Fang Z, Tang K, Shen G, Chen D, Kong R, Lei S. Mater Lett

2006;60:2530.


	Surfactant free hydrothermally derived ZnO nanowires, nanorods, microrods and their characterization
	Introduction
	Experimental details
	Results and discussion
	Conclusions
	Acknowledgements
	References




