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a b s t r a c t

Synthesis of 1,3,4-oxadiazole containing peptidomimetics is described by a p-TsCl/pyridine-mediated
cyclization of the corresponding dipeptidyl thiosemicarbazides, which are readily prepared by coupling
N-protected amino acid hydrazides with amino acid-derived isothiocyanato esters. Further, the protocol
has also been extended for the synthesis of orthogonally protected 1,3,4-oxadiazole tethered mimetics as
well. The synthetic route is simple and mild conditions are used so that the chirality of the starting amino
acids is retained.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Peptides are essential components of living organisms function-
ing as signal molecules such as hormones, neurotransmitters, and
neuromodulators. They exert an essential influence on basic bio-
logical functions including metabolism, reproduction, respiration,
and immune defense.1 However, their clinical applications have
been limited due to their rapid hydrolysis and low bioavailability.2

To circumvent some of these problems, peptide bonds are replaced
with a wide variety of structural functionalities such as retro-
amide, urea,3 peptoid,4 carbamate,5 sulfonamide,6 and heterocy-
cles,7 which contribute to the hydrolytic resistance and enhanced
bioavailability of the resulting peptidomimetics.

1,3,4-Oxadiazole is an important bioactive class of heterocycle
with a broad spectrum of pharmaceutical applications.8 In particu-
lar, marketed antihypertensive agents such as tiodazosin9 and
nesapidil10 as well as antibiotics such as furamizole11 contain the
oxadiazole nucleus. They have also been utilized as bioisosteres
of the carboxamide moiety in benzodiazepine receptor agonists,12

muscarinic receptor agonists,13 NK1 receptor antagonists,14 and in
the design of dipeptidomimetics15 as peptide building blocks. In
addition, 1,3,4-oxadiazoles are also useful intermediates in organic
synthesis, particularly as electron-deficient azadienes in the in-
verse electron demand Diels–Alder reactions.16
ll rights reserved.
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As a part of our continued interest in the synthesis of hetero-
cycles tethered peptidomimetics,17 we report herein the synthesis
of 1,3,4-oxadiazole-derived peptidomimetics. Several approaches
have been reported to assemble 1,3,4-oxadiazole containing mole-
cules,18 in particular, 2-amino-1,3,4-oxadiazoles are prepared by
cyclization of the corresponding acyclic semicarbazide or thiosem-
icarbazide derivatives both in solution as well as in solid phase.
When thiosemicarbazides are used as oxadiazole precursors, a
variety of reagents have been employed for their cyclization
including I2/NaOH,19 carbodiimide,20 tosyl chloride (p-TsCl),21

and stoichiometric mercury salts.22 Selective activation of the
sulfur moiety followed by cyclization has also been achieved by
coupling reagents such as dicyclohexylcarbodiimide (DCC),23

1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide (EDC),24 and
highly reactive alkylating agents such as methyl iodide25 and ethyl
bromoacetate.26

Though 1,2,4-oxadiazole bearing peptidomimetics are known in
the literature,17,18,27 the corresponding 1,3,4-oxadiazoles are
scanty. Luthman and co-workers,15 employed 1,3,4-oxadiazole to
synthesize enantiomerically pure Boc-Phe-Gly dipeptidomimetic
with a methylene spacer ( Fig. 1 A). For this, initially Boc-L-Phe
hydrazide was treated with methyl malonyl chloride in the pres-
ence of SOCl2/pyridine to afford 1,2,3,4-oxathiadiazole S-oxide
intermediate which on thermal elimination of sulfur dioxide
yielded the target mimetic. They also reported several Xaa-Gly
mimetics containing 1,3,4-oxadiazoles (Fig. 1 B).28 Batey and co-
workers,29 described a one-pot procedure for the synthesis of
1,3,4-oxadiazoles from Boc-protected amino acid hydrazides and
arylisothiocyanates in the presence of HgCl2 (Fig. 1 C). Kudelko
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and Zielinski30 group reported the synthesis of 2-aminomethyl-
1,3,4-oxadiazoles from Na-Ac and Na-Boc-protected phenylglycine
hydrazide and triethyl orthoesters under reflux in acetic acid (Fig. 1
D). To the best of our knowledge, 1,3,4-oxadiazole bearing dipepti-
domimetics of the type 4 are yet to be reported. This letter
describes the facile synthesis of 1,3,4-oxadiazole linked peptidom-
imetics via the corresponding thiosemicarbazides which possess
both amino and carboxy functionalities, which can be employed
for the elongation of the peptide chain or to increase the molecular
diversity.

2. Results and discussion

In the present work, the precursor, peptidyl thiosemicarbazides
which themselves are hitherto unreported class of intermediates,
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Scheme 1. Synthesis

Table 1
List of dipeptidyl thiosemicarbazides 3 prepared

Entry Hydrazide 1 Isothiocyanate 2 T

Pg Amino acid

3a Boc Ala Leu-OMe 2
3b Boc Phe Val-OMe 0
3c Boc Pro Lys(Z)-OMe 1
3d Boc Asp(Bzl) Phg-OMe 2
3e Z Phe Ala-OMe 0
3f Z Phe D-Ala-OMe 0

3g Z Leu Ala-OMe 1
3h Z Met Val-OMe 1
3i Z Val Phe-OMe 1
3j Z Cys(Bzl) Benzyl 0

a ESI-MS [M+Na+].
b HRMS [M+Na+].
c ESI-MS [M+H+].
d HRMS [M+H+].
were prepared by the reaction of N-protected amino acid-derived
hydrazides and isothiocyanato esters. Initially, several N-Boc/Z-
protected amino acids were converted to the corresponding hydra-
zides 1 following the literature procedure.31 The isothiocyanates 2
derived from amino acid esters are well known entities in peptide
chemistry.32 We have recently reported the synthesis of Nb-ure-
thane-protected amino alkyl isothiocyanates and demonstrated
their utility in the synthesis of dithioureidopeptides.33 Following
the similar protocol, in the current study, isothiocyanato esters
were prepared by treating the amino acid esters with CS2 and
triethylamine (TEA) in THF at 0 �C for 20 min and subsequent
decomposition of the in situ generated dithiocarbamic acid salt
with p-TsCl at the same temperature.34 In the next step, the reac-
tion of 1 with the isothiocyanato esters 2 in THF afforded the cor-
responding Boc/Z-peptidyl thiosemicarbazides 3 (Scheme 1, Table
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ime (h) Mp (�C) Yield (%) Mass calcd/obsd

.0 Gum 75 413.2/413.1a

.5 68 68 475.1991/475.1996b

.0 Gum 64 566.2/566.5c

.0 72 74 567.1889/567.1883b

.5 108 88 459.1702/459.1708d

.5 112 82 459.1702/459.1707d

.0 Gum 80 447.1678/447.1686b

.5 69 76 471.2/471.0c

.0 140 69 487.2/487.1c

.5 139 92 531.1501/531.1508b
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1). The reaction proceeded smoothly at room temperature and the
chromatographic purification yielded analytically pure peptidyl
thiosemicarbazides in good yields.35

In the next step, the cyclization reaction of the thiosemicarbaz-
ides 3 was undertaken. Various aforementioned reagents like DCC,
p-TsCl, and HgCl2 were explored for cyclodesulfurisation. However,
during the optimization of reaction conditions, p-TsCl/pyridine21
Table 2
List of oxadiazoles 4
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was found to be attractive in terms of furnishing good yield and
mild reaction condition. In a typical procedure, Boc-Phe-NH-NH-
CS-Val-OMe 3b on treating with 1.5 equiv of p-TsCl and 2.5 equiv
of pyridine in THF under reflux for 3 h resulted in the formation
of 1,3,4-oxadiazole derivative 4b which was isolated by a simple
work-up followed by column chromatography in good yield36

(Scheme 1, Table 2). Extending this protocol, a series of Boc and
Mp (� C) Yield (%) Mass calcd/obsd

Gum 80 357.2/357.6a

78 74 441.2114/441.2118b

Gum 73 532.3/532.2a

Gum 68 533.2012/533.2017b

171 84 447.1644/447.1649b

178 76 425.2/425.2a

175 71 413.1801/413.1798b

120 68 459.1678/459.1684b

175 78 475.1957/475.1962b

101 85 475.2/475.0a
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Scheme 2. Synthesis of orthogonally protected 1,3,4-oxadiazoles 6.

Table 3
List of orthogonally protected oxadiazoles 6

Entry Hydrazide 1 Isothiocyanate 5 Yield (%)

6a Boc-Ala Z-Val 72
6b Boc-Leu Z-Phe 69
6c Z-Phe Boc-Val 74
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Z-protected 1,3,4-oxadiazole containing dipeptidomimetics 4a–j
were prepared. All the synthesized dipeptidyl 1,3,4-oxadiazole
derivatives were characterized by 1H NMR, 13C NMR, and mass
spectroscopic analyses. Also the course of the reaction was found
to be recemization free as was evident by both 1H NMR37 and HPLC
studies.38

The present approach was then extended to prepare the orthog-
onally protected oxadiazoles 6 as well (Scheme 2). In this
approach, both the starting materials, that is, hydrazides and iso-
thiocyanates were prepared through the carboxy modification of
N-protected amino acid. Orthogonality of the N-protecting group
of participating reactants was maintained so as to enable selective
chain extension. For this, Boc/Z-protected amino alkyl isothiocya-
nates were prepared from the corresponding vicinal diamines,32

purified, and subsequently coupled with Z/Boc-amino acid hydra-
zides 1 in THF to obtain the key thiosemicarbazide intermediates
which upon desulfurative cyclization with p-TsCl/pyridine under
reflux conditions furnished the oxadiazoles 6 in good yields.39

The crude 1,3,4-oxadiazoles were purified through column chro-
matography and were fully characterized (Table 3). HPLC analysis
carried out on these derivatives proved that all the products are
free from racemization.37

In conclusion, a simple and convenient method for the synthesis
of 1,3,4-oxadiazole-linked dipeptidomimetics from corresponding
peptidyl thiosemicarbazides has been described. The protocol has
also been extended to prepare few N,N0-orthogonally protected
dipeptidomimetics. All the products were found to be chemically
homogeneous as analyzed by spectroscopic techniques. These
dipeptidomimetics can be utilized for the preparation of 1,3,4-oxa-
diazole containing oligopeptidomimetics through N- and C-termi-
nal chain extensions.
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dipeptide derivatives are optically pure and free from racemization. Similarly
for the compound 6a, the Rt value is 12.28 min and for its epimer prepared
from Boc-D-Ala is 12.06 min.

39. Compound 6a: yield 72%; Rf 0.35 (4:6 EtOAc/n-hexane); 1H NMR (CDCl3,
300 MHz) d 0.98 (d, J = 6.2 Hz, 6H), 1.38 (s, 9H), 1.28 (d, J = 4.8 Hz, 3H), 2.32–
2.38 (m, 1H), 3.28–3.34 (m, 1H), 3.48–3.54 (m, 1H), 3.83–3.88 (m, 1H), 4.60–
4.65 (m, 1H), 4.90 (br, 1H), 5.06 (s, 2H), 5.61 (br, 1H), 7.03–7.24 (m, 5H), 8.81
(br, 1H); 13C NMR (CDCl3, 75 MHz) d 15.11, 19.17, 29.21, 30.74, 45.67, 47.70,
53.82, 66.39, 80.02, 127.03, 127.87, 128.14, 128.49, 129.49, 135.87, 153.12,
156.34, 169.66, 171.28; HRMS calcd for C22H33N5O5 m/z 470.2379 [M+Na+],
found 470.2383 [M+Na+].
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