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a b s t r a c t

The degradation of Alizarin Red S (ARS), an anthraquinone dye was investigated by advanced photo
Fenton process using zero valent metallic iron (ZVMI) powder as the catalyst with symmetrical peroxides
like hydrogen peroxide (HP)/ammonium persulfate (APS) as the oxidants. APS is proved to be a better
oxidant compared to HP as it provides efficient acidic medium which is critical for Fenton process. A
kinetic/mathematical model was developed based on the non-linear regression analysis and the validity
of the model was tested by comparing the observed experimental values with the theoretically calculated
data. The rate equation obtained was found to be a function of iron dosage, oxidant and dye concentration
at pH 3.
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inetic/mathematical modeling

k = 0.2456[Fe]0.21[APS]0.15[ARS]−0.76

k = 0.58[Fe]0.12[HP]0.10[ARS]−0.86

The degradation pathway was followed by UV–vis spectroscopy and GC–MS techniques. Based on the
prob
intermediates analyzed, a

. Introduction

In the textile industry, it is estimated that 10–15% of the dye is
ost during the dyeing and finishing operations and is released as
extile effluents. Dyes in wastewater can also cause eutrophication
nd carcinogenic byproducts that are formed through oxidation,
ydrolysis or by other chemical reactions. Traditional methods in
reating the wastewater include flocculation, carbon adsorption,
everse osmosis and activated sludge processes. These methods
ave difficulties in the complete destruction of the pollutants and
hey simply transfer the pollutants from one phase to another.
dvanced oxidation process (AOP) based on the in situ generation
f hydroxyl radicals is a promising technique for the treatment
f wastewater containing dyes. The common AOPs used are (1)
emiconductor photocatalysis: TiO2 or ZnO/UV [1–6] and (2) Fen-

on and photo Fenton-like processes: Fe2+ or Fe3+/H2O2 or APS/UV
7–11]. Photo Fenton processes have gained the large scope due
o its cost effective, easy availability of reagents and the process
an be efficiently carried out at laboratory conditions. However

∗ Corresponding author. Tel.: +91 080 22961336; fax: +91 080 22961331.
E-mail address: gomatidevi naik@yahoo.co.in (L.G. Devi).

381-1169/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.molcata.2009.08.021
able degradation mechanism has been proposed.
© 2009 Elsevier B.V. All rights reserved.

the removal of iron ions at the end of wastewater treatment is
costly and requires man power. Lucking et al. [12] tested iron pow-
der, graphite and activated carbon for the catalytic process for the
oxidation of 4-chloropenol in the solution with H2O2. They con-
cluded that iron powder could be used to replace iron salts as a
catalyst in photo Fenton process. From the environmental point of
view, the advantage of using metallic iron powder (Fe0) instead
of iron salts is that, the concentration of iron ions in the wastew-
ater after the treatment can be significantly reduced. Moreover,
use of Fe0 as catalyst instead of iron salts prevents the additional
anion loading in the treatment of wastewater. The residual iron
powder can be easily removed after the treatment and can be
easily recycled. The degradation of ARS using different photocata-
lysts under different experimental conditions is reported by several
research groups [13–29]. The present research work focuses on
the degradation of synthetic dye ARS using zero valent metallic
iron (ZVMI) of 300-mesh size as a source to generate Fe2+ ions.
A kinetic/mathematical model was developed based on the non-

linear regression analysis and the validity of the model was tested
by comparing the experimental and theoretically calculated data.
Although this kind of model was applied for TiO2 photocatalysis by
few research groups [30–34], so far it is least attempted for photo
Fenton process.

https://core.ac.uk/display/72799239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/13811169
http://www.elsevier.com/locate/molcata
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dx.doi.org/10.1016/j.molcata.2009.08.021
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Fig. 1. Structure of ARS.

. Materials and methods

.1. Materials

ARS, ZVMI (95% purity, 300-mesh size, electrolytic), APS and
P (50%, w/v) were supplied from S D Fine Chemicals, Bombay,

ndia and were used as received. The molecular formula of ARS is
14H7NaO7S·H2O (C.I. 58005) and molecular weight is 360.28 and
as �max at 514–520 nm. The structure of the dye is shown in Fig. 1.

.2. Irradiation procedure

Advanced photo Fenton process (APFP) was carried out at room
emperature using a circular glass reactor whose surface area is
76.6 cm2. The reactor was placed in a thermostat at a tempera-
ure of at 298 ± 5 K. Artificial light source used in the present study
s 125 W medium pressure mercury vapor lamp. The photon flux of
he light source is 7.75 mW/cm2 as determined by ferrioxalate acti-
ometry, the wavelength of which peaks around 350–400 nm. In a
ypical experiment, 200 mg/L of the ARS dye solution is taken in the
eactor and desired amount of iron powder (50 mg/L) and oxidants
APS = 200 mg/L or HP = 100 mg/L) are added before the beginning
f the experiment. The lamp was warmed for 10 min to reach con-
tant output. The irradiation was carried out by direct focusing the
ight into the reaction mixture in open air condition at a distance of
9 cm. All the experiments were performed using double distilled
ater. pH of the solution was adjusted either by adding dilute NaOH

r H2SO4 and measured using Systronics digital pH meter.

.3. Analytical methods

The solution of 5 ml is taken out from the reactor at definite
ime intervals and centrifuged. The centrifugates were analyzed
y UV–vis spectroscopic technique using Shimadzu UV-1700 Phar-
aspec UV–vis spectrophotometer. The centrifugate was extracted

nto non-aqueous ether medium and 1 �L was subjected to GC–MS
nalysis (using GC-MS-QP-5000 Shimadzu) and Thermo Electron
race GC ultra coupled to a DSQ mass spectrometer equipped with
n Alltech ECONO-CAP-EC-5 capillary column (30 m × 0.25 mm
.d. × 0.25 mm film thickness) was used. Pure helium was used as
he carrier gas at a flow rate of 1.2 ml/min. The injector/transfer
ine/trap temperature was 220/250/200 ◦C respectively. Electron
mpact ionization was carried out at 70 eV.

.4. Estimation of iron ions in the solution
The concentration of Fe2+ ions leached into the bulk of the
olution by the iron surface was quantitatively analyzed by a col-
rimetric method using o-phenanthroline as a colorimetric reagent
sing acetic acid and sodium acetate buffer. Hydroquinone was
dded so as to reduce the available Fe3+ to Fe2+ ions in the solution.
lysis A: Chemical 314 (2009) 88–94 89

The absorbance of Fe (II)–phenanthroline complex was measured
at 510 nm. The concentration of photo-generated Fe2+ ions after
the degradation process was estimated by the standard calibration
curve.

3. Results and discussion

Heterogeneous photo Fenton process shows enhanced activity
compared to their homogeneous counterparts, probably due to the
faster reduction of Fe3+ ions to Fe2+ ions on the iron surface [35,36]:

2Fe3+ + Fe0 → 3Fe2+ (1)

The various reactions taking place between Fe0/Fe2+/Fe3+ with
the HP and APS are illustrated as follows:

Iron powder undergoes oxidation in acidic pH to give ferrous
ion (Fe2+):

Fe0 H+
−→Fe2+ (2)

Iron powder reacts with HP to give Fe2+ ions which are par-
tially adsorbed on iron surface, which on reaction with HP generates
hydroxyl radicals.

Fe0 + H2O2 → Fe2+- surface (3)

Fe2+- surface + H2O2 → Fe3+ + HO• + HO− (4)

Iron powder reacts with oxidants, generating Fe2+ ions which
diffuse into the bulk of the solution.

Fe0 + H2O2 → Fe2+ + 2HO− (5)

Fe0 + S2O2−
8 → Fe2+ + 2SO2−

4 (6)

The Fe2+ so produced reacts with oxidants to generate free rad-
icals. During this process Fe2+ is oxidized to Fe3+.

Fe2+ + H2O2 → Fe3+ + OH• + OH− (7)

Fe2+ + S2O2−
8 → Fe3+ + SO2−

4 + SO−
4

• (8)

Ferric ions (Fe3+) so formed can either react with water or with
H2O2 in the following way:

(i) Fe3+ ions react with water to form hydroxo complex, which on
UV-irradiation generates Fe2+ and hydroxyl radicals.

Fe3+ + H2O ⇔ [Fe(OH)2+] + H+ (9)

[Fe(OH)2+] + hv → Fe2+ + HO• (10)

(ii) Fe3+ reacts with H2O2 to generate Fe2+ and hydro peroxyl rad-
icals. The radical so formed has the ability to reduce Fe3+ ions
to Fe2+.

Fe3+ + H2O2 → Fe2+ + H+ + HO2
• (11)

Fe3+ + HO2
• → Fe2+ + O2 + H+ (12)

Fe3+ reacts with persulfate anion, two molecules of sulfate rad-
icals are produced which react with water to generate hydroxyl
radicals.

Fe3+ + S2O2−
8 → Fe2+ + 2SO−

4
• (13)

SO−
4

• + H2O → SO2−
4 + OH• + H+ (14)

3.1. Effect of pH
Kang et al. [37] reported that the pollutants can be decolorized
efficiently in photo Fenton process only under acidic conditions.
The experiments were performed in the pH range of 0.5–9.5. The
rate constant (calculated from the plot of −log C/C0 versus time) for
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ig. 2. Plot of rate constant versus pH for the degradation of ARS (Fe0 = 50 mg/L,
PS = 200 mg/L and ARS = 200 mg/L).

he degradation at pH 3 is found to be 0.021 min−1 for Fe0/APS/UV as
hown in Fig. 2. At pH 3, the concentration of Fe3+ ions and Fe[OH]2+

omplexes is the dominating photoactive species in almost equal
roportions. The decrease in this optimum pH leads to decrease in
he concentration of Fe[OH]2+ complexes and it can also result in
he precipitation of ferrous ion as oxy hydroxides.

The various photoactive species of iron formed at different con-
itions of pH are Fe[H2O]6

3+ (pH 1–2), Fe[OH][H2O]5
2+ (pH 2–3)

nd Fe[OH]2[H2O]4
+ (pH 3–4) [9]. The lower rate constant at pH

.5 is mainly due to the excess H+ ions in the solution acting as
ydroxyl radical scavenger [38,39].

+ + OH• + e− → H2O (15)

The non-linear relation between the rate constant (k) for the
egradation of the dye and pH can be modeled with simple empir-

cal power-law type relationship as follows:

˛[pH]n

here n is an integer.
Fitting the experimental data with the above formulae we get

˛[pH]0.76 or k = x[pH]0.76

here x is a constant, which is arbitrarily chosen as 0.0091 to fit
he experimental data.

= 0.0091[pH]0.76

At pH (≥7), dye shows resistance to degradation due to the coag-
lation of Fe3+ complex molecules formed in the reaction which

nhibits the catalytic reaction of Fe2+ ions with the oxidants. Fur-
her at high pH, precipitation of iron oxy hydroxides takes place
hich gets deposited on the surface of iron powder preventing

he process of electron transfer between the catalyst and the oxi-
ant thereby reducing the generation of hydroxyl radicals in the
olution. Therefore APFP experiments were optimized at pH 3.

.2. Effect of oxidants
The present study investigates the application of HOOH (hydro-
en peroxide) and S2O8

2− (peroxy disulfate) which are symmetrical
eroxides and can be potential oxidants in the light induced
eaction processes. Persulfate can also generate free radicals like
Fig. 3. Plot of rate constant versus concentration of HP (Fe0 = 50 mg/L,
ARS = 200 mg/L and pH 3).

sulfate and hydroxyl radicals which provide free radical mecha-
nism similar to hydroxyl radical pathways generated in the Fenton’s
chemistry. Sulfate radical is one of the strongest oxidizing species
in aqueous media with a redox potential of 2.6 V which is next only
to the hydroxyl free radical whose redox potential is 2.8 V. The
sulfate radical anions produced in the case of APS show various
possible reaction mechanisms in the process of mineralization. (i)
Abstraction of hydrogen atom from the saturated carbon; (ii) capa-
ble of adding to the unsaturated compounds; (iii) it can remove
an electron from the anions and neutral molecules [40,41]. These
attributes combine to make persulfate a viable option for the chem-
ical oxidation of a broad range of contaminants.

The influence of oxidants on the degradation was investigated
by maintaining the other reaction parameters constant (Iron pow-
der dosage = 50 mg/L, dye concentration = 200 mg/L at pH = 3.0). The
concentration of H2O2 was varied from 50 to 200 mg/L and was
optimized at 100 mg/L as shown in Fig. 3. The increase in the con-
centration of oxidizing agent enhances the generation of hydroxyl
radicals and hence increase in the rate constant is observed.

The non-linear relation between the degradation of the dye and
concentration of the oxidants using power-law empirical type rela-
tionship is given by

k˛[HP]0.10 or k = 0.0091[HP]0.10

Similarly, a series of experiments in the range 25–300 mg/L were
carried using APS and were optimized at 200 mg/L (Fig. 4).

k˛[APS]0.15 or k = 0.0091[APS]0.15

Beyond the optimum concentration the rate constant decreases
for both the oxidants. This can be due to the recombination of excess
hydroxyl radicals generated or the radicals might get involved in
the unwanted reaction pathways.

The rate constant calculated for the process Fe0/APS/UV is ∼1.5
times higher than Fe0/H2O2/UV process. This is mainly attributed
to the influence of oxidants on the final pH of the reaction which
is explained as follows: the final pH of the solution was 3.6 with
H2O2 (100 mg/L) as an oxidant while final pH was reduced to 2.9
for APS (200 mg/L). The iron ions leached after the end of dye

degradation process is 15.5 mM for Fe /H2O2/UV process which is
higher compared to Fe0/APS/UV (9.1 mM). Thus the excess iron ions
might serve as hydroxyl radical scavenger. Since APS provides bet-
ter acidic pH which is essential for Fenton process, it accelerates
the rate of reaction compared to H2O2.
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ig. 4. Plot of rate constant versus concentration of APS (Fe0 = 50 mg/L,
RS = 200 mg/L and pH 3).

.3. Effect of catalyst loading

The degradation efficiency was found to be 15 and 26% respec-
ively with H2O2/UV and APS/UV process for 2 h of irradiation. This
s due to the direct photolysis of oxidants in the presence of UV
ight. However complete degradation with higher efficiency was
chieved by the use of iron surface in the presence of oxidants
n APFP. The iron surface catalytically decomposes the oxidants
o respective free radicals/ions at a faster rate to generate more
ydroxyl radicals under UV light. A series of experiments were per-

ormed in the range 10–100 mg/L and was optimized at 50 mg/L for
oth the oxidants as shown in Figs. 5 and 6.

The non-linear relation between the degradation of the dye
nd catalyst dosage using power-law empirical type relationship

s given by

˛[Fe]0.21 or k = 0.0091[Fe]0.21 for APS as oxidant.

˛[Fe]0.12 or k = 0.0091[Fe]0.12 for HP as oxidant.

ig. 5. Plot of rate constant versus iron dosage using APS as oxidant (APS = 200 mg/L,
RS = 200 mg/L and pH 3).
Fig. 6. Plot of rate constant versus iron dosage using HP as oxidant (HP = 100 mg/L,
ARS = 200 mg/L and pH 3).

In contrast, overloading of the catalyst hinders the degradation
efficiency. This is due to: (i) higher concentration of the catalyst
results in turbidity which hinders the UV light penetration [42]. (ii)
High dosage of iron powder increases the concentration of Fe2+ ions
in the solution which can also act as hydroxyl radical scavenger.

Fe2+ + OH• → Fe3+ + OH− (16)

Increase in the dosage of iron powder shifts the reaction medium
from acidic to alkaline medium which affects the degradation rate.
The shift in the pH depends mainly on the nature of the oxidants
which can be explained as follows: when the catalyst loading was
varied from 50 to 200 mg, the final pH of the reaction mixture is 3.6
and when it is increased to 400 mg, pH of the solution changes to
4.8 with HP as oxidant. At this condition, turbidity in the reaction
mixture is observed. With further increase in the catalyst loading
600 mg, excess iron precipitates as iron oxy hydroxides and the pre-
cipitate separates from the true solution and the pH of the solution
changes to 5.6. The final pH of the reaction medium was 3.9 for
higher concentration of iron powder with APS as an oxidant. Hence
it can be concluded that APS effectively inhibited the precipitation
of iron powder providing excess acidity to the reaction medium.

3.4. Effect of initial dye concentration

In the photo Fenton process, change in the dye concentration
affects the degradation process significantly. Therefore experi-
ments were performed at different initial dye concentrations by
maintaining the other reaction parameters constant as shown in
Figs. 7 and 8. Beyond the optimum concentration (200 mg/L), the
degradation efficiency decreases to 55% for higher initial dye con-
centration (500 ppm). This may be due to the fact that, as the dye
concentration is increased, the number of hydroxyl radicals is not
increased proportionally. Further high dye concentration prevents
the UV light penetration into the depth of the solution there by
decreasing the generation of hydroxyl radicals [43,44]. At high
concentrations of dye, the active centers on the iron surface will
be occupied by the dye molecules which are capable of reduc-
ing the catalyst surface itself by hindering the process of hydroxyl

radical generation. Fe0/APS/UV process showed better efficiency
for the degradation of dye at higher concentration compared to
Fe0/H2O2/UV.

The non-linear relation between the dye degradation and dye
concentration using power-law empirical type relationship is given
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ig. 7. Plot of rate constant versus ARS concentration using APS as oxidant
Fe0 = 50 mg/L, APS = 200 mg/L and pH 3).

y

˛[ARS]−0.76 or k = 1.21[ARS]−0.76 for APS as oxidant

˛[ARS]−0.86 or k = 1.38[ARS]−0.86 for HP as oxidant

.5. Development of rate equation

The photocatalytic degradation of ARS is assumed to be pseudo-
rst order reaction with respect to ARS concentration which is
xpressed as follows:

−d[ARS]
dt

= kAPFP[ARS] (17)

here kAPFP is the rate constant for APFP.
The rate constant critically depends on iron dosage, oxidant con-

entration and initial concentration of the dye.
= y[Fe]a[APS]b[ARS]c (18)

ith non-linear regression analysis the values of a, b and c are calcu-
ated and they are 0.21, 0.15 and −0.76 as discussed in the previous

ig. 8. Plot of rate constant versus ARS concentration using HP as oxidant
Fe0 = 50 mg/L, HP = 100 mg/L and pH 3).
Fig. 9. Plot of calculated rate constant versus experimental rate constant for
Fe0/APS/UV process.

section. The value of ‘y’ is therefore found to be 0.2456. Substituting
in Eq. (17):

k = 0.2456[Fe]0.21[APS]0.15[ARS]−0.76 (19)

Similarly for H2O2 as oxidant:

k = 0.58[Fe]0.12[HP]0.10[ARS]−0.86 (20)

The plots of experimentally observed and theoretically calcu-
lated rate constant values are shown in Figs. 9 and 10 for the
degradation of ARS using APS and HP. The results from the plot
reveal that the proposed kinetic model is well in agreement with
the experimental ones.

The rate law by this kinetic modeling is theoretically pre-
dicted and varies with experimental conditions. But still this model
provides the information about the effect of exact operational
parameters.
3.6. Recycling efficiency of iron powder

The efficiency of iron powder was tested by recycling it for the
degradation of ARS with respect to the optimized conditions as pre-
viously reported. After each run, fresh dye solution along with the

Fig. 10. Plot of calculated rate constant versus experimental rate constant for
Fe0/HP/UV process.
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xidant is replaced in the reactor using the same iron powder. It
an be seen that iron powder retains its efficiency for the first five
onsecutive runs for both the oxidants (Fig. 11). After the fifth run,
ignificant decrease in its efficiency was observed with APS com-
ared to HP. This is because iron powder under acidic condition
ndergoes dissolution to give Fe2+ ions. The additional acidity pro-
ided by the APS increases the concentration of Fe2+ ions by the
issolution of iron powder. The oxidation of iron powder in the
ubsequent runs by APS might probably reduce the efficiency.

.7. GC–MS analysis: degradation pathway for ARS

The hydroxyl radicals generated attacks at the site of reac-
ive carbonyl group leading to the formation of pthalic acid (1),
ydroxy benzene sulfonic acid (2) and dihydroxy benzene (3) which

s confirmed by the presence of m/z peaks at 165, 174 and 110

espectively. This suggests that the degradation of ARS proceeds
hrough the cleavage of anthraquinone moiety. The formation of
thalic acid during the degradation of ARS is in agreement with
he previous reports [13–16]. After 75 min of UV irradiation, m/z
eaks at 121, 94, 108 and 116 were attributed to the formation of Fig. 11. Recycling efficiency of iron powder in the presence of different oxidants

(Fe0 = 50 mg/L, APS = 200 mg/L or HP = 100 mg/L, ARS = 200 mg/L at pH 3).

Scheme 1. Probable degradation pathway for ARS (Fe0 = 50 mg/L, APS = 200 mg/L, ARS = 200 mg/L at pH 3).
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enzoic acid (4), phenol (5), hydroquinone (6) and maleic acid (7).
ew low intense peaks were left unaccounted. The decarboxyla-
ion and desulfonation of intermediate (1) and (2) might probably
esult in the formation of (4) and (5). The intermediate (3) might
et oxidized to (6) and subsequent ring opening reaction can lead
o the formation of (7) [35]. The intermediates (4) and (5) trans-
orm to benzene (8) which on subsequent reaction with hydroxyl
adicals undergo complete degradation. The stepwise degradation
f (7) leads to a series of aliphatic acids like malonic acid (9), oxalic
cid (10) and formic acid (11) confirmed by the presence of peaks at
04, 90 and 46 respectively. Based on the intermediates obtained,
robable degradation mechanism has been proposed (Scheme 1).

. Conclusion

A kinetic modeling was developed based on the non-linear
egression analysis for the degradation of ARS using advanced
hoto Fenton process driven by UV light. The influence of various
eaction parameters like iron dosage, concentration of oxidants and
ye is investigated in detail. APS proved to be better oxidant com-
ared to HP as it provides a better acidic medium which is critical
or Fenton process. The rate equation developed was found to be a
unction of iron dosage, oxidant and dye concentration at pH 3. The
heoretically calculated rate constants were well in agreement with
he experimentally obtained values justifying the significance of

athematical model. The photoproducts formed during the course
f the reaction were analyzed by GC–MS technique and probable
egradation mechanism has been proposed.
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