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The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable
thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal
conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the
governing partial differential equations into a set of coupled, non-linear ordinary differential equations.
Two different types of boundary heating are considered, namely Prescribed power-law Surface Tempera-
ture (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical
solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof num-
ber, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable
thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction
and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals
that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The study of laminar boundary layer flow and heat transfer in
non-Newtonian fluids past a stretching sheet has gained tremen-
dous interest amongst researchers for the past two decades because
of its industrial and engineering applications. The problem has sci-
entific and engineering applications such as aerodynamic extrusion
of plastic sheets and fibers, drawing, annealing and tinning of cop-
per wire, paper production, crystal growing and glass blowing. Such
applications involve cooling of a molten liquid by drawing it into a
cooling system. In drawing the liquid into the cooling system it is
sometimes stretched as in the case of a polymer extrusion process.
The fluid mechanical properties desired for the outcome of such a
process depends mainly on the rate of cooling and the stretching
rate. It is important that a proper cooling liquid is chosen and flow
of the cooling liquid due to the stretching sheet is controlled so as
to arrive at the desired properties for the outcome. As a result, one
has to pay considerable attention in knowing both flow and heat
transfer characteristics of the cooling fluid.

∗ Corresponding author. Tel.: +919886467609.
E-mail address: msabel2001@yahoo.co.uk (M.S. Abel).

0020-7462/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2008.08.002

In view of such applications Crane [1] initiated the analytical
study of boundary layer flow due to a stretching sheet. He assumed
the velocity of the sheet to vary linearly as the distance from the
slit and arrived at an analytical solution. The work of Crane was
subsequently extended by many authors to both Newtonian and
non-Newtonian boundary layer flows with various velocity and
thermal boundary conditions; see Refs. [2–29]. Gupta and Gupta [2]
investigated heat transfer from an isothermal stretching sheet with
suction/blowing effects. Chen and Char [3] extended the works of
Gupta and Gupta [2] to that of a non-isothermal stretching sheet.
Grubka and Bobba [4] carried out heat transfer studies by con-
sidering the power-law variation of surface temperature. Chiam
[5] investigated the magnetohydrodynamic heat transfer over a
non-isothermal stretching sheet.

In the available literature, constant physical properties are
considered for the cooling liquid. Most of the practical situations
demand for physical properties with variable characteristics. The
material properties such as viscosity and thermal conductivity are
prone to vary with a temperature gradient, especially in the bound-
ary layer region. With this view point, Chiam [6,7] considered the
effect of variable thermal conductivity on heat transfer assuming it
to vary linearly with the temperature.

Heat source/sink effects are crucial in controlling the heat trans-
fer. Many of the authors have studied heat transfer by considering
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a uniform heat source/sink, i.e., a temperature-dependent heat
source/sink (see [8]). Eldahab and El-Aziz [9] included the effect of
non-uniform heat source/sink (space- and temperature-dependent
heat source/sink) on the heat transfer.

These investigations deal with the flow and heat transfer induced
by a horizontal stretching sheet, but there arise some situations
where the stretching sheet moves vertically in the cooling liquid (see
Fig. 1). Under such circumstances the fluid flow and the heat trans-
fer characteristics are determined by two mechanisms, namely the
motion of stretching sheet and the buoyant force. The thermal buoy-
ancy resulting from heating/cooling of a vertically moving stretching
sheet has a large impact on the flow and heat transfer characteristics.
Effects of thermal buoyancy on the flow and heat transfer under var-
ious physical situations have been reported by many investigators
(see [10–14]). Recently, Partha et al. [15] studied mixed convection
heat transfer from an exponentially stretching sheet.

Mention can be made that these studies concern boundary layer
behavior of only Newtonian fluids over horizontal/vertical stretch-
ing sheet. However, most of the practical situations demand for
fluids that are non-Newtonian in nature which are abundantly used
in many industrial and engineering applications. This called for the
study of boundary layer behavior over a stretching sheet in non-
Newtonian fluids. Andersson et al. [16] studied the magnetohydro-
dynamic flow of a power-law fluid over a stretching sheet. Hassanien
et al. [17] investigated the flow and heat transfer in a power-law
fluid over a non-isothermal stretching sheet with suction/injection.
An excellent work on magnetohydrodynamic stretching sheet prob-
lem on power-law fluid has been reported by Liao [18] using the
homotopy based analytical method. Cortell [19] studied the magne-
tohydrodynamic flow of a power-law fluid over a stretching sheet.
There are also studies concerning viscoelastic fluid reported by
Rajagopal [20], Siddheshwar and Mahabaleshwar [21], Cortell [22],
Andersson [23], Abel et al. [24–26] and references therein. In ad-
dition to the above papers on linear stretching there are some
excellent recent papers on non-linear stretching (see [27–29] and
references therein). The authors are presently investigating this
aspect of the problem in power-law liquids.

A close observation of the literature reveals that there are some
missing links, i.e., there are studies which do not consider variable
fluid properties or non-uniform heat source/sink effects. Even if they
are taken into account they are restricted to the case of Newtonian
fluids only (see the following table):

Author Fluid considered Stretching Thermal conductivity Heat source/sink

Chiam [7] Newtonian Horizontal Variable –
Vajravelu and Rollins [8] Newtonian Horizontal Constant Uniform
Abo-Eldahab and Aziz [9] Newtonian Inclined Constant Non-uniform
Vajravelu and Nayfeh [10] Newtonian Vertical Constant Uniform
Gorla et al. [11] Newtonian Vertical Constant –
Chen [12] Newtonian Vertical Constant –
Chen [13] Newtonian Inclined Constant –
Ahmed [14] Newtonian Vertical Constant –
Partha et al. [15] Newtonian Vertical Constant –
Andersson et al. [16] Non-Newtonian Horizontal – –
Hassanien et al. [17] Non-Newtonian Horizontal Constant –
Cortell [22] Non-Newtonian Horizontal Constant –
Abel et al. [24] Non-Newtonian Horizontal Constant Non-uniform
Abel and Mahesha [25] Non-Newtonian Horizontal Variable Non-uniform

The present paper attempts to fill this lacuna. To the best of
authors' knowledge, so far no one has considered the flow and heat
transfer in a power-law fluid due to a vertical stretching sheet in the
presence of an external magnetic field, non-uniform heat source/sink
and variable thermal conductivity. This fact motivated us to propose
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Fig. 1. Schematic of polymer extrusion process under the influence of gravity.

the same for investigation. We adopt two different types of boundary
conditions for heat transfer analysis, namely the prescribed surface
temperature condition (PST) and the prescribed surface heat flux
condition (PHF).

2. Mathematical formulation

We consider the steady two-dimensional flow of an incompress-
ible, weak electrically conducting power-law fluid past an imperme-
able vertical stretching sheet. The flow is generated by the action
of two equal and opposite forces along the x-axis and y-axis be-
ing normal to the flow. The sheet is stretched with a velocity uw(x)
which is proportional to the distance from the origin (Fig. 2) and it is

assumed to be warmer than the ambient fluid, i.e., tw(x) > t∞. The
flow field is further subjected to a transverse uniform magnetic field
of strength H0 (along y-axis).

The boundary layer equations governing the flow and heat trans-
fer in a power-law fluid over a vertical stretching sheet, assuming
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Fig. 2. Schematic of boundary layers induced by a vertical stretching sheet.

that the viscous dissipation is negligible, are
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where u and v are the velocity components along x and y directions,
respectively, t is the temperature of the fluid, � is the density, � is
the electrical conductivity of the fluid, �0 is the thermal expansion
coefficient, Cp is the specific heat at constant pressure.

Following the two-parameter power-law model of Ostwald–de
Waele the shear stress �xy appearing in Eq. (2) can be written as
(see [30]):

�xy = K
∣∣∣∣�u�y

∣∣∣∣n−1 �u
�y

, (4)

where K is the consistency coefficient and n is the power-law index.
The above power-law model represents Newtonian fluid when n=1,
with the dynamic coefficient of viscosity K. If n<1 the model rep-
resents shear thinning fluids (pseudo-plastic) and if n>1 the model
represents shear thickening fluids (dilatant).

The thermal conductivity k(t) is assumed to vary linearly with
temperature in the form

k(t) = k∞
[
1 + �

�t
(t − t∞)

]
, (5)

where k∞ is the thermal conductivity of the liquid far away from
the sheet, �t = tw − t∞ is the sheet–fluid temperature difference
and � is a small parameter. We note that � is scalar and signifies
variation of the thermal conductivity with temperature. If the above

expression is viewed as a truncated Taylor's series expansion then
� = (�t/k∞)(�k/�t)|t=t∞ .

The non-uniform heat source/sink q′′′ is modeled as (see [9])

q′′′ = �kuw(x)
xK

[A∗(tw − t∞)f ′ + (t − t∞)B∗], (6)

where A∗ and B∗ are the coefficients of space- and temperature-
dependent heat source/sink, respectively. Here we make a note that
the case A∗ >0, B∗ >0 corresponds to internal heat generation and
that A∗ <0, B∗ <0 corresponds to internal heat absorption.

We have adopted the following boundary conditions:
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at y = 0,

u → 0, t → t∞ as y → ∞, (7)

where tw is the temperature of the sheet, t∞ is the temperature of
the fluid far away from the sheet, A and D are positive constants, �
is the temperature parameter and L is the characteristic length.

We introduce the following dimensionless variables:
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where U0 = cL is the reference velocity and
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The boundary layer equations (1)–(3) now take the following
form:
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= 0, (8)
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where Q = �H2
0/�c is the Chandrasekhar number, PrL = �CpU0L/

k∞(ReL)
2/(n+1) is the uniform Prandtl number, ReL = �U2−n

0 Ln/K

is the uniform Reynolds number, GrL = g�0(tw − t∞)/c2L is the
uniform Grashof number, � = k∞A∗/KCp is the space-dependent
heat source/sink parameter and � = k∞B∗/KCp is the temperature-
dependent heat source/sink parameter.

The boundary conditions given in (7) take the form

U = Uw = X, V = 0,

{
T = 1 in PST
�T
�Y

= −1
(1+�)

X(1−n)/(1+n) in PHF

}
at Y = 0,

U → 0, T → 0 as Y → ∞. (11)
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Introducing the stream function 	(X,Y) so as to satisfy the con-
tinuity equation in the dimensionless form (8), we may write

U = �	
�Y

, V = −�	
�X

. (12)

Using (12), Eqs. (9) and (10) can be written as
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Corresponding boundary conditions in (11) take the form:
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{
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}
at Y = 0,

�	
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In order to convert the partial differential equations (13) and (14)
into ordinary differential equations the following similarity trans-
formation is used:

	(X,Y) = X2n/(n+1)f (
), T(X,Y) =
{
�(
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g(
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}
,


 = X(1−n)/(1+n)Y . (16)

Using (16), Eq. (13) can be written as

n(−f ′′)n−1f ′′′ − f ′2 +
(

2n
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)
ff ′′ − Qf ′ + Grx� = 0, (17)

where the prime denotes differentiation with respect to the similar-
ity variable 
. In writing Eq. (17) it is assumed that for the flow next
to stretching surface �u/�y�0, i.e., f ′′ �0.

Correspondingly the boundary conditions in (15) for velocity take
the form:

f (
) = 0, f ′(
) = 1 at 
 = 0,

f ′(
) → 0 as 
 → ∞. (18)

Again using (16) in Eqs. (14) and (15) we get
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The dimensionless numbers Grx = g�0(tw − t∞)/c2x and Prx =
�Cpuwx/k∞(Rex)2/(n+1) appearing in the final boundary layer equa-
tions (17), (19) and (21) are, respectively, the local Grashof number

and local Prandtl numbers and Rex=�u2−n
w xn/K is the local Reynolds

number. From the analysis reported in this section it is clear that we
are adopting local similarity in our study and hence the appearance
of local Prandtl and Grashof numbers. For simplicity the subscript x
is dropped when referring to these local dimensionless numbers in
Section 4 and 5. The local skin friction coefficient Cf is given by

Cf = −2Re−1/(n+1)
x [−f ′′(0)]n. (23)

In the PST case we are fixing the surface temperature and hence we
calculate the local heat flux as follows:

qw = − (1 + �)(tw − t∞)Re1/(n+1)
x

x
�′(0). (24)

In the PHF case we are fixing the surface heat flux and hence we
compute the surface temperature as follows:

tw − t∞ = DL
k∞

Re−1/(n+1)
L

(
x
L

)�
g(0). (25)

We now outline the procedure for solving the boundary value prob-
lems (19) and (20) and (21) and (22) which are coupled with (17)
and (18).

3. Method of solution

We adopt the most effective shooting method (see Refs. [31,32])
with fourth order Runge–Kutta integration scheme to solve the
boundary value problems in PST and PHF cases mentioned in the
previous section. The coupled non-linear equations (17) and (19)
in the PST case are transformed into a system of five first order
differential equations as follows:

df0
d


= f1,

df1
d


= f2,

df2
d


= 1
n
(−f2)

1−n
{
f21 −

(
2n

n + 1
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,

d�0
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d�1
d


= 1
1+��0
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�Prxf1�0−

(
2n

n + 1

)
Prxf0�1−��21

}
−Prx(�f1+��0).

(26)

Subsequently the boundary conditions in (18) and (20) take the
form

f0(0) = 0, f1(0) = 1, f1(∞) = 0,

�0(0) = 1, �0(∞) = 0. (27)

Here f0 = f (
) and �0 = �(
). Aforementioned boundary value
problem is converted to an initial value problem by choosing the
values of f2(0) and �1(0) appropriately. Resulting initial value prob-
lem is integrated using the fourth order Runge–Kutta method.
Newton–Raphson method is implemented to correct the guess val-
ues of f2(0) and �1(0). In solving Eqs. (26) subjected to boundary
conditions (27) the appropriate `∞' is determined through actual
computation. It differs for each set of parameter values. Same proce-
dure is adopted to solve the boundary layer equations (17) and (21)
subjected to conditions (18) and (22) in the PHF case. The results
are presented in several tables and graphs.

4. Results and discussion

MHD boundary layer flow and heat transfer in a weak electri-
cally conducting power-law fluid past a vertical stretching sheet
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Fig. 3. Effect of Chandrasekhar number Q on horizontal velocity profiles with Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0 and � = 0.1.
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Fig. 4. Effect of Grashof number Gr on horizontal velocity profiles with Q = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0 and � = 0.1.

with variable thermal conductivity is investigated in the presence of
non-uniform heat source/sink. Numerical solution of the problem is
obtained by shooting method. The effect of Q , Pr,Gr,�,�, � and � on
flow and heat transfer is shown graphically in Figs. 3–16.

Before we move on to the discussion of the results obtained, we
note that a weak electrically conducting fluid is considered for the
investigation. Mazola corn oil is an example for such a fluid having
weak electrical conductivity (see [33] and the references therein for
other details):

�(T) = [0.21 + 0.03(T − 10◦)] × 10−10 mho/m.

Clearly with respect to this weak electrically conducting fluid, � is
very small and hence we have followed Hartmann formulation for
the present study.

Fig. 3 shows the effect of Chandrasekhar number Q on the hori-
zontal velocity profiles f ′(
) for PST and PHF cases. From these plots
it is evident that increasing values of Q results in flattening of f ′(
).

The transverse contraction of the velocity boundary layer is due to
the applied magnetic field which results in the Lorentz force produc-
ing considerable opposition to the motion. The effect of flattening of
f ′(
) as a consequence of increasing the strength of magnetic field
is observed in all the three types of fluids namely, pseudo-plastic,
Newtonian and dilatant fluids.

The Grashof number Gr highlights the significance of convection
in controlling the axial velocity. The effect of Gr on the horizontal
velocity profiles is shown in Fig. 4 for the cases of PST and PHF.
These plots indicate that the momentum boundary layer thick-
ness increases with increasing value of Gr enabling more flow.
The buoyancy force evolved as a consequence of cooling of the
vertical stretching sheet acts like a favorable pressure gradient
accelerating the fluid in the boundary layer region. Effect of Gr is
analogous in all three types of fluids. Here, we make a note that
for Gr = 0, one can obtain the results of horizontal stretching sheet
problem.
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Table 1
Values of −f ′′(0) for various values of Q ,Gr, Pr, �,�,�,� and n .

Parameters −f ′′(0)

n = 0.5 n = 1.0 n = 1.5

PST PHF PST PHF PST PHF

Q Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

0.5 1.022298 1.310817 0.940527 1.100927 0.934178 1.049918
1.0 1.353773 1.649440 1.132142 1.286447 1.071572 1.178431
2.0 1.970829 2.260940 1.457731 1.600323 1.296659 1.390634
3.0 2.540391 2.814144 1.734468 1.866564 1.480831 1.565525

Gr Q = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

−1.0 2.817870 2.382901 1.725688 1.552402 1.444026 1.337963
−0.5 2.351695 2.164432 1.564745 1.481748 1.350109 1.297191
0.0 1.974419 1.974419 1.414214 1.414214 1.257081 1.257081
1.0 1.353773 1.649440 1.132142 1.286447 1.071572 1.178431
2.0 0.863145 1.375338 0.866959 1.166265 0.882360 1.101271

Pr Q = 1.0, Gr = 1.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

1.0 1.169400 1.182010 1.002931 1.036294 0.967556 0.999911
3.0 1.353773 1.649440 1.132142 1.286447 1.071572 1.178431
5.0 1.442980 1.781608 1.186145 1.343891 1.111810 1.215066

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = 1.0, � = 0.1

−0.1 1.368675 1.688094 1.139560 1.303072 1.076139 1.188218
0.0 1.338037 1.609514 1.124555 1.269519 1.066956 1.168502
0.1 1.303333 1.524915 1.108987 1.234716 1.057551 1.148160

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = 1.0, � = 0.1

−0.1 1.360886 1.661779 1.135645 1.290989 1.073963 1.181130
0.0 1.346384 1.636121 1.128442 1.281491 1.069069 1.175509
0.1 1.331835 1.608617 1.120358 1.270062 1.063612 1.168790

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0

−0.1 1.378995 1.613515 1.146736 1.270665 1.082250 1.168370
0.0 1.365921 1.631933 1.139234 1.278815 1.076782 1.173582
0.1 1.353773 1.649440 1.132142 1.286447 1.071572 1.178431

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 0.1

−1.0 1.028254 −1.615780 1.001388 −1.403357 0.990435 0.568982
0.0 1.255005 1.319792 1.085506 1.172656 1.041146 1.114526
1.0 1.353773 1.649440 1.132142 1.286447 1.071572 1.178431

From Fig. 5 which illustrates the effect of Prandtl number Pr on
the velocity profiles, it is clear that increasing values of Pr reduces
the horizontal velocity profiles in both PST and PHF cases. This ob-
servation is true in all three kinds of fluids.

The effect of space-dependent heat source/sink parameter � is to
increase the magnitude of horizontal velocity in both PST and PHF
cases for all three kinds of fluids. The effect is more pronounced in
the case of shear thinning fluids. Same is reiterated in Fig. 6.

The effect of temperature-dependent heat source/sink parameter
� and the variable thermal conductivity parameter � on the horizon-
tal velocity profiles is quite negligible in both PST and PHF cases in
the three types of fluids. Small values of � and � have least effect on
horizontal velocity profiles, as can be seen in Figs. 7 and 9.

The effect of wall temperature parameter � on the flow is shown
in Fig. 8 for both the cases of PST and PHF. Increasing value of �
results in decreasing the axial velocity causing thinning of boundary
layer.

The effect of transverse magnetic field on the heat transfer is
depicted in Fig. 10 for both PST and PHF cases. From these plots
it is observed that the transverse magnetic field contributes to the
thickening of thermal boundary layer. The resistance due to Lorentz
force on the flow is responsible for enhancing the temperature in all
the three cases: 0 <n<1, n = 1 and n>1.

Fig. 11 depicts the effect of Grashof number on the heat transfer
in PST and PHF cases. It is evident from these plots that increas-
ing value of Gr results in thinning of the thermal boundary layer

associated with an increase in the wall temperature gradient and
hence produces an increase in the heat transfer rate.

Fig. 12 shows the effect of Prandtl number on the heat transfer
in PST and PHF cases. From these plots it is evident that large values
of Prandtl number result in thinning of the thermal boundary layer.
This is in contrast to the effects of other parameters, except Gr and
� on heat transfer.

Figs. 13 and 14 illustrate the effect of space-dependent heat
source/sink parameter � and temperature-dependent heat source/
sink parameter �, respectively, on the temperature distribution in
PST and PHF cases. Before discussing the results we recollect the
fact that � >0, � >0 correspond to internal heat generation and
� <0, � <0 correspond to internal heat absorption. Eq. (6) can be
readily seen to be

q′′′ = �k∞U0�t
LK

(1 + �T)(A∗f ′ + B∗T),

where use has been made of the definition of dimensionless vari-
ables. The heat generation/absorption clearly depends on the axial
flow and also on the boundary layer temperature T. It is the cumula-
tive influence of the space-dependent and temperature-dependent
heat source/sink parameter that determines the extent to which the
temperature falls or rises in the boundary layer region. From the
plots it is clear that the energy is released for increasing values of
� and � >0, and this causes the magnitude of temperature to in-
crease both in PST and PHF cases, where as energy is absorbed for
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Table 2
Values of −�′(0) and g(0)for various values of Q ,Gr, Pr, �,�,�,� and n .

Parameters n = 0.5 n = 1.0 n = 1.5

−�′(0) g(0) −�′(0) g(0) −�′(0) g(0)

Q Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

0.5 1.771369 0.490516 1.899539 0.451718 1.963695 0.435895
1.0 1.709040 0.512449 1.855221 0.464748 1.929407 0.444739
2.0 1.604343 0.551856 1.780755 0.487366 1.872201 0.460080
3.0 1.518591 0.587306 1.718663 0.507445 1.825321 0.473257

Gr Q = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

−1.0 1.429430 0.557233 1.724763 0.480711 1.841978 0.454480
−0.5 1.544340 0.541720 1.766472 0.476058 1.866152 0.451822
0.0 1.613049 0.530015 1.800241 0.471917 1.888819 0.449325
1.0 1.709040 0.512449 1.855221 0.464748 1.929407 0.444739
2.0 1.778170 0.499384 1.900383 0.458639 1.929427 0.440609

Pr Q = 1.0, Gr = 1.0, � = −0.05, � = −0.05, � = 1.0, � = 0.1

1.0 0.925793 0.982031 0.991087 0.915869 1.023301 0.886817
3.0 1.709040 0.512449 1.855221 0.464748 1.929407 0.444739
5.0 2.269228 0.370772 2.469840 0.335353 2.573138 0.320879

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = 1.0, � = 0.1

−0.1 1.766488 0.477465 1.911486 0.433198 1.983285 0.415916
0.0 1.650330 0.548341 1.798328 0.496719 1.875178 0.473823
0.1 1.528297 0.623335 1.682688 0.561982 1.765605 0.532837

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = 1.0, � = 0.1

−0.1 1.753444 0.498819 1.896008 0.454429 1.968660 0.435656
0.0 1.663331 0.527250 1.813331 0.475877 1.889197 0.454472
0.1 1.568473 0.559962 1.725826 0.501073 1.805463 0.476323

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 1.0

−0.1 1.953533 0.584350 2.124963 0.534150 2.212072 0.512619
0.0 1.819890 0.546538 1.977567 0.497478 2.057639 0.476676
0.1 1.709040 0.512449 1.855221 0.464748 1.929407 0.444739

� Q = 1.0, Gr = 1.0, Pr = 3.0, � = −0.05, � = −0.05, � = 0.1

−1.0 −0.271864 15.32029 0.239294 7.112590 0.441667 2.366320
0.0 0.999082 0.902991 1.198510 0.739193 1.301570 0.675120
1.0 1.709040 0.512449 1.855221 0.464748 1.929407 0.444739

decreasing values of �,� <0 resulting in temperature dropping sig-
nificantly near the boundary layer. In any case it is observed in all
these plots that there is a transfer of heat from the boundary layer
region to the sheet for some negative values of �.

The effect of wall temperature parameter � on the heat transfer
is typical and is as in Grubka and Bobba [4]. Fig. 15 shows the effect
of � for PST and PHF cases for all three types of fluids. It is observed
in both PST and PHF cases that above some critical negative value
�c, the increasing value of � results in decreasing the magnitude of
temperature. There will be transfer of heat from sheet to the fluid for
� >�c. Below this critical value the effect of � is opposite, i.e., if � <�c
the heat diffuses from the fluid to sheet. This case is of least interest
because the present investigation eyes on cooling of the sheet. Hence
in Fig. 15 the values of � are chosen above the critical value �c. When
� = �c, there is no heat transfer between the stretching surface and
the ambient fluid for both the cases of PST and PHF. The said effect
is observed for all values of n but with different critical values of �.

The effect of variable thermal conductivity parameter � on the
heat transfer is shown in Fig. 16 for PST and PHF cases. It is observed
from these plots that in the PST case the increasing values of � re-
sults in increasing the magnitude of temperature causing thermal
boundary layer thickening. This concurs with the results reported
by Chiam [6,7]. In the PHF case an opposite effect is observed (see
also [25]). It is also found that the wall temperature gradient g(0)
becomes steep for not-so-small values of �.

We now move over to a discussion on the skin friction at the
stretching a sheet. It is important to note here that the momentum

and heat transfer equations are mutually coupled (see Eqs. 17, 19
and 21) and hence the thermal boundary conditions have an influ-
ence on skin friction in the vertical stretching sheet problem un-
like in the case of the horizontal stretching sheet one. The values
of −f ′′(0) in case of PST and PHF are listed in Table 1 for various
values of influencing parameters. We see from the table that the
skin friction is highest in the case of dilatant liquids in compari-
son with those of pseudo-plastics and Newtonian ones. Furthermore,
skin friction increases with increase in the values of Q , Pr and �. The
Grashof number has an opposite effect to that of Q , Pr and �. The
effect of � is similar to that of Gr and so is the effect of � and �. In
general we notice that for all parameter combinations the following
is true:

[−f ′′(0)]PST < [−f ′′(0)]PHF.

We note that the temperature is fixed in the case of PST and hence
we calculate the flux and vice versa in the case of PHF. It is in-
appropriate therefore to compare −�′(0) and g(0). The most ap-
propriate thing would be to compare the local Nusselt numbers in
the two cases. The values of wall temperature gradient −�′(0) in
case of PST and wall temperature g(0) in case of PHF are tabu-
lated for a range of values of the physical parameters in Table 2.
Analyzing these tables we infer that the effect of increasing values
of all the parameters, except Pr,Gr and �, is to increase the val-
ues of −�′(0) and g(0) in pseudo-plastic, Newtonian and dilatant
fluids.
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5. Conclusions

Some of the important findings of the paper are:

1. The effects of Chandrasekhar number Q , Prandtl number Pr and
wall temperature parameter � are to oppose the flow and that
of space-dependent heat source/sink parameter � is to assist the
flow. The effects of temperature-dependent heat source/sink pa-
rameter � and the variable thermal conductivity parameter � on
the flow are quite negligible.

2. The buoyancy parameter Gr has a considerable influence in con-
trolling the flow. The effect of Gr is to increase the momentum
boundary layer thickness and to decrease the thermal boundary
layer thickness.

3. The individual and collective effects of increasing Q ,�, and � are
to increase the magnitude of heat transfer. An opposite effect is
observed for increasing values of Pr and �.

4. The variable thermal conductivity parameter � increases the mag-
nitude of temperature in PST case and decreases in PHF case. The
wall temperature in case of PHF is dependent on the value of �
and exhibits steepening for high values of �.

5. The magnitude of � dictates the direction of heat transfer in both
PST and PHF cases.

6. In the limiting case of Gr = 0 one can obtain the results of the
horizontal stretching sheet.

7. For effective cooling of the stretching sheet, space- and
temperature-dependent heat sinks are desirable.
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