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Solutions for the boundary value problem over an infinite domain have been obtained by
first transforming the two-dimensional laminar boundary layer equations into an ordinary
differential equation through similarity variables. The governing problem is the two-
parameter Falkner–Skan equation with b, the streamwise pressure gradient and c the suc-
tion velocity. The closed form solution for b = �1 obtained earlier is rewritten, which is
then generalized for generalb. The same equation is also solved using method of stretching
of variables. Different velocity profiles have been observed for both b and c. The results
from both approaches are compared with that of direct numerical solutions, which agree
very well.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Boundary layer flows on continuous stretching surfaces moving in quiescent fluid medium in industrial manufacturing
processes are of present interest in recent years. One can assume that stretching of the boundary varies with distance from
the die in the manner of power law. For example, flows along the liquid films in condensation processes, cooling of a metallic
plate in a cooling bath, aerodynamic extrusion of plastic sheets, drawing of plastic films and metal and polymer extrusion,
etc. Both stretching and heating or cooling simultaneously during such processes has a significant effect on the final
products.

Boundary value problems over an infinite interval are of special interest and a very few of them have got analytical solu-
tions. The continuous stretching surface is governed by these BVP’s, which are theoretically studied with the aid of similarity
form of the two dimensional boundary layer equations. Earliest study is by Sakiadis [1] who investigated the boundary layer
flow on a continuous solid surface with constant speeds. Afzal and Varshney [2], Afzal [3,4] have investigated the self-similar
boundary layer with power law stretching of the continuous surface. The comprehensive analytical and numerical study of
boundary layer flows induced by continuous surface stretched with power law velocity has been given in Banks [5]. The
stretching surface may be considered either as an impermeable or permeable one.

The pressure gradient driven flow over a stretching boundary may be obtained when external and the boundary veloc-
ity are proportional to the power law of the downstream coordinate and is governed by the Falkner–Skan equation. Weyl
[6] proved the existence and uniqueness of the solution of the Falkner–Skan equation for impermeable surface. Coppel [7]
proved existence and uniqueness of the solution of the Falkner–Skan equation. Particularly, he proved that for non-neg-
ative f(0) and f0(0), f00(g) is positive, zero or negative throughout the interval 0 6 g 61 according to f0(0) is less than,
equal or greater than one and with this restriction on f00(g), the solution is unique. Yang and Chien [8] give two types
of analytical solutions of the Falkner–Skan equation for b = �1, one expressed in terms of error and exponential functions
and other one in the form of confluent hypergeometric functions. Riley and Weidman [9] give numerically a rich
. All rights reserved.
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structure of solution for this equation for jbj 6 1 and show no solution, single, double and triple solutions for particular
values of b. Afzal [10] recently formulated another version of the Falkner–Skan equation, which relates free stream veloc-
ity to composite reference velocity (i.e. sum of the velocities of stretching boundary and free stream). He also gave closed
form solution for b = �1 and asymptotic solutions for some special cases. Recently, Sachdev et al. [11] have proposed a
new scheme for the solution of the Falkner–Skan equation for general b and recovered all possible results of Riley and
Weidman [9].

In this paper, an attempt has been made to give exact solution of the Falkner–Skan equation for generalb and for different
values of suction parameter c. The presentation of the paper proceeds as follows. In Section 2, the mathematical formulation
of the proposed problem with relevant boundary conditions is given. The exact analytical solution for b = �1 as obtained by
Yang and Chien [8] can be rewritten in the form f ¼ gþ dþ c�d

GðgÞ and the function G(g) is defined by infinite power series. This
form is used for the solution of the Falkner–Skan equation for general b which is the main objective of the present work. This
analysis is given in Section 3. In Section 4, the solution of the Falkner–Skan equation by means of the method of stretching of
variables is given. Section 5 is devoted to compare the results obtained in Sections 3 and 4.

2. Formulation of the problem

The two-dimensional laminar boundary layer equations of an incompressible fluid subjected to pressure gradient are
ou
ox
þ ov

oy
¼ 0; ð1Þ

u
ou
ox
þ v ou

oy
¼ �p0

q
þ t

o2u
oy2 ; ð2Þ
where p0 is pressure gradient, p0 ¼ �qU dU
dx , u is the velocity in the direction of the fluid, v is the velocity of the fluid normal to

u, t is the constant kinematic viscosity, U is the velocity at the edge of boundary layer which obeys the power law relation
U(x) = U1xm. The relevant boundary conditions are
at y ¼ 0 : u ¼ 0; v ¼ vw; and at y!1 : u ¼ U1: ð3Þ
The stream functions u ¼ ow
oy and v ¼ � ow

ox, satisfy Eq. (1) where
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2txUðxÞ
1þm

r
f ðgÞ; g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞUðxÞ

2tx

r
; b ¼ 2m

1þm
ð4Þ
and f is the dimensionless stream function. Using these similarity transformations in Eqs. (1)–(3), we get a nonlinear ordinary
differential equation
f 000 þ ff 00 þ bð1� f 02Þ ¼ 0; 0 ¼ d
dg

ð5Þ
with boundary conditions
f ð0Þ ¼ c; f 0ð0Þ ¼ 0 and f 0ð1Þ ¼ 1; ð6Þ
where c corresponds to the suction velocity, considered mainly positive in the present study and c = 0 corresponds to an
impermeable surface. Eq. (5) is the Falkner–Skan equation, one of the celebrated equations in the similarity boundary layer
theory and governs the symmetrical boundary layer flow over a wedge whose included angle is pb. In the forthcoming sec-
tion, the exact solution for the system (5) and (6) for general b which embeds the known analytical solution for b = �1, is
given.

3. Solution for general b

The exact analytical solution of the Falkner–Skan equation (5) subjected to (6) for b = �1 as given by Yang and Chien [8] is
rewritten in slightly modified form as
f ¼ gþ dþ c� d
GðgÞ ; ð7Þ
where
GðgÞ ¼ e
g2

2 þgd � 1
2

ffiffiffiffi
p
2

r
ðc� dÞe1

2ðgþdÞ2 erf
dffiffiffi
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� erf
gþ dffiffiffi

2
p
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ð8Þ
and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2

p
. The axial velocity gradient at the wall is
f 00ð0Þ ¼ d ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2

q
: ð9Þ
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From Eq. (9) for b = �1, the solution exists for c >
ffiffiffi
2
p

and no solution for c <
ffiffiffi
2
p

. Indeed we can find solution of system (5),
(6) for c <

ffiffiffi
2
p

through the method of stretching of variables. The function G in Eq. (7) easily generalizes the solution of the
Falkner–Skan equation for general b. For general b, in view of the transformation (7), Eq. (5) becomes
Table 1
Compar

b

�1
0.0
0.5
1.0
1.5
G2G000 � G½6G0 þ ðd� cÞ � ðgþ dÞG�G00 þ 6G03 þ ½ðc� dÞðb� 2Þ � 2ðgþ dÞG�G02 � 2bG2G0 ¼ 0 ð10Þ
and the boundary conditions (6) become
Gð0Þ ¼ 1; G0ð0Þ ¼ 1
c� d

; Gð1Þ ¼ 1: ð11Þ
The solution of (10) subjected to the conditions (11) for b = �1 is given by Eq. (8) which is expressed in terms of exponential
and error functions. These functions may be expanded in Taylor series about g = 0, which enjoy the infinite radius of conver-
gence. The solution of the problem (10) for b = �1 gives a clue for the following analysis for generalb. Motivated by the series
representation of G(g) for b = �1, it is natural to write
G ¼
X1
n¼0

angn ð12Þ
for general b. Substitution of (12) with a0 = 1, a1 = 1/(c � d) into (10) and after equating the like powers of g, the general
recurrence relation for obtaining the coefficients an, we get
anþ3 ¼ �
1
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for n ¼ 0;1;2;3; . . . ð13Þ
All the coefficients an in (13) are obtained in terms of a2 and it is related to f00(0) as
a2 ¼ � f 00ð0Þ � 2
c� d

� ��
ð2ðc� dÞÞ: ð14Þ
The series solution (12) as it is contains two unknown constants namely d and f00(0) or a2. Thus, we have a two-parameter
family of solutions to the system (5), (6). To determine one of these unknown constants, we patch the series expansion of
(8) with that of (12), which gives d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 2

p
. Another free parameter f00(0) or a2 gives one parameter family of solutions

to the system (5) and (6). This constant can be found from the following integral relation that is obtained by integrating
the system (5) and (6)
Z 1

0
ðf 0 � f 02Þdgþ b

Z 1

0
ð1� f 0

2 Þdg ¼ f 00ð0Þ � c: ð15Þ
Since, function f0 in right hand side also involves f00(0), we need to find it iteratively for different values of b and c. The value
f00(0) thus obtained agrees well with that of numerical solution and is given in the Table 1 for various values of b and c. The
solutions for velocity profile f0 for different values of stretching parameter b and for suction parameter c P

ffiffiffi
2
p

are given in
Fig. 1a–d.

The relations (7) and (12) give the solution for general b, but restricts the analysis for c P
ffiffiffi
2
p

. In the next section, we give
the solution for general b and c by means of method of stretching of variables.
ison of f00(0) obtained from Eqs. (7) and (12) with that numerical solution for various b and c.

c = 1.5 c = 2.0 c = 2.5 c = 3.0

Eq. (7) Numerical solution Eq. (7) Numerical solution Eq. (7) Numerical solution Eq. (7) Numerical solution

0.5 0.5 1.41421 1.41423 2.06155 2.06160 2.64575 2.64579
1.72129 1.73192 2.19328 2.19453 2.65917 2.66657 3.14166 3.14511
2.02156 2.02617 2.46585 2.45100 2.88354 2.89237 3.34547 3.34583
2.26751 2.26761 2.66874 2.67002 3.09451 3.09112 3.52539 3.52663
2.47156 2.47660 2.86367 2.86392 3.27094 3.27042 3.69299 3.69234
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Fig. 1. Velocity profile f0(g) against g for different values of stretching parameter b and suction parameter c.
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4. Method of stretching of variables

Many attempts have been made to develop methods for the solution of boundary layer equations, which are approximate
because these are not universally valid solutions especially for all possible distribution of the pressure gradient. The numer-
ical approach is always based on the idea of stretching of variables of the flow problems. In the method of stretching of vari-
ables, we have to choose suitable derivative function f0 such that the derivative boundary conditions satisfy automatically
and integration of f0 will satisfy the remaining boundary conditions. Substitution of this resulting function into the given
equation gives the residual of the form R(n,a) and is called defect function. Using least square method, the residual of the
defect function can be minimized. Afzal [12] has studied the least square method for minimization of the residual in the
boundary layer equation. The solution to the third order nonlinear boundary value problem over an infinite domain charac-
terizing the flow of a viscous fluid impinging normally to a wall from which the fluid is extracted at a uniform rate has been
given by Ariel [13] using an method of stretching of variables. Chakraborty and Mazumdar [14] have given an approximate
solution to the problem of steady laminar flow of MHD fluid over a stretching sheet. More details about the method of
stretching of variables are given in [13,14].

Using the transformation f = c + F, the system (5) and (6) reads as
F 000 þ ðcþ FÞF 00 þ bð1� F 02Þ ¼ 0; 0 ¼ d
dg

; ð16Þ

Fð0Þ ¼ 0; F 0ð0Þ ¼ 0; F 0ð1Þ ¼ 1: ð17Þ
We introduce a stretching parameter a for both F and g in the form
HðnÞ ¼ aFðgÞ and n ¼ ag; ð18Þ



Table 2
Comparison of solutions (7) and (12) and solution (26) with numerical solution of the Falkner–Skan equations (5), (6)) with b = 2.0 and c = 1.5.

g Eqs. (7) and (12) Eq. (26) Numerical solution
f0(g) f0(g) f0(g)

0.0 0.0 0.0 0.0
0.125 0.2890527 0.27682 0.2890416
0.250 0.5022514 0.477011 0.5022322
0.375 0.6563715 0.621785 0.6563484
0.5 0.7658656 0.726482 0.7658432
0.625 0.8424585 0.802198 0.8424404
0.750 0.8952774 0.856953 0.8952665
0.875 0.9312148 0.896551 0.9312129
1.0 0.9553516 0.925188 0.9553597
1.125 0.9713586 0.945898 0.9713774
1.250 0.9998003 0.960874 0.9818719
1.375 0.9886231 0.971705 0.9886639
1.50 0.9929546 0.979538 0.9930068
1.625 0.9956868 0.985202 0.9957507
1.750 0.9973883 0.989298 0.9974644
1.875 0.9984343 0.992261 0.9985232
2.0 0.9990686 0.994403 0.9991712
2.125 0.9994479 0.995952 0.9995653
2.250 0.9996712 0.997073 0.9998045
2.375 0.9998003 0.997883 0.9999508
2.50 0.9999154 0.998469 1.0000425
2.625 0.9999630 0.998893 1.0001028
2.750 0.9999935 0.999199 1.0001455
2.875 1.0004284 0.999421 1.0001789
3.0 1.0004584 0.999581 1.0002079
3.125 1.0008525 0.999697 1.0002353
3.250 1.0009666 0.999781 1.0002628
3.375 1.0000199 0.999842 1.0002913
3.50 1.0000349 0.999885 1.0003214
3.625 1.0000560 0.999917 1.0003535
3.750 1.0000723 0.99994 1.0003879
3.875 1.0000872 0.999957 1.0004247
4.0 1.0000978 0.999969 1.0004640
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where a > 0, is an amplification factor. In view of (18), the system (16) and (17) can be rewritten as
a2H000 þ caH00 þ HH00 þ bð1� H02Þ ¼ 0; 0 ¼ d
dn
; ð19Þ

Hð0Þ ¼ 0; H0ð0Þ ¼ 0; H0ð1Þ ¼ 1: ð20Þ
We choose a trial function
H0 ¼ 1� expð�nÞ; ð21Þ
which satisfy both derivative conditions in (20). Integrating (21) with respect to n from 0 to n using first condition of (20), we
get
H ¼ expð�nÞ þ n� 1: ð22Þ
Substituting (22) into (19) we get the residual defect function R(n, a) as
Rðn;aÞ ¼ ð�a2 þ caþ nþ 2b� 1Þ expð�nÞ þ ð1� bÞ expð�2nÞ: ð23Þ
Using the least square method as discussed in Ariel [13], for the minimization of Eq. (23), we have
o

oa

Z 1

0
R2ðn;aÞdn ¼ 0: ð24Þ
Substituting (23) into Eq. (24) and solving for a, we get
a ¼ 1
6

3cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2þ 3c2 þ 16bÞ

q� �
ð25Þ
in which for b = 1, the result of Ariel [13] can be recovered. Thus, the original function f now takes the form
f ¼ cþ 1
a
ðexpð�agÞ þ ag� 1Þ: ð26Þ
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It is of interest to note that Eq. (26) is the solution for system (5) and (6) for all b and c.
For impermeable surface c = 0, Afzal and Luthra [15] have given the value f00(0) for different values of b in terms of higher

order perturbations. The prediction of skin friction for large b, the asymptotic solution is given by
Table 4
Compar

b

0.5
1
2
2.5

10
20
50

100

Table 3
Compar

g

0.0
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500
2.625
2.750
2.875
3.000
3.125
3.250
3.375
3.500
3.625
3.750
3.875
4.000
f 00ð0Þ ¼ b
1
2ð1:1547þ 0:0746b�1 þ 0:00509b�2 � 0:00182b�3 þ � � �Þ ð27Þ
and accelerated series in Euler transformation is given by
f 00ð0Þ ¼ Z�
1
2ð1:1547� 0:50272Z � 0:01019Z2 � 0:0384Z3 þ � � �Þ ð28Þ
where Z = (1 + b)�1. The results of this section are given in Tables 2 and 3 for different values of b and c and also the results for
c = 0 are given in Table 4.
ison of value f00(0) for general b and for impermeable surface c = 0.

Method of stretching variable (26) Series solution (28) Numerical solution Brodie & Banks [16]

0.9129 0.9343 0.9277
1.2247 1.2347 1.2326
1.6833 1.6876 1.6872
2.6141 1.8743 2.6158
3.6742 3.6752 3.6752
5.1801 5.1807 5.1807
8.1752 8.1755 8.1755

11.5546 11.5545 11.5545

ison of solutions (7) and (12) and solution Eq. (26) with numerical solution of the Falkner–Skan equation (5), (6) with b = 4.0 and c = 2.0.

Eqs. (7) and (12) Eq. (26) Numerical solution
f0(g) f0(g) f0(g)

0.0000000 0.0000000 0.0000000
0.3730199 0.358335 0.3729810
0.6157238 0.588266 0.6156581
0.7686961 0.735805 0.7686340
0.8628742 0.830475 0.8628434
0.9197948 0.891222 0.9198138
0.9536687 0.930201 0.9537486
0.9735521 0.955212 0.9737001
0.9850750 0.971261 0.9852978
0.9916711 0.981559 0.9919770
0.9954014 0.988167 0.9958015
0.9974851 0.992407 0.9979946
0.9986342 0.995128 0.9992723
0.9992591 0.996874 1.0000499
0.9995931 0.997994 1.0005660
0.9997674 0.998713 1.0009577
0.9998547 0.999174 1.0013042
0.9998947 0.999470 1.0016527
0.9999088 0.999660 1.0020328
1.0000845 0.999782 1.0024655
1.0001547 0.999860 1.0029672
1.0002421 0.999910 1.0035529
1.0003509 0.999942 1.0042377
1.0004841 0.999963 1.0050375
1.0006440 0.999976 1.0059699
1.0008322 0.999985 1.0070541
1.0011496 0.999990 1.0083120
1.0012969 0.999994 1.0097677
1.0015741 0.999996 1.0011448
1.0018810 0.999997 1.0013384
1.0022170 0.999998 1.0015609
1.0025814 0.999999 1.0018161
1.0029731 0.999999 1.0021081
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5. Discussion and conclusions

Representation of exact analytical solution (7) for b = �1 in the form of series expansion has encouraged us to analyze the
similar behavior for other values of b. The exact solution (7) of the Falkner–Skan equation (5) subject to the boundary con-
ditions (6) for general b embeds the known analytical solution for b = �1 [8] and this solution holds for c P

ffiffiffi
2
p

. Whereas the
solution (26) of the system (5) and (6) obtained through method of stretching of variables holds for general b and c. This
method gives the best approximate solution for the Falkner–Skan equation and results are rather remarkable. This method
is quite easy to use and requires less computational time. The solution (7) gives two-parameter family of solution of the
problem (5). This should be matched with an analytical solution b = �1 to get one of the unknowns. Other unknown must
be found from the integral relation (15) which itself is derived from system (5) and (6). We use the Pade’ approximants to
sum the series (12). With b = 0, Eq. (5) reduces to the so-called Blasius equation, which describes a uniform boundary layer
flow over semi-infinite plate with fluid saturated porous medium in the absence of pressure gradient and has been studied
extensively and thus no comment is needed.

Solutions of the system (5) and (6) for velocity profile f0(g) against g which are obtained from the relations (7) and (12) are
displayed in Fig. 1a–d for different stretching parameter b and suction parameterc. The approach of the solution to its
asymptotic value 1 (as g ?1) is clearly observed. For eachb, there is gradual variation in velocity profile as c increases.

Tables 2 and 3 compare the solutions for f0(g) versus g using (7) and (12) and from method of stretching of variables (i.e.
Eq. (26)) for different values of b with that of direct numerical solution of (5) and (6). There is an excellent agreement in all
the three solutions. Comparison of the value f00(0) of the Falkner–Skan equations (5) and (6) obtained by method of stretching
of variables with that of Eulerized series solution obtained by Afzal and Luthra [15] and numerically by Brodie and Banks [16]
for different values of b, when c = 0 is given in Table 4. A close agreement between all solutions is clearly observed especially
for larger values of b.
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