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This article presents a numerical solution for the magnetohydrodynamic (MHD) non-New-
tonian power-law fluid flow over a semi-infinite non-isothermal stretching sheet with
internal heat generation/absorption. The flow is caused by linear stretching of a sheet from
an impermeable wall. Thermal conductivity is assumed to vary linearly with temperature.
The governing partial differential equations of momentum and energy are converted into
ordinary differential equations by using a classical similarity transformation along with
appropriate boundary conditions. The intricate coupled non-linear boundary value prob-
lem has been solved by Keller box method. It is important to note that the momentum
and thermal boundary layer thickness decrease with increase in the power-law index in
presence/absence of variable thermal conductivity.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The study of two-dimensional boundary layer flow over a stretching sheet has gained much interest in recent times be-
cause of its numerous industrial applications viz in the polymer processing of a chemical engineering plant and in metallurgy
for the metal processing. Crane [1] was first to formulate this problem to study a steady two-dimensional boundary layer
flow caused by stretching of a sheet that moves in its plane with a velocity which varies linearly with the distance from
a fixed point on the sheet. Many investigators have extended the work of Crane [1] to study heat and mass transfer under
different physical situations (e.g., Gupta and Gupta [2], Chen and Char [3], Datta et al. [4], McLeod and Rajagopal [5], Chaim
[6,7]) by including quadratic and higher order stretching velocity. All these works are restricted to Newtonian fluid flows
which have received much attention in the last three decades due to their occurrence in nature and their increasing impor-
tance in industry. Different types of non-Newtonian fluids are visco-elastic fluid, couple stress fluid, micro polar fluid and
power-law fluid. Rajagopal et al. [8] and Siddappa and Abel [9] studied the flow of a visco-elastic fluid flow over a stretching
sheet. Troy et al. [10], Wen-Dong [11], Sam Lawrence and Rao [12], McLeod and Rajagopal [5] have discussed the problem of
uniqueness/non-uniqueness of the flow of a non-Newtonian visco-elastic fluid over a stretching sheet. Abel and Veena [13]
. All rights reserved.
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Nomenclature

A, D constants
b stretching rate, positive constant
Cf skin friction
Cp specific heat at constant pressure
f dimensionless velocity variable
h(x) heat transfer coefficient
H0 applied transverse magnetic field
k(T) thermal conductivity
k1 thermal conductivity far away from the sheet
l characteristic length
n power-law index
Nux Nusselt number
Prn generalized modified Prandtl number for power-law fluids
Qs internal heat generation/absorption
qw local heat flux at the sheet
Rex local Reynolds number
T temperature variable
Tw given temperature at the sheet
T1 constant temperature of the fluid far away from the sheet
x horizontal distance
y vertical distance
u velocity in x-direction
U velocity of the sheet
v velocity in y-direction

Greek symbols
a constant >0
b heat source/sink parameter
DT sheet temperature
e small parameter
g similarity variable
c kinematic viscosity
lm magnetic permeability
w stream function
q density
r electrical conductivity
sxy,sij shear stress
h dimensionless temperature variable
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studied the heat transfer of a visco-elastic fluid over a stretching sheet. Bujurke et al. [14] have investigated the heat transfer
phenomena in a second order fluid flow over a stretching sheet with internal heat generation and viscous dissipation. Prasad
et al. [15] analyzed the problem of a visco-elastic fluid flow and heat transfer in a porous medium over a non-isothermal
stretching sheet with variable thermal conductivity. Prasad et al. [16] have investigated on the diffusion of a chemically reac-
tive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet.

All the above-mentioned research work do not however consider the situations where hydromagnetic effects arise. The
study of hydrodynamic flow and heat transfer over a stretching sheet may find its applications in polymer technology related
to the stretching of plastic sheets. Also, many metallurgical processes involve the cooling of continuous strips or filaments by
drawing them through a quiescent fluid and while drawing these strips are sometimes stretched. The rate of cooling can be
controlled by drawing such strips in an electrically conducting fluid subjected to a magnetic field in order to get the final
products of desired characteristics as the final product greatly depend on the rate of cooling. In view of this, the study of
MHD flow of Newtonian/non-Newtonian flow over a stretching sheet was carried out by many researchers (Sarpakaya
[17], Pavlov [18], Chakrabarti and Gupta [19], Char [20], Andersson [21], Datti et al. [22]). These works however do not con-
sider the study of a non-Newtonian power-law fluid model. The simplest and most common type of such a model is the Ost-
wald-de Waele model i.e. power-law fluid for which the rheological equation of the state between the stress components sij

and strain components eij is defined by Vujannovic et al. [23]
sij ¼ �pdij þ K
X3

m¼1

X3

l¼1

elmelm

�����
�����

n�1
2

eij; ð1:1Þ
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where p is the pressure, dij is Kroneckar delta and K and n are, respectively, the consistency coefficient and power-law index
of the fluid. Such fluids are known as power-law fluid. For n > 1, fluid is said to be dilatant or shear thickening; for n < 1, the
fluid is called shear thinning or pseudo-plastic fluid and for n = 1, the fluid is simply the Newtonian fluid. Several fluids stud-
ied in the literature suggest the range 0 < n 6 2 for the value of power-law index n.

Keeping this in view, in the present paper, we study the effect of variable thermal conductivity on the heat transfer of a
non-Newtonian power-law fluid, subjected to a magnetic field, over a non-isothermal stretching sheet with internal heat
generation/absorption. This is in contrast to the work of Andersson et al. [24] and Jadhav and Waghmode [25], where con-
stant thermal conductivity was considered. It has been observed by Savvas et al. [26] that for liquid metals, the thermal con-
ductivity varies linearly with temperature in the range 0–400 �F. Hence, we have assumed that the thermal conductivity is a
linear function of the temperature. Further, we consider two cases of non-isothermal boundary conditions namely,

(1) Surface with prescribed surface temperature (PST Case) and
(2) Surface with prescribed wall heat flux (PHF Case).

Because of the rheological equation of state Eq. (1.1), the momentum and energy equations are highly non-linear, and
coupled form of partial differential equations (PDEs). These PDEs are then converted to coupled non-linear ordinary differ-
ential equations (ODEs) by using the similarity variables along with the appropriate boundary conditions. In this paper, we
propose to solve these ordinary differential equations numerically by Keller box method [27,28]. One of the important find-
ings is that the horizontal boundary layer thickness decreases with the increase of power-law index. The thickness is much
larger for shear thinning (pseudo plastic) fluids (n < 1) than that of Newtonian (n = 1) and shear thickening (dilatants) fluids
(n > 1).

2. Governing equations and similarity analysis

We consider two-dimensional steady, laminar flow of an incompressible and electrically conducting fluid obeying power-
law model in the presence of a uniform transverse magnetic field over a non-isothermal stretching sheet. The flow is gen-
erated due to the stretching of the sheet by applying two equal and opposite forces along the x-axis by keeping the origin
fixed and considering the flow to be confined to the region y > 0. In order to obtain the temperature difference between
the surface and the ambient fluid, we consider the temperature dependent heat source/sink in the flow. In this situation,
the basic governing equations of continuity and momentum (Andersson et al. [21], Chiam [29]) take the following form
ou
ox
þ ov

oy
¼ 0; ð2:1Þ

u
ou
ox
þ v

ou
oy
¼ �m

o

oy
� ou

oy

� �n

� rl2
mH2

0

q
u; ð2:2Þ
where u and v are the flow velocity components in the stream-wise (x) and cross-stream (y) directions, respectively. m is the
kinematic viscosity of the fluid, r is the electrical conductivity, lm is the magnetic permeability, H0 is the applied transverse
magnetic field and q is the fluid density. The first term in the right hand side of the Eq. (2.2) i.e. the shear rate (ou/oy) has
been assumed to be negative throughout the entire boundary layer since the stream-wise velocity component u decreases
monotonically with the distance y from the moving surface. A rigorous derivation and subsequent analysis of the boundary
layer equations for power-law fluids were recently provided by Denier and Dabrowski [30]. They focused on boundary layer
flow driven by free stream U(x) � xm which is of the Falkner-Skan type. Such boundary layer flows are driven by a stream
wise pressure gradient � dp

dx ¼ q du
dx set up by the external free stream outside the viscous boundary layer. In the present con-

text no driving pressure gradient is present. Instead the flow is driven solely by a flat surface which moves with a prescribed
velocity U(x) = bx, where x denotes the distance from the slit from which the surface emerges and b > 0. Thus, the relevant
boundary conditions applicable to the flow are
uðx; 0Þ ¼ UðxÞ; ð2:3aÞ
vðx;0Þ ¼ 0; ð2:3bÞ
uðx; yÞ ! 0 as y!1: ð2:3cÞ
Here, Eq. (2.3c) claims that the stream-wise velocity vanishes outside the boundary layer, the requirement Eq. (2.3b) sig-
nifies the importance of impermeability of the stretching surface whereas Eq. (2.3a) assures no slip at the surface. Following
transformation is introduced in accordance with Andersson and Dandapat [31]:
g ¼ y
x
ðRexÞ

1
nþ1; wðx; yÞ ¼ UxðRexÞ

�1
nþ1f ðgÞ; ð2:4Þ
where g is the similarity variable and w(x,y) is the stream function. The velocity components u and v are given by
u ¼ ow
oy
; v ¼ � ow

ox
: ð2:5Þ
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The local Reynolds number is defined by
Rex ¼
U2�nxn

m
: ð2:6Þ
The mass conservation Eq. (2.1) is automatically satisfied by Eq. (2.5). By assuming the similarity function f(g) to depend
on the similarity variable g, the momentum Eq. (2.2) is transformed into ordinary differential equation
n �f 00j jn�1f 000 � f 02 þ 2n
nþ 1

� �
ff 00 �Mnf 0 ¼ 0; ð2:7Þ
where Mn ¼ rl2
mH2

0
qb is the magnetic parameter. Eq. (2.7) is solved numerically subject to the following boundary conditions

obtained from Eq. (2.3) using Eq. (2.4) as
f ðgÞ ¼ 0 at g ¼ 0; ð2:8aÞ
f 0ðgÞ ¼ 1 at g ¼ 0; ð2:8bÞ
f 0ðgÞ ! 0 as g!1: ð2:8cÞ
It should be noted that the velocity U = U(x) is used to define the dimensionless stream function w in the Eq. (2.4) and the
local Reynolds number in Eq. (2.6) describes the velocity of the moving surface that drives the flow. This choice coincides
with the conventional boundary layer analysis, in which the free stream velocity is taken as the velocity scale. The transfor-
mations defined in Eq. (2.4) and Eq. (2.5) can be used for arbitrary variation of U(x), so the transformation results in a true
similarity problem only if U varies as bx. Therefore, such surface velocity variations are required for the ordinary differential
Eq. (2.7) to be valid. Non-Similar stretching sheet problems which require the solution of partial differential equations rather
than ordinary differential equations were considered by several researchers for Newtonian fluids. Three boundary conditions
(2.8a–c) are sufficient for solving the third-order equation which results for transformed momentum equations for power-
law fluids.

The equation for a Newtonian fluid can be obtained as a special case if one puts n = 1 in Eq. (2.7). In this case we have,
f 000 � f 02 þ ff 00 �Mnf 0 ¼ 0; ð2:9Þ
with boundary conditions (2.8a–c).
It is interesting to note that the Eq. (2.9) has exact analytical solution of the form
f 0 ¼ e�ag; a > 0; ð2:10Þ
satisfying the boundary conditions (2.8 a–c).
Integration of Eq. (2.10) and using (2.8a) gives
f ¼ 1
a
ð1� e�agÞ; where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þMnÞ

p
: ð2:11Þ
The skin friction coefficient Cf at the sheet is given by
Cf ¼ �
2sxy

qðbxÞ2

 !
y¼0

¼ 2½�f 00ð0Þ�n½Rex�
�1

nþ1; ð2:12Þ
where sxy is the shear stress and Rex is the local Reynolds number. We now discuss the heat transport in the above flow due
to a stretching sheet.

3. Heat transfer

The energy equation for a fluid with variable thermal conductivity in the presence of internal heat generation/absorption
for the two-dimensional flow is given by (Chiam [29]):
qcpu
oT
ox
þ qcpv� ojðTÞ

oy

� �
oT
oy
¼ jðTÞ o

2T
oy2 þ Q sðT � T1Þ; ð3:1Þ
where cp is the specific heat at constant pressure, T is the temperature of the fluid, T1 is the constant temperature of the fluid
far away from the sheet and j(T) is the temperature-dependent thermal conductivity. We consider the temperature-thermal
conductivity relationship of the following form (Chiam [29]):
jðTÞ ¼ j1 1þ e
DT
ðT � T1Þ

� �
; ð3:2Þ
where DT = Tw � T1, Tw is the sheet temperature, e is a small parameter and j1 is the conductivity of the fluid far away from
the sheet. The term containing Qs in Eq. (3.1) represents the temperature-dependent volumetric rate of heat source when
Qs > 0 and heat sink when Qs < 0. These deal with the situation of exothermic and endothermic chemical reactions,
respectively.
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Substituting Eq. (3.2) in Eq. (3.1), we get
qcpu
oT
ox
þ qcpv� k1e

DT
oT
oy

� �
oT
oy
¼ j1 1þ e

DT
ðT � T1Þ

� � o2T
oy2 þ Q sðT � T1Þ: ð3:3Þ
The thermal boundary conditions depend on the type of heating process under consideration. Here, we consider two dif-
ferent heating processes, namely, (i) prescribed surface temperature and (ii) prescribed wall heat flux, varying with the dis-
tance. The boundary conditions assumed for solving Eq. (3.3) are
T ¼ Tw ¼ T1 þ A x
l

� 	
 �
ðPST CaseÞ

�k oT
oy ¼ qw ¼ D x

l

� 	
ðPHF CaseÞ

)
at y ¼ 0 and ð3:4Þ

T ! T1 as y!1; ð3:5Þ
where A is a constant. It is obvious now that
DT ¼ Tw � T1 ¼
A x

l

� 	
PST Case

D
j1

x
l

� 	
ðRexÞ

�1
nþ1x PHF Case

(
: ð3:6Þ
We now use a scaled g-dependent temperature of the form
hðgÞ ¼ T � T1
DT

: ð3:7Þ
The imminent advantage of using Eq. (3.4) is that the temperature-dependent thermal conductivity turns out to be x-
independent. Eq. (3.3) reduces to the non-linear differential equation using Eq. (2.4):
ð1þ ehÞh00 þ eh02 þ Pr
2n

nþ 1
ðfh0 � ðf 0 � bÞhÞ

� �
¼ 0; ð3:8Þ
where, Pr ¼ c2b3ðn�1Þx2ðn�1Þ

anþ1

� � 1
nþ1

is the generalized Prandtl number for power-law fluid and b ¼ Qs
qcpb, is the heat source/sink

parameter.
Eq. (3.4) on using Eqs. (3.5) and (3.6) can be written as
hð0Þ ¼ 1 ðPST CaseÞ
h0ð0Þ ¼ �1 ðPHF CaseÞ

�
; hð1Þ ¼ 0: ð3:9Þ
The local Nusselt number is given by
Nux ¼
hðxÞ
K1

; ð3:10Þ
where the heat transfer coefficient h(x) is of the form
hðxÞ ¼ qwðxÞ
DT

ð3:11Þ
and the local heat flux at the sheet is
qw ¼ �K1
oT
oy

� �
at y¼0

¼ �K1AxðRexÞ1=ðnþ1Þh0ð0Þ: ð3:12Þ
Substituting Eqs. (3.4), (3.11) and (3.12) in Eq. (3.10), we get
Nux ¼ �Re
1

nþ1
x h0ð0Þ: ð3:13Þ
4. Numerical procedure

Since the equation for f does not involve h(g), so we use Keller Box method (Cebeci and Bradshaw [27], Keller [28] and
Press et al. [32]) to compute f numerically. The resulting system of algebraic equations has been solved by a tridiagonal block
solver [27]. The choice of numerical value of g1, which obviously depends on the physical parameters n and Mn, is very cru-
cial in this numerical procedure. The initial guess was made from the known exact solution for n = 1, and several trial and
error runs were made to obtain accurate values of f, fg etc. up to a significant number of decimal places that satisfy the
boundary condition at g1. Similarly, to obtain h(g) numerically, we use the values of f obtained from Keller box method
and employ a shooting technique (Conte and de Boor [33]). Here also, the initial guess was made with the help of the known
exact solution for e = 0, Pr = 1 and n = 1. The numerically computed values are then used for plotting several graphs and tab-
ulate results in Tables.
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5. Results and discussion

The numerical computation is carried out for different values of magnetic parameter Mn, power-law index n, Prandtl
number Pr, variable thermal conductivity parameter e and heat source/sink parameter b using the numerical procedure dis-
cussed in the previous section. In order to get a clear insight of the physical problem, the horizontal velocity profiles fg(g) and
temperature profiles h(g) for both PST and PHF cases have been discussed by assigning the numerical values to the non-
dimensional parameters encountered in the problem. The numerical results are shown graphically in Figs. 1–6. To assess
the accuracy of the numerical method used, the computed value of the skin friction co-efficient and rate of heat transfer were
compared with those obtained by Andersson [21] for different values of physical parameters. It is observed that our results
are in good agreement with the results obtained by the previous investigators as seen from the tabulated results in Table 1.

Figs. 1 and 2 illustrate the effect of power-law index n and magnetic parameter Mn on the horizontal velocity profiles
fg(g) with g. It is noticed from these figures that the horizontal velocity profiles decrease with increasing the values of
power-law index n and magnetic parameter Mn in the boundary layer but this effect is not very prominent near the wall.
The effect of increasing the value of the power-law index parameter n is to reduce the horizontal velocity and thereby reduc-
ing boundary layer thickness i.e. the thickness is much large for shear thinning (pseudo plastic) fluids (0 < n < 1) than that of
Newtonian (n = 1) and shear thickening (dilatant) fluids (1 < n < 2), as clearly seen from Fig. 1. The effect of magnetic param-
eter Mn on the horizontal velocity profile is depicted in Fig. 2. It is observed that the horizontal velocity profile decreases
with increase in the magnetic field parameters due to the fact that, the introduction of transverse magnetic field (normal
to the flow direction) has a tendency to create a drag, known as Lorentz force which tends to resist the flow. This behavior
is even true in the case of shear thickening and shear thinning fluids.
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The effect of power-law index, n, on temperature profiles h(g) in the boundary layer for both PST and PHF cases are shown
in Figs. 3a and 3b, respectively. It is observed that the temperature distribution h(g) is unity at the wall in PST case and is less
than the unity at the wall in PHF case for n P 1. However, the temperature distribution h(g) for both PST and PHF cases de-
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Table 1
Comparison of skin friction �f00(0) values with Andersson et al. [32]

n = 0.4 n = 0.6 n = 0.8 n = 1.0 n = 1.2 n = 1.5 n = 2.0

Andersson et al. [32] 1.273 1.096 1.029 1.00 0.987 0.981 0.980
Present study 1.27968 1.09838 1.02897 1.00000 0.98738 0.98058 0.98035
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creases asymptotically to zero in the boundary layer. The effect of increasing the values of power-law index n leads to thin-
ning of the thermal boundary thickness. This behavior is much noticeable in shear thinning and shear thickening fluids.

The effect of magnetic parameter Mn on the temperature profile h(g) in the boundary layer in presence/absence of var-
iable thermal conductivity parameter e for both PST and PHF cases are depicted in Figs. 4a and 4b, respectively. It is observed
that the effect of magnetic field parameter Mn is to increase the temperature profile h(g) and tends to zero as the space
variable g increases in the boundary layer. As explained above, the introduction of a transverse magnetic field to an electri-
cally conducting fluid gives rise to a resistive type of force known as Lorentz force. This force makes the fluid experience a
resistance by increasing the friction between its layers and due to which there is increase in the temperature profile h(g).
This behavior is even true in the presence of non-zero values of variable thermal conductivity parameter. The effect of var-
iable thermal conductivity parameter is to increase the temperature profile which in turn increases the thermal boundary
layer thickness for both PST and PHF cases.

Figs. 5a and 5b exhibit the temperature distribution h(g) with g for different values of heat source/sink parameter b in PST
and PHF cases, respectively. From these graphs we observe that the temperature distribution is lower throughout the bound-
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ary layer for negative values of b (heat sink) and higher for positive values of b (heat source) as compared with the temper-
ature distribution in absence of heat source/sink parameter i.e. b = 0. Physically b > 0 implies Tw > T1 i.e. the supply of heat to
the flow region from the wall. Similarity, b < 0 implies Tw < T1 i.e. the transfer of heat is from flow to the wall. The effect of
increasing the value of heat source/sink parameter b is to increase the temperature profile h(g) for both PST and PHF cases.
However, minimum temperature distribution is observed in PHF case compared to PST case.

The variations of temperature profile h(g) with g for various values of modified Prandtl number Pr are displayed in Figs. 6a
and 6b for PST and PHF cases, respectively. Both the graphs demonstrate that the increase of Prandtl number Pr results in
decrease of temperature distribution which tends to zero as the space variable g increases from the wall and hence thermal
boundary layer thickness decreases as Prandtl number Pr increases for both PST and PHF cases.

The values of �fgg(0), which signifies the local skin friction co-efficient, Cf, are recorded in Table 2 for different values of
the physical parameters n and Mn. From Table 2, we observe that �fgg(0) increases monotonically with increase in the mag-
netic field parameter Mn for various values of n. It is interesting to note that the magnitude of wall surface gradient decreases
gradually with increasing power-law index for a fixed value of magnetic parameter Mn. The effect of power-law index on
�fgg(0) is significant in shear thinning fluid (n < 1) then shear thickening fluid (n > 1). The heat transfer phenomena is usually
analyzed from the numerical values of the two physical parameters i.e. (1) wall temperature gradient �hg(0) in PST case,
which in turn helps in the computation of the local Nusselt number Nux, and (2) wall temperature h(0) in PHF case. Numer-
ical results for wall temperature gradient in PST case and wall temperature in PHF case are recorded in Tables 3 and 4,
Table 2
Values of skin friction �fgg(0) for different values of Mn and n

n Mn = 0.0 Mn = 0.5 Mn = 1.0 Mn = 1.5 Mn = 2.0

0.4 1.292 1.8151 2.28536 2.71942 3.12702
0.6 1.107 1.4649 1.77762 2.06012 2.32088
0.8 1.034 1.3086 1.54429 1.75406 1.94588
1.0 1.0 1.2249 1.41440 1.58100 1.73200
1.2 0.989 1.1752 1.33306 1.47150 1.59599
1.4 0.982 1.1441 1.27858 1.39653 1.50229
1.6 0.980 1.1207 1.23901 1.34266 1.43425
1.8 0.979 1.1047 1.20995 1.30106 1.38230
2.0 0.978 1.0926 1.18711 1.26904 1.34174

Table 3
Wall temperature gradient – hg(0) in PST Case for n = 0.4, 1.0, 1.8, e = 0, 0.1, 0.2 and b = �0.05, 0, 0.1

n e b Mn = 0.0 Mn = 1.0

Pr = 0.7 Pr = 1.0 Pr = 2.0 Pr = 5.0 Pr = 10.0 Pr = 0.7 Pr = 1.0 Pr = 2.0 Pr = 5.0 Pr = 10.0

0.4 0 �0.05 0.7539 0.934 1.4014 2.3427 3.4103 0.6329 0.7958 1.2381 2.1584 3.216
0 0.7241 0.9005 1.3596 2.284 3.3322 0.5926 0.7492 1.1821 2.0877 3.1272
0.1 0.6577 0.8262 1.2695 2.1606 3.1695 0.495 0.6336 1.0465 1.9324 2.938

0.1 �0.05 0.7036 0.8722 1.3104 2.1933 3.195 0.589 0.7408 1.1544 2.0169 3.0089
0 0.6754 0.8404 1.2708 2.1379 3.1215 0.5508 0.6964 1.1012 1.9498 2.9249
0.1 0.6123 0.7699 1.1856 2.0214 2.9678 0.4584 0.5867 0.9716 1.8024 2.7459

0.2 �0.05 0.661 0.8198 1.2332 2.0666 3.0125 0.5518 0.6942 1.0835 1.8968 2.833
0 0.6339 0.7896 1.1955 2.0142 2.9428 0.5154 0.6518 1.0325 1.833 2.7533
0.1 0.5739 0.7221 1.1143 1.9031 2.7973 0.4274 0.5465 0.9079 1.6921 2.5827

1 0 �0.05 0.8287 1.0314 1.5573 2.6001 3.7691 0.7629 0.9482 1.4586 2.5019 3.6733
0 0.8019 1.0014 1.5208 2.5494 3.7012 0.734 0.9139 1.4159 2.4466 3.6017
0.1 0.7439 0.9366 1.4439 2.4445 3.5616 0.6716 0.8389 1.3231 2.3307 3.4534

0.1 �0.05 0.7727 0.9625 1.4559 2.4346 3.5317 0.7108 0.8834 1.3612 2.3403 3.4397
0 0.7473 0.934 1.4214 2.3868 3.4679 0.6835 0.8508 1.3206 2.288 3.3722
0.1 0.6922 0.8726 1.3481 2.2878 3.3364 0.6247 0.7797 1.2322 2.1784 3.2324

0.2 �0.05 0.7251 0.904 1.3698 2.2944 3.3308 0.6668 0.8283 1.2784 2.2028 3.2419
0 0.7007 0.8768 1.337 2.2487 3.2702 0.6408 0.7973 1.2396 2.1533 3.1773
0.1 0.6482 0.8179 1.2676 2.1549 3.1453 0.5849 0.7295 1.1547 2.0491 3.0449

1.8 0 �0.05 0.9352 1.1164 1.6361 2.7354 3.968 0.914 1.0834 1.5825 2.6761 3.9121
0 0.9164 1.0927 1.6024 2.6877 3.9045 0.8951 1.0591 1.5468 2.626 3.8466
0.1 0.878 1.0437 1.5323 2.5893 3.7742 0.8564 1.009 1.4724 2.5221 3.7121

0.1 �0.05 0.8758 1.044 1.5293 2.5609 3.7181 0.8563 1.013 1.4782 2.5039 3.6643
0 0.8582 1.0214 1.4975 2.5159 3.6583 0.8387 0.9905 1.4445 2.4565 3.6026
0.1 0.8222 0.9758 1.4312 2.4232 3.5357 0.8025 0.9438 1.3741 2.3584 3.4759

0.2 �0.05 0.8256 0.9827 1.4387 2.4128 3.5058 0.8077 0.9538 1.3897 2.3576 3.4539
0 0.809 0.9616 1.4084 2.3702 3.4493 0.7911 0.9323 1.3576 2.3127 3.3956
0.1 0.7752 0.9181 1.3455 2.2822 3.3333 0.7572 0.8879 1.2907 2.2195 3.2755



Table 4
Wall temperature h(0) in PHF case for n = 0.4, 1.0, 1.8, e = 0, 0.1, 0.2 and b = �0.05, 0, 0.1

n e b Mn = 0.0 Mn = 1.0

Pr = 0.7 Pr = 1.0 Pr = 2.0 Pr = 5.0 Pr = 10.0 Pr = 0.7 Pr = 1.0 Pr = 2.0 Pr = 5.0 Pr = 10.0

0.4 0 �0.05 1.3264 1.0706 0.7136 0.4269 0.2932 1.58 1.2567 0.8077 0.4633 0.3109
0 1.3809 1.1105 0.7355 0.4378 0.3001 1.6876 1.3348 0.846 0.479 0.3198
0.1 1.5204 1.2104 0.7877 0.4628 0.3155 2.0203 1.5783 0.9555 0.5175 0.3404

0.1 �0.05 1.4642 1.1582 0.751 0.4397 0.2992 1.7883 1.3852 0.8581 0.479 0.3178
0 1.5324 1.2058 0.7756 0.4515 0.3064 1.9318 1.4836 0.9021 0.496 0.3271
0.1 1.7108 1.3269 0.8344 0.4782 0.3225 2.4007 1.8058 1.031 0.5383 0.3488

0.2 �0.05 1.6236 1.2564 0.7911 0.4532 0.3054 2.041 1.535 0.9134 0.4955 –
0 1.7098 1.3136 0.8188 0.4657 0.3129 2.235 1.6605 0.9643 0.5138 0.3346
0.1 1.9418 1.4622 0.8852 0.4945 0.3297 2.9075 2.0961 1.1184 0.5591 0.3576

1 0 �0.05 1.2067 0.9695 0.6421 0.3846 0.2653 1.3209 1.0584 0.6858 0.3997 0.2722
0 1.247 0.9986 0.6575 0.3922 0.2702 1.3755 1.0993 0.7066 0.4087 0.2776
0.1 1.3442 1.0677 0.6926 0.4091 0.2808 1.5114 1.2019 0.7565 0.429 0.2896

0.1 �0.05 1.3218 1.0416 0.6724 0.3951 0.2703 1.4626 1.1476 0.7214 0.4112 0.2775
0 1.3714 1.0758 0.6894 0.4032 0.2753 1.5311 1.1967 0.7447 0.4208 0.2831
0.1 1.4932 1.1584 0.7285 0.421 0.2863 1.7058 1.3233 0.8013 0.4425 0.2955

0.2 �0.05 1.4541 1.1223 0.7047 0.4059 0.2752 1.6281 1.2491 0.7598 0.4233 0.2828
0 1.5157 1.1628 0.7236 0.4146 0.2805 1.7149 1.3092 0.7861 0.4334 0.2889
0.1 1.6701 1.2619 0.7673 0.4334 0.292 1.9411 1.466 0.8506 0.4565 0.3016

1.8 0 �0.05 1.0693 0.8957 0.6112 0.3656 0.252 1.0772 0.9135 0.6301 0.3737 0.2556
0 1.0912 0.9152 0.6241 0.3721 0.2561 1.0987 0.9336 0.6444 0.3808 0.26
0.1 1.139 0.9581 0.6526 0.3862 0.265 1.1457 0.978 0.6763 0.3965 0.2694

0.1 �-0.05 1.1523 0.9553 0.6386 0.375 0.2565 1.1598 0.9749 0.6595 0.3837 0.2602
0 1.1778 0.9774 0.6528 0.3819 0.2607 1.1847 0.9977 0.6753 0.3912 0.2647
0.1 1.2336 1.0267 0.6848 0.3968 0.2699 1.2391 1.0486 0.7111 0.4078 0.2745

0.2 �0.05 1.2439 1.0198 0.6679 0.3849 0.2612 1.2502 1.0411 0.691 0.3941 0.265
0 1.2733 1.0451 0.6835 0.3921 0.2655 1.2787 1.0672 0.7084 0.402 0.2696
0.1 1.3373 1.1017 0.7183 0.4079 0.2749 1.3405 1.1254 0.7477 0.4196 0.2797
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respectively for different non-dimensional physical parameters n, Mn, Pr, e,b. It is observed that the effect of power-law in-
dex n is to increase the wall temperature gradient in PST case and is to decrease wall temperature in PHF case whereas re-
verse trend is seen with magnetic parameter Mn. This result has significant role in industrial applications to reduce
expenditure on power supply in stretching the sheet just by increasing the magnetic parameter Mn. Further, it is analyzed
from Table 3 that the effect of Prandtl number Pr is to decrease the wall temperature gradient in PST case and wall temper-
ature in PHF case. In addition, the effect of increasing values of heat source/sink parameter b is to decrease the wall temper-
ature gradient in PST case whereas its effect is to increase the wall temperature in PHF case. All the results obtained here are
consistent with the physical situations.

6. Conclusions

In the present study, we have investigated MHD non-Newtonian flow over a semi-infinite non-isothermal stretching
sheet with internal heat generation or absorption using Keller box method. Temperature profiles are obtained for two types
of heating processes namely, PST and PHF for various values of physical parameters.

As expected, power-law index and magnetic parameters have the effect to decrease the velocity profile and reducing the
boundary layer thickness. Also, increasing the value of power-law index, n, leads to thinning of thermal boundary layer
thickness whereas the effect of increasing magnetic field parameter is to increase temperature profile as well as increase
the thermal boundary layer thickness for both PST and PHF cases. It is noteworthy that the effect of increasing the value
of heat source/sink parameter leads to increase in the temperature profile for both the PST and PHF cases. Finally, it is con-
cluded that the thermal boundary layer thickness decreases with increase in Prandtl number for both PST and PHF cases.
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