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A B S T R A C T

This paper deals with the preparation of pure and ferric chloride (FeCl3) doped polyvinyl alcohol (PVA)

films by solution casting method. Optical and electrical properties were systematically investigated. We

have found the decrease in optical band gap energy of PVA films on doping FeCl3. The optical band gap

energy values in the present work are found to be 3.10 eV for pure PVA, 2 eV for PVA:Fe3+ (5 mol%),

1.91 eV for PVA:Fe3+(15 mol%) and 1.8 eV for PVA:Fe3+(25 mol%). Direct current electrical conductivity

(s) of pure, FeCl3 doped PVA films in the temperature range 70–127 8C has been studied. At 387 K dc

electrical conductivity of pure PVA film is 5.5795 m V�1 cm�1, PVA:Fe3+ (5 mol%) film is

10.0936 m V�1 cm�1 and g-Irradiated PVA:Fe3+ (5 mol%) film for 900 CGY/min is 22.1950 m V�1 cm�1.

�1. The result reveals the enhancement of the electrical conductivity with g-irradiation. FT-IR study

signifies the intermolecular hydrogen bonding between Fe3+ ions of FeCl3 with OH group of PVA.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Recently the organometallic polymers have attracted the
interest of technological, industrial and academic researchers in
domains ranging from chemistry to solid state-physics to
electrochemistry [1–5], due to their low specific weight and good
mechanical strength. Also the ability to tailor the electrical
properties of these materials is one of the most attractive features
and coupled with improved stability and processability relative to
the original conducting polymer systems.

In many technological applications, the observation of change
in polymer structure is very essential to tailor its physical
properties required to a particular application. The change in
polymer structure and even new performance properties can be
obtained by introducing suitable metals into a polymer chain and
by g-irradiation [6–9]. So authors have made an attempt to study
the change in polymer structure by introducing transition metal
ion Fe3+ in various mol% to polymer.

Polyvinyl alcohol (PVA) is semicrystalline, water soluble, with
low electrical conductivity polymer [10]. PVA has certain physical
properties resulting from crystal–amorphous interfacial effects
[11,12]. Its electrical properties can be tailored to a specific
requirement by the addition of suitable dopant material. Depend-
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ing on the chemical nature of the doping substances and the way in
which they interact with the host matrix, the dopant alters the
physical properties to different degrees [13–17]. Applications of
organometallic polymers include, high-temperature coatings,
biosensors, storage electrodes for batteries, fuel cells and
capacitors, electrochromics, chemical and biochemical sensors,
display materials, lasers etc.

2. Experimental

Polyvinyl alcohol and ferric chloride used in this work have
been taken from Sigma–Aldrich Company. PVA and PVA:Fe3+ films
were prepared at room temperature by solution casting method. A
known quantity of PVA was dissolved in double distilled water and
then heated gently, using a water bath to prevent thermal
decomposition of polymer. The hot solution was stirred until
the polymer is completely dissolved and forming a clear viscous
solution. This is called PVA stock solution. Also different quantities
of FeCl3 was dissolved in doubly distilled water to get the desired
concentrations (5, 15 and 25 mol%) and mixed with PVA stock
solution, stirred thoroughly with a magnetic stirrer. PVA and ferric
chloride doped PVA solution filtered to remove air bubbles trapped
in the solution while stirring and kept aside for required duration
to get proper viscosity. Known quantity of obtained solution was
poured on to a leveled clean glass plate and left to dry at room
temperature. After 48 h, the films were peeled off from the glass
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Fig. 2. Transmittance spectra of pure PVA and PVA:Fe3+ (5, 15 and 25 mol%) films.
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plate and kept in vacuum desiccator [18]. The peeled film was cut
into pieces suitable for measurements.

The samples were irradiated for different dosages of g-rays
using 60C0 (T1/2 = 5.26 years) at room temperature.

A JASCO FT/IR-410 spectrophotometer was used for recording
the IR spectra of pure PVA and PVA:Fe3+ (20 mol%) films at room
temperature in the region 500–4000 cm�1. The spectra exhibit
bands, characteristic of stretching and bending vibrations of O–H,
C–H, C–C and C–O groups.

The optical studies of the pure PVA and PVA:Fe3+ films have
been analyzed using Ocean optics Spectrophotometer, Model No. USB

2000, USA. The transmittance spectra in the region 300–800 nm has
been collected and optical parameters a, and Eg have been
evaluated.

The dc electrical conductivity (s) of pure PVA, and Fe3+ doped
PVA films with and without g-irradiation has been studied in the
70–127 8C using four point probe technique [19]. The conductivity
of the films has been measured by taking current values as a
function of temperature using a constant voltage source.

3. Results and discussion

3.1. FT-IR spectra

Fig. 1a shows the FT-IR spectrum of pure PVA film. It exhibits
several bands characteristic of stretching and bending vibrations of
O–H, C–H, C C and C–O groups. Using FT-IR spectra a strong broad
band at 3628 cm�1 is assigned to O–H stretching frequency,
indicates the presence of hydroxyl groups [20,21]. The band
observed at 1744 cm�1 corresponding to C C stretching vibration
[22] and 1468 cm�1 corresponds to an acetyl group and can be
Fig. 1. FT-IR spectra (a) pure PVA and (b) PVA:Fe3+ (20 mol%) films.
explained on the basis of intermolecular hydrogen bonding with
the adjacent OH group. The sharp band at 1134 cm�1 corresponds
to C–O stretching of acetyl group present on the PVA back bone.
Fig. 1b shows the FT-IR spectrum of PVA:Fe3+ (20 mol%) film
exhibits bands, whose vibrational frequencies and band assign-
ments are found to be similar to several bands observed for
undoped PVA. However O–H stretching frequency observed at
3628 cm�1 for pure PVA shows the appreciable shift towards low
frequency region on doping of Fe3+ ions and positioned at
3608 cm�1. This shift indicates the considerable interaction
between O–H group of PVA and Fe3+ ion of FeCl3.

3.2. Optical studies

Transmittance versus wavelength for PVA and PVA:Fe3+ (5, 15,
and 25 mol%) recorded at room temperature is shown in Fig. 2. It is
evident from Fig. 2 that pure PVA has highest transmission and
decreases with increase in Fe3+concentration. This is due to the
formation of intermolecular hydrogen bonding between Fe3+ ions
with the adjacent OH groups justified by FT-IR spectra (Fig. 2).
Increase in FeCl3 concentration, increases the intermolecular
hydrogen bonding resulting in increase of absorption and decrease
of transmission. This is in accordance with the Beer’s law, i.e. the
absorption is proportional to the number of absorbing molecules.
The decrease in transmission of doped PVA reflects the variation in
the energy band gap, which arises due to the change in polymer
structure. From the transmittance spectra, the absorption co-
efficient a has been determined using the formula [23]
a = d�1 ln(1/T) where‘d’ is the thickness of the film and T is the
percentage of transmittance. The optical band gap energy for an
indirect transition has been determined using the relation [24]
Eopt = hy � (ahy/b)1/2 where b is a constant. The plot of (ahy)1/2

versus the photon energy hy at room temperature for pure PVA and
for PVA:Fe3+ (5, 15 and 25 mol%) is as shown in Fig. 3a and b
respectively. These figures show linear behavior, which can be
considered as evidence for indirect allowed transition. The optical
band gap energies (Eopt) have been evaluated by extrapolating the
linear region of the curve to a point (ahy)1/2 = 0. Here the
transitions between the valence and conduction bands are
assumed to be allowed indirect transitions. The variation of
optical band gap energy (Eopt) with dopant concentration is shown
in Fig. 4. From Fig. 4, it is evident that the optical band gap energy
goes on decreasing with the increase in dopant concentration. This
indicates that increase in Fe3+ concentration makes PVA film more
semiconducting. From the above result the variation of optical



Fig. 3. A plot between (ahy)1/2 and hy for (a) pure PVA films (b) PVA:Fe3+ (5, 15 and

25 mol%) films.

Fig. 4. Variation of the optical band gap energy of pure and FeCl3 doped PVA films.

Fig. 5. Variation of electrical conductivity of pure PVA, unirradiated and g-irradiated

PVA:Fe3+ (5 mol%) films.
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band gap energy (Eopt) may be explained by invoking the
occurrence of local crosslinking within the amorphous phase of
the polymer, results in the degree of ordering in these parts [25].
Interaction of Fe3+ with �OH group of PVA and forming metal–
polymer complex in the form of intermolecular hydrogen bonding
is confirmed by FT-IR study. These interactions and hence the
complex formation causes change of polymer structure. The
change of polymer structure increase with dopant concentration,
which is reflected in the form of decrease in the optical band gap
energy (Eopt) is shown in Fig. 4.

3.3. Electrical conductivity

The doping, temperature and g-irradiation dependence of dc
electrical conductivity (s) have been studied for the pure PVA, Fe3+

doped PVA and g-irradiated for the dosages 300, 600 and 900 CGY/
min films. The variations of log s versus 1/T for all the films were
studied. It has been observed that dc conductivity increases with
increase in dopant concentration, temperature and g-irradiation.
Fig. 5 represents the plot of log s versus 1/T for pure PVA, Fe3+

(5 mol%) doped PVA and subjected to 300, 600 and 900 CGY/min g-
irradiation.

The electrical conductivity (s) for pure PVA films is less than
that of the Fe3+ ion doped PVA films. The electrical conductivity (s)
increases with dopant concentration. The induced conductivity in
Fe3+ doped PVA is shown to be dose dependent and can be
attributed to the creation of induced charge carriers in the PVA
matrix as shown in Fig. 5. This is because of the Fe3+ ions
coordinated through ionic bonds with hydroxyl group belonging to
the different chains in PVA [26]. Addition of dopant results in the
reduction of the intermolecular interaction between the PVA
molecules or the addition of Fe3+ increases the volume required for
ionic carriers to drift in the polymer matrix. This enhances the ionic
mobility and hence increases the conductivity. Ionic clusters will
be formed if the dopants are not distributed homogeneously.
Appreciable ionic conductivity is observed only when a critical
volume fraction of the ionic conducting clusters is reached, and
material actually undergoes an insulator to conducting transition.
As the volume fraction of the dopant increases, there is initially
very little change in the polymer resistance. At this point the highly
conductive clusters are well separated and do not form continuous
path through the polymer. At this stage the resistance of the doped
polymer is controlled by the poorer conducting phase. At a critical
volume fraction of the dopant, the highly conductive phase forms a
continuous path across the polymer, and gradual decrease in
resistance occurs.
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Doped PVA films showed higher conductivity than undoped
films and increases with film temperature. This can be observed in
Fig. 5. Conductivity (s) has increased with raise in temperature this
may be considered as due to the liberation of electrons or ions
through the amorphous region of PVA and also probably the
internal stress in the doped PVA. The temperature dependence of
electrical conductivity (s) of pure and Fe3+ doped PVA films are
shown in Fig. 5. The result obtained in the present work is of the
same order reported in the literature [27].

The electrical conductivity for pure PVA films, doped PVA films
is less than that of the g-irradiated films. This can be observed in
Fig. 5. The dependence of dc conductivity on the g-dose might be
explained as follows: at the beginning, the conductivity is due to
the presence of dopants, the g-dose would result in an increase in
the number of charge carriers created. This can be explained on the
basis that, irradiation of polymer is to rupture the ionic bonds and
release of ions, electrons and free radicals which are able to
migrate through the network resulting in change in electrical
conductivity. This process will continue to take place as g-dose
increases until we approach a situation at which most of the
possible charge carriers are already created.

In fact at high temperature, reaching this saturation limit is very
difficult because of the existence of more complicated conduction
mechanism. At high temperature the conductivity is due to the
liberation of electrons or ions through the amorphous region of
PVA and also probably the internal stress in the doped PVA [28,29].
In addition to this, since irradiation was carried out in air and, the
obtained gaseous ions around the films might have been produced
on the surface of the film [30]. From the graph it is evident that, the
increase in conductivity due to the dopant, temperature and g-
irradiation depicts semiconducting nature of PVA.

4. Conclusions

1. The FT-IR study shows the interaction of Fe3+ ions of FeCl3 with
O–H groups of PVA and forms metal–polymer complex via
intermolecular hydrogen bonding.

2. Pure PVA has answered for optical band gap energy (Eop-

t) = 3.10 eV. The optical band gap energy (Eopt) for the doped PVA
films decreases with increase in Fe3+ content.

3. Dopant generally increases the electrical conductivity. This is
due to the Fe3+ ions coordinated through ionic bonds with
hydroxyl group belonging to different chains in PVA. This
reduces the intermolecular interaction between PVA molecules
or the addition of Fe3+ increases the volume required for ionic
carriers to drift in the polymer matrix

4. Irradiation of polymers also increases the electrical conductiv-
ity. This is due to rupture of ionic bonds by irradiation, resulting
in release of ions, electrons and free radicals which are able to
migrate through the network resulting in an increase in the
electrical conductivity.

5. The change of polymer structure increases with dopant
concentration, which is reflected in the form of decrease in
the optical band gap energy and increase in electrical
conductivity. g-Irradiation enhances the electrical conductivity
(s) further.
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