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Commercial bipolar junction transistor (2N 2219A, npn) irradiated with 150 MeV Cu11+-ions with fluence
of the order 1012 ions cm�2, is studied for radiation induced gain degradation and deep level defects. I–V
measurements are made to study the gain degradation as a function of ion fluence. The properties such as
activation energy, trap concentration and capture cross-section of deep levels are studied by deep level
transient spectroscopy (DLTS). Minority carrier trap levels with energies ranging from EC � 0.164 eV to
EC � 0.695 eV are observed in the base–collector junction of the transistor. Majority carrier trap levels
are also observed with energies ranging from EV + 0.203 eV to EV + 0.526 eV. The irradiated transistor is
subjected to isothermal and isochronal annealing. The defects are seen to anneal above 350 �C. The
defects generated in the base region of the transistor by displacement damage appear to be responsible
for transistor gain degradation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Bipolar junction transistors (BJTs) are still being extensively
used in space and other radiation rich environments. These devices
are sensitive to high energy particle irradiation. Considerable
amount of data are available on the radiation effects of c-rays, fast
neutrons, electrons and protons on semiconductor devices [1–5].
However, there appears to be rather little work on heavy ion in-
duced effects and consequent characterization of defects by DLTS
technique. Deep level defect monitoring plays an important role
in designing a semiconductor device suitably for various applica-
tions. Thus a study of radiation induced effects in semiconductor
devices is important to observe changes in electrical characteristics
and to get basic information regarding the generation and annihi-
lation of defects.

Exposure of semiconductor devices to high energy particle radi-
ation is known to generate variety of defects. The nature of these
defects generated by irradiation process depends on the properties
ll rights reserved.
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. Damle).
of target as well as impinging high energy particle. To investigate
these deep level defects several techniques are in practice. Deep le-
vel transient spectroscopy (DLTS) is now an established technique
for detecting and characterizing variety of defects in semiconduc-
tor devices. DLTS is a high frequency capacitance transient thermal
scanning method useful in observing a wide variety of traps in
semiconductor devices [6].

The BJT used in the present study has been thoroughly studied
in our earlier work for 24 MeV protons, 8 MeV electrons and 60Co
c-rays induced effects [7–9]. A DLTS study of deep level defects
in Li-ion irradiated transistor (chosen from the same batch) is also
reported earlier [10].
2. Experimental details

Commercial BJT (2N 2219A, npn) manufactured in an indige-
nous technology from Continental Device India Ltd. (CDIL) has
been selected for the present study. This device is a switching tran-
sistor with standard configuration (base thickness is 2.0 lm and
oxide thickness is 1.2 lm) suitable for low and high frequency
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Fig. 2. Variation of IB with VBE for three different ion fluences (at constant VCE = 5 V).
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Fig. 3. Variation of IC with VBE for three different ion fluences (at constant VCE = 5 V).
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operation. Decapped transistor is exposed to 150 MeV Cu11+-ions
using 15 UD 16 MV pelletron Tandem Van de Graff accelerator
facility at Inter-University Accelerator Centre, New Delhi. The tran-
sistor in the biased condition (CE mode) is irradiated by Cu11+-ions
with three different fluences 3 � 1011 ions cm�2,
1 � 1012 ions cm�2 and 1 � 1013 ions cm�2. During irradiation, the
target chamber is maintained at room temperature (300 K) and
low pressure (7.5 � 10�9 Torr). The ion fluences are calculated by
measuring the ion beam current and irradiation time. The ion
beam current is fixed at �1 particle nano ampere (pnA). Output
characteristics of the transistor are studied at a constant base cur-
rent (IB) of 50 lA. The collector voltage (VCE) is varied from �0.1 V
to 1.5 V in steps of 0.01 V. Gummel plots are acquired by varying
base emitter voltage (VBE) from 0 V to 0.7 V in steps of 0.01 V at
constant collector voltage (VCE) of 5 V.

DLTS spectra are recorded for both unirradiated transistor and
three different transistors of the same batch (date code) exposed
to Cu11+-ion for different fluences. The DLTS system (IMS-2000,
M/s. Lab Equip, India) employed for the present study consists of
a boxcar averager, a pulse generator, a thousand point digitizer, a
voltage generator and a high speed capacitance meter. The pulse
generator is capable of generating pulses of widths ranging from
100 ns to 10 s. The pulse height could be programmed from –
12 V to +12 V. The boxcar averager is capable of generating seven
rate windows. The time constants can be varied from 1 ms to 2 s.
In the present study, DLTS spectra are recorded with a reverse bias
of 5 V and pulse width of 19.2 ms applied to base–collector junc-
tion. The trap concentration, activation energy and capture cross-
section of different deep levels are determined by DLTS spectra.

The transistors are subjected to isothermal and isochronal
(30 min) annealing. The annealing temperature in the furnace
can be maintained constant for several hours with an accuracy of
1 �C. During isochronal (30 min) annealing, the temperature is var-
ied from 100 �C to 500 �C. During isothermal (100 �C) annealing,
the annealing time is varied from 30 min to 480 min. DLTS spectra
are recorded at different stages of thermal annealing and the char-
acteristics of several deep level defects are monitored.

3. Results and discussion

3.1. I–V measurements

In general, any disturbance of lattice periodicity in the bulk of
the semiconductor may give rise to energy levels in the band
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Fig. 1. Collector characteristics of Cu-ion irradiated transistor for three different ion
fluences (at constant IB = 50 lA).
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Fig. 4. Collector characteristics of the Cu-ion irradiated transistor at different
isochronal annealing temperatures (at constant IB = 50 lA).
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Fig. 5. Variation of IB with VBE at different isochronal annealing temperatures (at
constant VCE = 5 V).
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Fig. 7. C–V characteristics of the Cu-ion irradiated transistor for three different
fluences.
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gap. Radiation induced defects may have such energy levels with
them and these defects can have a major impact on the electrical
characteristics of the transistor [11]. Fig. 1 exhibits the collector
characteristics of the Cu-ion irradiated transistor for three different
fluences. This plot indicates that the collector current decreases
with an increase in the ion fluence. Figs. 2 and 3 exhibit Gummel
plots (variation of base current IB, collector current IC with base
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annealing temperatures.
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voltage VBE) before and after irradiation. It is observed that the base
current increases with ion fluence. However, the collector current
decreases as the ion fluence increases. This increase in base current
and decrease in collector current upon irradiation could be attrib-
uted to the increased recombination of charge carriers in the base–
collector junction of the transistor.

One important aspect of characterization of BJTs for radiation
induced effects is radiation induced gain degradation. The BJTs
are found to be particularly vulnerable to ionizing radiation and
the transistor gain degradation is the primary cause for parametric
shifts and functional failures. The degradation of forward current
gain of BJT when exposed to radiation is dependent largely on nat-
ure and energy of radiation and to some extent on the dose rate. It
is well known that the degradation of the transistor can occur due
to increased recombination in the base region due to displacement
damage caused upon irradiation. The increased recombination in
the neutral base leads to an increase in the base current which in
turn results in a decrease in the collector current. When recombi-
nation centers are generated in the base region of the transistor, it
leads to an increase in the base current by decreasing the minority
carrier lifetime [12]. A decrease in the minority carrier lifetime will
be reflected in the degradation of forward current gain of the
transistor.

Fig. 4 shows the collector characteristics of the transistor irradi-
ated with 1 � 1012 ions cm�2 at different isochronal (30 min)
annealing temperatures. The isochronal annealing clearly shows
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that there is a major recovery in the collector current above
400 �C. Figs. 5 and 6 exhibit the variation of IB and IC as a function
of VBE at different isochronal (30 min) annealing temperatures. It is
found that while collector current increases, the base current de-
creases with an increase in annealing temperature.

3.2. C–V measurements

Fig. 7 shows the capacitance–voltage (C–V) characteristics of
the base–collector junction of the transistor before and after irradi-
ation. The plot shows that there is a considerable degradation in
the C–V characteristics of the transistor after irradiation. This
would indicate that there is a partial loss of charge carriers in the
base–collector junction of the transistor upon irradiation. This loss
could be attributed to an increased recombination in the base–col-
lector junction of the irradiated transistor. Fig. 8 shows the C–V
characteristics of the base–collector junction of the transistor irra-
diated with 1 � 1012 ions cm�2 at different isochronal (30 min)
annealing temperatures. The C–V characteristics appear to improve
after 350 �C temperature.

3.3. DLTS measurements

In principle, irradiation by any ion can damage transistors
through both ionization and displacement. Displacement damage
is a bulk phenomenon which results in the generation of several
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time as a function of isochronal annealing temperature.
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types of defects such as vacancy, interstitial, di-vacancy, Frenkel
pair, vacancy–impurity complexes namely A-center (V–O), E-cen-
ter (V–P), interstitial clusters and di-interstitial or higher order
complexes called D-center [11].

The deep level defects generated by irradiation of transistors by
Cu-ions are characterized using DLTS technique. Fig. 9 exhibits the
DLTS spectra of Cu-ion irradiated transistor for three different ion
fluences. Fig. 10 exhibits the Arrhenius plots of deep level defects
for three different ion fluences. Three minority carrier and one
majority carrier deep level defects are observed in the DLTS spectra
of the Cu-ion irradiated transistor with fluence of
3 � 1011 ions cm�2. For the ion fluences 1 � 1012 and
1 � 1013 ions cm�2, three minority carrier and two majority carrier
defect levels are observed. The trap concentration, capture cross-
section and introduction rate of all the deep level defects are calcu-
lated from the DLTS spectra and presented in Table 1.

Recombination of electron–hole pairs at the defect levels gener-
ated upon displacement damage is the most important physical
phenomenon responsible for the gain degradation. Mainly four
kinds of recombination processes are observed in semiconductor
devices: (i) Shockley Read Hall (SRH) or multi-phonon recombina-
tion; (ii) radiative recombination; (iii) Auger recombination and
(iv) non-radiative recombination. Radiative recombination is
important in direct band gap semiconductors like GaAs. Auger
recombination is observed in either direct or indirect band gap
semiconductors when the carrier concentration is high. Further,
the radiative, non-radiative and Auger recombination lifetimes
are independent of trap concentration [13]. SRH recombination is
particularly important in indirect band gap semiconductors such
as Si [13–17]. The values of SRH recombination lifetimes calculated
using DLTS data are tabulated in Table 1.

The transistor irradiated with fluence 1 � 1012 ions cm�2 is sub-
jected to both isothermal and isochronal annealing and the charac-
teristics of each defect are monitored by recording DLTS spectra.
However, no significant changes are observed in the DLTS spectra
as a function of annealing time at a given constant temperature
(isothermal annealing). After isochronal annealing, significant
changes are observed in the DLTS spectra. The total defect concen-
tration decreases and the effective recombination life time in-
creases with an increase in isochronal (30 min) annealing
temperature as shown in Fig. 11. Fig. 12 exhibits the variation of
concentration of different deep level defects as a function of iso-
chronal (30 min) annealing temperature. The annealing behavior
of different deep level defects in silicon has been studied by several
Table 1
Data obtained from DLTS analysis of the Cu-ion irradiated transistor

Ion fluence
(ions cm�2)

Defect
label

Activation energy
(eV)

Trap
concentration
(cm�3)

Capture cross-section
(7 � 10�18 cm2)

Introduction
rate g (cm�1)

Recombination
life time (s)

Identified
defect type

Literature comparison

Defect
position

Reference

3 � 1011 ES31 EC � 0.228 ± 0.018 4.5 � 1012 2.3 � 10�15 15.1 1.3 � 10�05 Di-vacancy EC � 0.23 [21]
ES32 EC � 0.369 ± 0.019 2.0 � 1013 1.1 � 10�15 65.8 4.8 � 10�06 (Ci–Oi) EC � 0.36 [21]
HS31 EV + 0.504 ± 0.044 9.3 � 1012 9.8 � 10�15 31.0 1.1 � 10�06 I-cluster EV + 0.50 [25]
ES33 EC � 0.682 ± 0.030 2.2 � 1012 8.8 � 10�14 7.3 4.4 � 10�07 Cluster – –

1 � 1012 ES41 EC � 0.188 ± 0.031 1.6 � 1013 4.6 � 10�15 15.9 2.0 � 10�06 A-center EC � 0.18 [26]
HS41 EV + 0.302 ±0.018 1.8 � 1013 4.2 � 10�16 17.6 1.6 � 10�05 (V–O–B) EV + 0.30 [27]
ES42 EC � 0.340 ± 0.020 5.8 � 1013 2.8 � 10�16 57.8 6.5 � 10�06 M-center EC � 0.33 [28]
HS42 EV + 0.526 ± 0.029 3.1 � 1012 1.3 � 10�15 3.1 2.2 � 10�05 I-cluster EV + 0.50 [25]
ES43 EC � 0.695 ± 0.017 4.9 � 1012 2.7 � 10�14 4.9 6.4 � 10�07 Cluster – –

1 � 1013 ES21 EC � 0.164 ± 0.030 1.6 � 1013 8.5 � 10�16 1.6 1.2 � 10�05 A-center EC � 0.17 [25]
HS21 EV + 0.203 ± 0.026 1.0 � 1014 9.0 � 10�15 10.1 1.6 � 10�07 Di-vacancy EV + 0.21 [25]
ES22 EC � 0.276 ± 0.023 2.4 � 1012 3.6 � 10�17 0.2 1.6 � 10�03 (Bi–Oi) EC � 0.27 [27]
HS22 EV + 0.383 ± 0.071 1.7 � 1013 3.0 � 10�16 1.7 2.0 � 10�05 K-center EV + 0.38 [27]
ES23 EC � 0.636 ± 0.030 3.0 � 1014 9.0 � 10�15 30.4 3.2 � 10�08 Cluster – –
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groups and documented well in the literature [18–24]. The identi-
fication of the defect type is made on the basis of their finger prints
such as activation energy, annealing temperature and capture cross
section. Table 1 shows the assignment of defect types with activa-
tion energy and the comparison with the reported values in the lit-
erature. The error margins in the activation energy and capture
cross-section are also shown.

The defect levels EC � 0.682, EC � 0.695 and EC � 0.636 anneal at
500 �C. By comparing the measured properties of these levels with
those reported in the literature, these levels could be attributed to
new energy levels of defect clusters in silicon.

A comparison of I–V characteristics (Figs. 4–6), C–V characteris-
tics (Fig. 8) and DLTS results (Figs. 11 and 12) before and after
annealing suggests that the defects which annihilate in the tem-
perature range 350 �C to 500 �C have a major contribution to the
change in the base and collector currents and hence degradation
of the forward current gain of the transistor.

One other important observation in the present investigation is
that the nature of the defects varies with increasing radiation dose.
The different type of defects that appear after irradiation with dif-
ferent fluence is not only interesting but is rather unusual. Similar
variations have been observed in our earlier studies and are also
reported earlier by others [29]. On the contrary, it is well reported
in the literature that A-center (O–V) is the first defect that appears
in most Si structures after irradiation [30,31]. In the present study,
we have not observed A-center for a fluence of 3 � 1011 ions cm�2.
However, for higher fluences, this defect type appears in the DLTS
spectra. One possible reason for this observation is that irradiation
at higher fluence may result in saturation of defects and defect
reordering which occurs due to the interaction between the exist-
ing defects and newly formed defects. The nature of defect could
also change due to concentration of species. For example, either va-
cancy combination or di-vacancy combination might be favored
depending upon the concentration of combining species. A gradual
variation in the particle fluence and subsequent monitoring of de-
fect levels would be useful in the identification and assignment of
defect types.

DLTS monitors the thermally activated emissions, unlike in
optical spectroscopy. Hence, the assignment of DLTS peaks to exact
nature and type of defects could be difficult. To identify the exact
microscopic structure of these defect levels, investigation by other
structure sensitive techniques such as electron paramagnetic reso-
nance (EPR) and infrared photoconductivity measurements would
be required.

4. Conclusions

Commercial bipolar junction transistor (2N 2219A, npn) under-
goes gain degradation upon irradiation by Cu11+-ions. The gain
degradation can be attributed to displacement damage in the base
region of the transistor. Deep level defects generated in the collec-
tor–base junction of the transistor are identified as electron traps
with activation energies ranging from EC � 0.164 eV to
EC � 0.695 eV and hole traps with activation energies from
EV + 0.203 eV to EV + 0.526 eV. DLTS studies made after annealing
show that most of the defects anneal out above a temperature of
350 �C. The defects generated in the base region of the transistor
by displacement damage appear to be responsible for an increase
in base current through SRH or multi-phonon recombination and
consequent transistor gain degradation.
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