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Abstract

Non-linear Oberbeck-electroconvection (OBEC) in a poorly electrically conducting fluid through a vertical channel, when the walls are held
at different temperatures with temperature difference perpendicular to gravity, is studied using the modified Navier stokes equation in the
presence of both induced and an applied electric field. Both analytical and numerical solutions for the non-linear coupled equations governing
the motion are obtained and found that analytical solutions agree well with numerical solutions for values of the buoyancy parameter N < 1.
It is shown that OBEC can be controlled by maintaining the temperature difference either in the same direction or opposing the potential
difference with a suitable value of electric number W. The effect of W on velocity, temperature, rate of heat transfer, skin friction and mass
flow rate are computed and the results are depicted graphically. We found that analytical results agree well with numerical results for small
values of N. We also found that an increase in W accelerates the flow and hence increases linearly the skin friction and mass flow rate.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Oberbeck-electroconvection; Poorly conducting fluid; Electric field; Perturbation technique; Skin friction

1. Introduction

Swift developments in the field of materials science will bring
about radical changes in the design of products and their use in
modern technologies such as communication and information
technology, aviation, automobiles, transportation, production
engineering, environmental and nuclear sciences, space and de-
fense, microelectromechanical systems, infrastructure, health
and so on. Each of these sectors needs materials which min-
imize the weight and vibrations and maximize the efficiency.
Such materials are changing the way a product is being de-
signed today. It is believed (see [1]) that such suitable materi-
als are smart materials of nanostructure. These along with in-
formation technology, biotechnology and cognition technology
will improve human performance. At present such smart ma-
terials are manufactured using piezoelectric materials. These
piezoelectric materials are known to be ideal for ultrasonic ap-
plications because of their high frequency response but they
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may not be of much use for problems involving poorly con-
ducting fluids such as those encountered in biomedical and
bioengineering applications because they involve fluids having
poor electrical conductivity. Further, for high specific strength
the piezoelectric materials exhibit anisotropy and inhomo-
geneity leading to mathematical complications. Recently, Ng
and Rudraiah [2] have shown that these complications can be
overcome using smart materials made up of poorly conduct-
ing alloys like Nickel–Titanium (Ni–Ti), Aluminum–Nickel
(Al–Ni) alloys and so on, as an alternate to piezoelectric
smart material. The work of Ng and Rudraiah [2] has been
mainly concerned with electroconvection that appears due to
solidification of poorly conducting alloys in a horizontal layer
cooling form below in the presence of both induced ( �Ei) and
applied ( �Ea) electric fields. The variation of � with tempera-
ture arising due to solidification of poorly conducting alloys by
cooling from one side and heating from the other side, releases
the free charges resulting in induced electric field, known as
thermal electric field �Ei (see [3–5]). In addition, there may be
an applied electric field, �Ea, due to the embedded electrodes
of different potentials at the boundaries. The total electric
field �E(= �Ei + �Ea), not only produces a current which acts as
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Nomenclature

�E = �Ex, �Ey electric field along x- and y-axis
�g gravitational acceleration
�J current density

K thermal conductivity
N buoyancy parameter
�q (u(y), 0, 0) velocity of the fluid
T1 wall temperature at y = 1
T2 wall temperature at y = −1
T0 temperature of the ambient fluid
q ′ rate of heat transfer
b characteristic length along the flow

direction
We electric number
Re thermal electric number
�T temperature gradient
Nu nusselt number
mE mass flow rate

Greek symbols

� dimensionless temperature
�T volumetric expansion for density
� kinematic viscosity
� density of the fluid
�e density of electric charge distribution
� electrical conductivity
� shearing stress
� electric potential
	b coefficient of volumetric expansion for

conductivity

 viscosity of fluid

�0 electric permittivity
� viscous dissipation

Appendix

a1 (W3 − 	2W1)/	4 for case 1
a1 (W3 − 	2W2)/	4 for case 2
c1 [Sinh 	(RE − W2) + 	2]/	2

c2 [Cosh 	(RE + W2)]/	2

c3 (6a1	4 Sinh 	 + c1	4 − 6RE Sinh 	)/6	4

c4 (c2	4 − 2a1	4 Cosh 	 − 2RE Cosh 	)/2	4

a2 (c1c3 − c2
2)/12

a3 (2RE − 	2c2
3)/2	2

a4 (−4a1c1 − 2a1c2	)/	2

a5 (−6a1c1 − 4a1c2	 + 2a1c3	2)/	3

a6 (−4REc1 + 2REc2	)/	6

a7 (6REc1 − 4REc2	 − 2REc3	2)/	7

a8 (4a1c1 − a4	2)/	4

a9 (6a1c1 − 2a4	2 − a5	3)/	5

a10 (4REc1 − a6	6)/	8

a11 (−6REc1 + 2a6	6 − a7	7)/	9

a12 (2a1c1 − a8	4)/	3

a13 (−2REc1 + a10	8)/	7

a14 a8 − a9	
a15 a10 + a11	
a16 −2a1c1 − a4	2/	
a17 2REc1 + a6	6/	5

a18 −a5	 + a4
a19 a7	 + a6

sensing, and a force �e
�E, which acts as actuator, which are the

two properties needed for a material to be a smart material. This
force arising in the process of solidifying a poorly conducting
alloy, also produces the non-linear Oberbeck-electroconvection
(OBEC) instantaneously, due to generation of vortices, by
applying a temperature difference perpendicular to gravity. In
addition to applications cited above, many geophysical phe-
nomena (see [6]), for example transition between ionosphere
and the atmosphere of the earth is a region where electrical
forces can dominate in driving the fluid, involve OBEC. This
OBEC produces dendrites known as mushy layer, a mixture
of solid and fluid, which are considered as impurities in the
manufacture of smart materials. Reduction of impurity, arising
due to OBEC, requires a mechanism to control OBEC, if not
to completely avoid it. This aspect has not been given much
attention in the literature in spite of its importance in many
problems cited above and the study of it is the main objective
of this paper. We try to show that by applying a suitable value
of electric potential difference either in a direction opposing
or in the same direction of temperature difference it is possi-
ble to control OBEC. This requires the nature of velocity and

temperature distributions which are obtained both analytically
and numerically in this paper.

To achieve the objective of this paper it is planned as follows.
The mathematical formulation and the basic equations and the
relevant boundary conditions are given in Section 2. The elec-
tric potential is obtained in Section 3. The analytical and nu-
merical solutions for velocity and temperature are obtained, in
Sections 4 and 5, respectively, when the applied potential differ-
ence is either in the same direction or opposing the temperature
difference. We note that (see [4,5]) fluids of very low electrical
conductivity like Nickel–Titanium (Ni–Ti), Aluminum–Nickel
(Al–Ni) alloys, Salt water and so on in the presence of elec-
tric field, known as electrohydrodynamics (EHD), permit EHD
boundary layer flow separation (see Rudraiah et al. [7]). A con-
siderable amount of research has been devoted to the control
of flow separation in ordinary or electrically conducting fluid
because it is considered as an undesirable feature, but much
attention has not been given to flow separation in EHD. Ordi-
narily, techniques like suction or injection, blowing and wall
movements are used for the control of separation, whereas
in EHD considered in this paper an electric field is used to
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control flow separation. In this direction the skin friction, the
mass flow rate and the rate of heat transfer are useful to un-
derstand the control of separation. With this objective, they are
discussed in Section 6. These are numerically evaluated and the
results obtained from both numerical and analytical methods
are compared graphically in the final section and some impor-
tant conclusions are drawn.

2. Mathematical formulation

The physical configuration considered in this paper is shown
in Fig. 1. It consists of an infinite vertical channel bounded
on both sides by the rigid isothermal plates embedded with
electrodes located at y = ±b with x-axis in the axial direction
and y-axis perpendicular to the plates. In this paper following
Rajgopal et al. (see [8]), we consider Oberbeck–Boussinesq,
homogeneous, poorly conducting fluid, together with EHD
approximations (see Rudraiah et al. [9]), that is � is very
small and hence induced magnetic field is negligible and
there is no applied magnetic field. Then the required basic
equations for steady flow are the conservation of mass for an
Oberbeck–Boussinesq fluid:

∇.�q = 0, (2.1a)

� = �0[1 − �T (T − T0)]. (2.1b)

The Navier–Stokes equations are, modified in the sense of ad-
dition of electric force �e

�E in the momentum equation.

(�q.∇)�q = −∇p

�0
+ ∇2 �q + ��g

�0
+ �e

�E
�0

. (2.2)

The energy equation with the addition of ohmic and viscous
dissipation is

(�q.∇)T = �∇2T + �

�cp

+ J 2

�(�cp)
(2.3)

together with the conservation of charges

��e

�t
+ (�q.∇)�e + ∇. �J = 0 (2.4)

and the Maxwell equations for a poorly conducting fluid

∇. �E = �e

�0
, (2.5a)

�E = −∇�, (2.5b)

�J = � �E, (2.5c)

� = �0[1 + 	b(T − T0)]. (2.5d)

In addition to EHD and Oberbeck–Boussinesq approxima-
tions, we assume the flow is fully developed and unidirectional
in the x-direction, so that the velocity and temperature will be
a function of y only. Under these approximations, (2.2)–(2.5),
after making them dimensionless using the scales b for length,
�0V/b2 for density of charges, V for potential, V/b for elec-
tric field, �0 for conductivity, g�b2(T1 − T0)/ for velocity,

Fig. 1. Physical configuration.

�T = T1 − T0 for temperature with � = (T − T0)/�T , it takes
the form

d2u

dy2 + � + We�eEx = 0, (2.6)

d2�

dy2 + N

(
du

dy

)2

+ Re�| �E|2 = 0, (2.7)

�(∇2�) + ∇�.∇� = 0, (2.8)

� = 1 + 	�	 = 	b�T , (2.9)

where We = �0V
2/�0g��T b3 is the electric number, N =

�0g
2�2(T1 − T0)b

4/K the buoyancy parameter and Re =
�0V

2/K�T is the thermal electric number.
The required boundary conditions, shown in Fig. 1, to solve

the above Eqs. (2.6)–(2.9) after making them dimensionless are

u = 0 at y = ±1, (2.10a)

� = 1 at y = 1, (2.10b)

� = −1 at y = −1. (2.10c)

The solutions of these equations are determined in the subse-
quent sections both analytically and numerically, using these
boundary conditions.

3. Solution for �

The solution for � , according to (2.8) depends on � which
in turn depends on the temperature � as in (2.9). In a poorly
conducting fluid (i.e., �>1), the dissipations in (2.7) are negli-
gible and hence � will depend on the conduction temperature,
�b, satisfying

d2�b

dy2 = 0. (3.1)

The solution of this satisfying the boundary conditions

�b = 1 at y = 1 and �b = −1 at y = −1 (3.2)

is �b = y. (3.3)
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Then (2.9) becomes

� = 1 + 	y ≈ e	y (	>1). (3.4)

Then (2.8) using (3.4) becomes

�2�

�x2 + �2�

�y2 + 	
��

�y
= 0. (3.5)

To find the solution of (3.5), we considered the following two
cases:

Case 1. The potential difference applied opposite to the tem-
perature difference: In this case the boundary conditions as
shown in Fig. 1, making them dimensionless, are

� = x at y = −1 and � = x − x0 at y = 1. (3.6)

The solution of (3.5), satisfying (3.6), is

� = x − x0

2 Sinh 	
(e	 − e−	y). (3.7)

From Eqs. (2.5a)–(2.5d), after making dimensionless using the
quantities defined earlier and using (3.7), we get

�e = ∇. �E = −∇2� = −	2x0e−	y

2 Sinh 	
,

Ex = −1, Ey = 	x0e−	y

2 Sinh 	
. (3.8)

Also �eEx = 	2x0e−	y

2 Sinh 	
, E2

x + E2
y = 1 + x2

0	2e−2	y

4 Sinh2 	
. (3.9)

Case 2. The potential difference applied in the same direction
of temperature difference: In this case the boundary conditions
on �, in dimensionless form, are opposite to those specified in
(3.6) and they are

�=x at y = 1 and � = x − x0 at y = −1. (3.10)

In this case the solution of (3.5), satisfying (3.10), is

� = x + x0

2 Sinh 	
(e−	 − e−	y). (3.11)

In this case �e, Ey and �eEx are opposite to those obtained in
case 1, whereas Ex and E2

x +E2
y remain the same as in case 1.

Eqs. (2.6) and (2.7) are coupled non-linear equations because
of dissipation terms, which are solved both analytically and
numerically in the next section.

4. Analytical solutions

Analytical solutions for velocity and temperature are ob-
tained using a regular perturbation technique, with the buoy-
ancy parameter N as the perturbation parameter, which is very
small. We look for the solutions of (2.6) and (2.7) in the form

u = u0 + Nu1 + N2u2 + · · · , (4.1a)

� = �0 + N�1 + N2�2 + · · · . (4.1b)

Here the subscript 0 refers to the solutions for the case in which
N =0, which represents physically the solutions in the absence

of viscous dissipation and u1, u2, . . . , �1, �2, . . . ,, are the per-
turbation quantities which are assumed to be small compared
to u0 and �0.

From Eqs. (2.6) and (2.7), using (3.9), (4.1a) and (4.1b) and
equating the coefficients of the like powers of N to zero, we
get the following set of equations:

Zeroth order:

For case 1:
d2u0

dy2 + �0 + W1e−	y = 0. (4.2)

For case 2:
d2u0

dy2 + �0 + W2e−	y = 0, (4.3)

d2�0

dy2 + Ree	y + W3e−	y = 0. (4.4)

First order:

d2u1

dy2 + �1 = 0, (4.5)

d2�1

dy2 +
(

du0

dy

)2

= 0, (4.6)

where W1=We	2x0/2 Sinh 	 for case 1, W2=−We	2x0/2 Sinh 	
for case 2 are the electric numbers, W3 = Re	2x2

0/4 Sinh2 	 is
the thermal electric number. We is defined earlier.

These equations are solved, using the boundary conditions,
in dimensionless form,

�0 = 1 at y = 1, �0 = −1 at y = −1,

u0 = u1 = �1 = 0 at y = ±1. (4.7)

Solutions of Eqs. (4.2)–(4.6), satisfying the conditions
(4.7), are

�0 = y	2 + Re(Cosh 	 − e	y + y Sinh 	)

+ W2(Cosh 	 − e−	y − Sinh 	y)/	2, (4.8)

u0 = Re

	4 (e	y − Cosh 	 − ySinh 	)

+ a1(e
−	y − Cosh 	 + y Sinh 	)

+ c2

2
(1 − y2) + c1

6
y(1 − y2), (4.9)

�1 = − R2
e

4	8 e2	y − a2
1

4
e−2	y − c2

1

120
y6

+ a2y
4 − c1c2

20
y5 + c2c3

3
y3

+ a3y
2 − c1a1

	
y2e−	y + a4ye−	y

+ a5e−	y + c1Re

	5
y2e	y + a6ye	y + a7e	y

− p1

2
(1 + y) − p2

2
(1 − y), (4.10)
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u1 = R2
e

16	10 e2	y + a2
1

16	2 e−2	y + c2
1

6720
y8

+ c1c2

840
y7 − a2

30
y6 − c3c2

60
y5

− a3

12
y4 + a1c1

	3 y2e−	y + a8ye−	y + a9e−	y

− Rec1

	7 y2e	y + a10ye	y + a11e	y

p1

4
y2

(
3 + y

3

)
+ p2

4
y2

(
3 − y

3

)

− p4

2
(1 − y) − p3

2
(1 + y). (4.11)

The velocity (u) and temperature (�), can be obtained, respec-
tively, using (4.1a), (4.1b) and (4.2)–(4.6). We note that a1,
given in the Appendix, involves W1 for case 1 and W2 for case
2. These u and � are computed for the cases 1 and 2 and the
results are compared with the numerical solution obtained in
the next section.

5. Numerical solutions

The analytical solutions obtained in Section 4 using regular
perturbation technique are valid only for small values of buoy-
ancy parameter N. However, in many practical problems like
unconventional generators, shock tubes, nuclear reactors and so
on, the values of N are usually large and regular perturbation
solutions cannot be used. For arbitrary values of N, analytical
solutions for non-linear coupled equations (2.6) and (2.7) are
complicated and hence we resort to numerical solution, using
a finite difference technique. The velocity and energy equa-
tions are solved using the central difference method. The use
of central difference scheme replaces the derivative with cor-
responding central difference approximations leading to a set
of linear algebraic equations. The solution of reduced algebraic
equations are obtained by the method of Successive Over Re-
laxation (SOR). The relaxation parameter � is fixed by com-
paring the numerical results with those obtained by analytical
method. The convergence criterion is based on the step size and
the previous iterations for the iterative difference to the order
10−6.

The finite difference equations equivalent to Eqs. (2.6) and
(2.7) with 21 mesh points with the step size 0.1 are

uj−1 − 2uj + uj+1

(�y)2 + W1e−	yj + �j = 0.

Solving for uj ,

uj = 1
2 [uj−1 + uj+1 + W1e−	yj (�y)2 + �j (�y)2], (5.1)

�j−1 − 2�j + �j+1

(�y)2 + N

(
uj+1 − uj−1

2�y

)2

+ Ree	yj

+ W3e−	yj = 0.

Solving for �j ,

�j = 1

2

[
�j−1 ∗ (�y)2 + �j+1 ∗ (�y)2 + N

4 (uj+1 − uj−1)
2

+Re ∗ (�y)2 ∗ e	yj + W3 ∗ (�y)2 ∗ e−	yj

]
.

(5.2)

Applying SOR, we obtain from Eqs. (5.1) and (5.2),

U(J ) = �

2
[U(J−1)+U(J+1) + W1 ∗ (�y)2 ∗ Exp(−	yj )

+ �I (J ) ∗ (�y)2] + (1 − �)UI(J ). (5.3)

�(J )=�

2

⎡
⎣

�(J−1)+�(J+1)+ N

4(�y)2

×(UI(J + 1) − U(J − 1))2 + Re ∗ Exp(	yj )

+W3 ∗ Exp(−	yj )

⎤
⎦

+ (1 − �)�I (J ). (5.4)

In (5.3) and (5.4), � is the relaxation parameter. The value of
� is fixed at 1.645 after checking the closeness with analyti-
cal solutions. The solutions (5.1) and (5.2) are computed for
different values of the parameters and the results are depicted
graphically along with the analytical results and conclusions
are drawn in the final section.

6. Skin friction, rate of heat transfer and mass flow rate

In many practical applications involving separation of flow it
is an advantage for us to know the skin friction and the rate of
heat transfer at the boundaries. These can be determined once
we know the velocity and temperature distributions. The skin
friction � at the walls is defined as

�′ = 
(�u/�y)y=±b. (6.1)

Making this dimensionless, using the scale �g�T b�T for � and
using the scales for u and y used earlier, we get

� = (du/dy)y=±1. (6.2)

This, using (4.1a), takes the form

� = (du0/dy)y=±1 + N(du1/dy)y=±1. (6.3)

Here (du0/dy) and (du1/dy) can be obtained using the an-
alytical solutions given by (4.9) and (4.11). Eq. (6.2) is also
computed numerically using the finite difference scheme as ex-
plained in Section 5.

Similarly, the rate of heat transfer between the fluid and the
plate is given by the heat flux

q ′ = −K(�T/�y)y=±b. (6.4)

This, using the scale K�T for the heat flux, is expressed in
terms of the Nusselt number, Nu, given by

Nu = (d�/dy)y=±1. (6.5)

This Nu, using (4.1b), takes the form

Nu = (d�0/dy)y=±1 + N(d�1/dy)y=±1, (6.6)

where (d�0/dy) and (d�1/dy) can be computed using the an-
alytical solution given by (4.8) and (4.10). This Nu, given by
(6.5), is also numerically evaluated using the finite difference
scheme as explained in Section 5.

The skin friction and the rate of heat transfer given above
are computed for different values of N and the results obtained
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from analytical and numerical techniques are compared graph-
ically and suitable conclusions are drawn in the final section.

If mE denotes the mass flow rate per unit channel width in
the presence of dissipation, then

mE =
∫ b

−b

�0u dy. (6.7)

It is of practical interest to find the mass flow rate given by
(6.7) using both analytical and numerical techniques explained
in Sections 4 and 5, respectively. The results so obtained are
discussed in the final section.

7. Results and discussion

The effect of electric field on the velocity, temperature, skin
friction, rate of heat transfer and mass flow rate are obtained
both analytically and numerically. The analytical solutions are
obtained from regular perturbation technique valid for small
values of N (≈ 10−1). To obtain the results for arbitrary values
of N , the solutions of coupled non-linear differential equations
are obtained numerically using central difference scheme. The
system of algebraic equations resulting from the use of central
differencing are solved using the successive over relaxation
method.

The analytical solutions are computed for different values of
We, Re and N and the results are compared in Figs. 2–8 with
those obtained from the numerical technique.

Figs. 2 and 3, are concerned with velocity distributions in the
presence of the dissipative effects for various values of elec-
tric number (We) and the buoyancy parameter (N). Similarly
Figs. 4 and 5 are concerned with temperature distributions in
the presence of dissipative effects for different values of ther-
mal electric number (Re) and the buoyancy parameter.

From Figs. 2 and 3, we found that the analytical solutions are
in good agreement with the numerical results up to N = 1 and
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Fig. 2. Velocity profiles for different values of We with N = 0.1, Re = 1,
	 = 0.1, X0 = 4.
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Fig. 3. Velocity profiles for different values of N with We =5, Re =1, 	=0.1,
X0 = 4.
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Fig. 4. Temperature profiles for different values of Re with N = 0.1, We = 5,
	 = 0.1, X0 = 4.

they deviate considerably for N > 1. We also observe that for
both cases 1 and 2, the velocity and temperature distributions,
increase with an increase in (We), (Re) and N .

In particular, we found that, an increase in electric field ac-
celerates the flow more when �T opposes �� compared to the
case when �T and �� are in the same direction. This can be
effectively used in many industrial problems, particularly in lu-
brication and in electrical transformers, for effective cooling of
the machineries, choosing a suitable value of N . Further, we
also note that, the flow reversal occurs for higher values of N

when the temperature difference �T is in the same direction
of potential difference ��. However, this flow reversal disap-
pears when the temperature difference opposes the potential
difference.
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Fig. 5. Temperature profiles for different values of N with Re = 1, We = 5,
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Fig. 6. Skin friction for different values of N with Re = 1, We = 5, 	 = 0.1,
X0 = 2.1.

The skin friction, rate of heat transfer and mass flow rate
obtained analytically are computed in the presence of dissipa-
tive effects for different values of N and the results obtained
from both analytical and numerical procedures are in Figs. 6–8.
From these, we found that they increase with an increase in
N because as N increases, the temperature difference also in-
creases, resulting in a large convection which transfers more
heat.

Finally we conclude that with a proper choice of external
constraints of electric field and the temperature difference it is
possible to control OBEC, which is useful in the manufacture
of new materials like smart materials free from impurities.
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Fig. 7. Rate of heat transfer for different values of N with Re = 1, We = 5,
	 = 0.1, X0 = 2.1.
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Fig. 8. Mass flow rate for different values of N with Re =1, We =5, 	=0.1,
X0 = 2.1.
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