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Abstract

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms
are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-
Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and
mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is
decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algo-
rithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding
regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective
performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining
problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning dat-
abases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algo-
rithm is better than others.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Data mining is a process of extracting nontrivial, valid, novel and useful information from large databases.
Hence Data mining can be viewed as a kind of search for meaningful patterns or rules from a large search
space, that is the database. In this light, Genetic Algorithms are a powerful tool in data mining, as they
are robust search techniques. Genetic Algorithms (GA) are a set of random, yet directed search techniques.
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They process a set of solutions simultaneously and hence are parallel in nature. They are inspired by the
natural phenomenon of evolution. They are superior to ‘gradient descent’ techniques as they are not biased
towards local optima.

Genetic Algorithms have found a wide gamut of application in data mining, where knowledge is mined
from large databases. Genetic algorithms can be used to build effective classifier systems [16,4], mining asso-
ciation rules [17,7] and other such datamining problems. Their robust search technique has given them a cen-
tral place in the field of data mining and machine learning.

GA can be viewed as an evolutionary process where at each generation, from a set of feasible solutions,
individuals or solutions are selected such that individuals with higher fitness have greater probability of getting
chosen. At each generation, these chosen individuals undergo crossover and mutation to produce a population
of the next generation. This concept of survival of the fittest proposed by Darwin is the main cause for the
robust performance of GAs. Crossover helps in the exchange of discovered knowledge in the form of genes
between individuals and mutation helps in restoring lost or unexplored regions in search space. The steps
in genetic algorithm are:

1.1. Genetic algorithm( )
{
Initialize population randomly;
Evaluate fitness of each individual in the population;
While stopping condition not achieved
{
Perform selection;
Perform crossover and mutation;
Evaluate fitness of each individual in the population;

}
}

In this algorithm, the three basic operators of GA namely, selection, crossover and mutation operators are
fixed apriori. The optimum parameters for these operators depend on problem on which the GA is applied and
also on the fitness of the current population. A new breed of GA called adaptive GAs [31,3,15], fix the param-
eters for the GA operators dynamically to adapt to the current problem. Generally the operators are adapted
based on the fitness of individuals in the population. Apart from the operators themselves, even the control
parameters can be adapted dynamically. In these adaptive genetic algorithms, the GA parameters are adapted
to fit the given problem. The algorithm is as follows.

1.2. Adaptive genetic algorithm( )
{
Initialize population randomly;
Evaluate fitness of each individual in the population;
While stopping condition not achieved
{
Perform selection;
Perform crossover and mutation;
Evaluate fitness of each individual;
Change selection, crossover and mutation operators.

}
}

The use of parallel systems in the execution of genetic algorithms has led to parallel genetic algorithms. The
Island or Migration model of genetic algorithm [23] is one such genetic algorithm where, instead of one



K.G. Srinivasa et al. / Information Sciences 177 (2007) 4295–4313 4297
population, a set of populations is evolved. In this method, at each generation all the populations are inde-
pendently evolved and at some regular interval fixed by migration rate, few of the best individuals are
exchanged among populations.

2. Related work

Lobo et al. have proposed an adaptive GA which works even when optimal number of individuals is not
known [22]. In this method parallel searches are conducted with different number of individuals, expecting
one of the populations to have the appropriate number of individuals that yields good results. However, this
method is not truly adaptive in the sense that the appropriate number of individuals is not learnt but is
obtained by trial and error. This method is not feasible as it is not realistic to perform large number of blind
searches in parallel. On similar way, some of the applications of the parameter-less genetic algorithms [11] and
multi-objective rule mining using genetic algorithms are discussed in [1].

An adaptive GA which runs three GAs in parallel is proposed in [14]. Here at each epoch fitness values of
elite individuals is compared and the number of individuals are changed according to the results. For example,
if GA with the largest number of individuals provides best results, then in the next epoch all individuals have
large number of individuals. However, the optimum number of individuals required by a population depends
on which region of the search space the individuals are in and is not same for all subpopulations.

An adaptive GA where mutation rate for an individual is encoded in the gene of an individual is proposed
in [3]. The system was proposed with the hope that finally individuals with good mutation rate survive. How-
ever, only individuals with low mutation rate survive in the later phases of the search. An adaptive GA that
determines mutation and crossover rate of an individual by its location in a two dimensional lattice plane is
proposed in [21]. The algorithm keeps diversity of these parameters by limiting the number of individuals in
each lattice.

A meta-GA is a method of using GA to fix the right parameters for the GA. However, in this process the
number of evaluations needed is high and the process is a costly one. One such meta-GA is proposed in [20]. A
GA that adapts mutation and crossover rates in Island model of GA is proposed in [33]. Here adaptation is
based on average fitness of the population. Parameters of a population here are updated to those of a neigh-
boring population with high average fitness.

The breeder genetic algorithm BGA depends on a set of control parameters and genetic operators. It is
shown that strategy adaptation by competing subpopulations makes the BGA more robust and more efficient
in [28]. Each subpopulation uses a different strategy which competes with other subpopulations. Experiments
on multi-parent reproduction in an adaptive genetic algorithm framework is performed in [9]. An adaptive
mechanism based on competing subpopulations is incorporated into the algorithm in order to detect the best
crossovers. A parallel genetic algorithm with dynamic mutation probability is presented in [18]. This algorithm
is based on the farming model of parallel computation. The basic idea of the dynamic establishing mutation
rate is presented. Similarly,an adaptive parallel genetic algorithm for VLSI Layout Optimization is discussed
in [29]. A major problem in the use of genetic algorithms is premature convergence. An approach for dealing
with this problem is the distributed genetic algorithm model is addressed in [10]. Its basic idea is to keep, in
parallel, several subpopulations that are processed by genetic algorithms, with each one being independent of
the others. But all these algorithms either consider mutation rate or crossover rate as a dynamic parameter,
but not the both at the same time. The application of a breeder genetic algorithm to the problem of parameter
identification for an adaptive finite impulse filter is addressed in [25]. A population-based optimization
method, called Free Search (FS) is also discussed in [19].

A Self-adaptive Genetic Algorithms with Simulated Binary Crossover is discussed in [6]. It talks about a
single population GA for starters and it does not have a multipoint crossover let alone adaptive multipoint
crossover. The only similarity between [6] and proposed model is that both the methods chooses adaptively
the proportion of the population for crossover. Similarly an adaptive dynamic crossover operators based
on fuzzy connectives and adaptive real coded GAs based on fuzzy logic controller is discussed in [13]. But
it fails to prove the model analytically and the convergence rate of our proposed model(SAMGA) is better.

The Nix and Vose Punctuated Equilibria is given in [34]. Markov Modelling for Genetic algorithms and
their convergence rate are discussed in [24,2,8,12,27]. The average hamming distance of individuals in the
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population to derive convergence rate is used in [32]. Genetic Algorithms based on binomially distributed pop-
ulations is proposed in [30]. In this paper the definition of convergence is restated and convergence rate is
derived based on expectation value of individuals.

3. Overview

Any heuristic search can be characterized by two concepts, exploitation and exploration. These concepts are
often conflicting in the sense that if exploitation of a search is increased, then exploration decreases and vice
versa. Fortunately, the parallel nature of GA helps in alleviating this problem slightly by simultaneously pro-
cessing a set of solutions thus providing for exploration, while at the same time survival of the fittest enforces
exploitation. However, if a single population processes a set of individuals, then the schemas in the population
that give better results only survive as generations proceed and hence search is not very explorative. Further, if
the explorative power of search is increased too much using mutation, convergence does not occur. Thus, we
need a method wherein, the explorative power of search is increased for individuals in bad region of the state
space and exploitation power of search is increased for individuals in the high fitness region of the state space.

In this paper, the proposed adaptive migration(island) model of GA is built such that, given a search space,
the number of individuals in the population that resides in a relatively high fitness region of the search space
increases thus improving exploitation. For these high fitness population, the mutation rate and number of
points of crossover are decreased thus making the search more focused. On the other hand, for populations
in a relatively low fitness zone of search space, the number of individuals is decreased but the mutation rates
and number of points of crossover are increased to make the search of these regions more explorative. Thus,
the search can be termed as one which exploits the heuristically promising region of search space while explor-
ing other regions. The search is also competitive as an increase in fitness of one population makes the search in
other populations with lower fitness more explorative and rigorous.

4. Algorithm

The genetic algorithm described here is an adaptive GA where between evaluation of individuals and apply-
ing the three operators of GA (selection, crossover and mutation), the parameters used for these operators are
updated based on the evaluation of individuals.

4.1. Problem definition

Let S be made up of all the 2k, k bit binary numbers representing the entire search space. Given the objec-
tive function f which is a mapping f : S! R where R is a set of real numbers, the problem is to find an x* 2 S

such that f(x*) P f(x) "x 2 S.

4.2. Pseudocode

Let E ¼ fP 1; P 2 . . . ; P npg be an ecosystem with np populations in it. Populations P 1; P 2 . . . ; P np � S. Pi[j]
stands for the jth individual of population Pi, clearly Pi[j] 2 S. Let ni be the size of population Pi and nci

be the number of points of crossover used for reproduction in population Pi. Let �f i be the average fitness
of a population Pi. Let f(Pi), the fitness of population Pi be the fitness of the best individual of that population.
Let �f be the average fitness of the ecosystem. Let �n be the average number of individuals per population. Let
pmi be the rate of mutation used for population Pi. The rate of crossover being one. Then, the pseudocode for
the adaptive GA can be given as below

1. begin

2. var prev = 0;
3. for i = 1: np, do

(a) Set ni, the number of individuals in the population Pi to some arbitrary value n0

(b) Initialize all individuals of population Pi to some random bit strings
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(c) Set number of crossover points used for population Pi, nci to one
(d) Set mutation rate used for population Pi, pmi to 0.01
4. next
5. for gen = 1: maximum generation limit, do

(a) var nsum = 0;
(b) var fsum = 0;
(c) for i = 1: np, do

i. Evaluate fitness of all the individuals of the population Pi and find f(Pi) the best fitness of the
population

ii. nsum = nsum + ni

iii. fsum = fsum + f(Pi)

(d) prev ¼ �f
(e) �f ¼ fsum

np
(f) �n ¼ nsum

np
(g) for i = 1: np, do

i. nci ¼ nci þ �n
n� 1

ii. pmi ¼ pmi þ �n
n� 1
� �

� 0:0001
iii. ni ¼ ni þ f ðP iÞ

�f � 1
iv. if (ni == 0)
Delete population Pi (extinction)

v. endif
(h) next

(i) for i = 1: np, do

i Perform elitist selection for population Pi with the modified population size ni

ii Perform nc point non-uniform crossover on the selected individuals of population Pi

iii Perform mutation on the individuals of population Pi with mutation probability pmi

(j) next

(k) if prev==�f

Exchange or migrate best individuals between populations.
(l) endif
6. next
7. end

The algorithm shown above is adaptive in four respects. The first parameter adaptively changed is the pop-
ulation size of each population. The population size is dynamically varied based on the fitness of the best indi-
vidual of that population compared to the mean fitness of the population. The number of individuals in
population Pi is updated as,
ni;tþ1 ¼ ni;t þ
f ðP iÞ

�f
� 1 ð1Þ
where t is used to represent time in generations. Using this update, the size of population with fitness greater
than the mean population fitness grows while size of population whose fitness is below the mean population
fitness shrinks. Thus, it can be visualized that more number of individuals are concentrated in the heuristically
better promising region of search space (exploitation).

The second parameter that is dynamically adapted is the number of points of crossover. The update used
for number of crossover points is given by
nci;tþ1 ¼ nci;t þ
�n
ni
� 1 ð2Þ
Using this update we can see that, if the number of individuals in a population is less compared to the mean
number of individuals in a population, then the number of points of crossover is increased. In an indirect way



4300 K.G. Srinivasa et al. / Information Sciences 177 (2007) 4295–4313
update on the number of points of crossover is linked to fitness of population. From update on population
size, it is clear that population size increases with fitness of population but from update of number of points
of crossover, we see that for relatively low population sizes the number of points of crossover is increased and
hence search is more explorative.

The third parameter considered is the mutation rate whose update is similar to the update on the number of
crossover points, given by,
pmi;tþ1 ¼ pmi;t þ
�n
ni
� 1

� �
� 0:0001 ð3Þ
The significance of this update is similar to the update on the number of points of crossover. Obviously, higher
the mutation rate, more explorative is the search. The factor of 0.0001 is chosen arbitrarily as it is a consid-
erably small factor to update probability of mutation.

The final parameter that is adaptive in the algorithm is the rate of migration. Migration refers to
copying individuals from one population to another. Migration helps in discovering new schemas got by
crossover of schemas of two populations. In the algorithm, there is no exact parameter for migration
rate. Migration occurs when the average fitness of the populations remains unchanged between two genera-
tions. Thus, when populations have attained a steady state, migration occurs to try and discover a new
schema.

The selection scheme used in the genetic algorithm is the elitist scheme. The best individuals of each pop-
ulation are copied unaltered to the next generation population. The remaining individuals are selected based
on their fitness. The use of elitist selection guarantees that the best individual of any generation is at least as
good as the best individual of the previous generation. It helps in achieving global convergence. Here, 100 cho-
sen from the k most fit but k is large to prevent premature convergence.

One interesting phenomenon that can be noticed when this algorithm is used on a complex, search space, is
that just like in nature, if a population consistently performs badly, its number finally decreases to zero and the
population becomes extinct. This suggests that the total number of individuals in the ecosystem is affected by
the problem size and complexity.
5. Mathematical analysis

The Holland’s schema theorem for a general case can be given as,
MðH ; t þ 1ÞP ð1� pcÞMðH ; tÞ
f ðHÞ
favg

þ pc MðH ; tÞ f ðHÞ
favg

ð1� lossesÞ þ gains
� �� �

ð1� pmÞ
OðHÞ
where M(H, t) is the number of individuals in a population with schema H are present in the current
generation, favg is average fitness of population, O(H) is order of schema H and pc and pm are rates of cross-
over and mutation respectively. In our algorithm, we consider pc to be one. Hence the Schema theorem
becomes,
MðH ; t þ 1ÞP MðH ; tÞ f ðHÞ
favg

ð1� lossesÞ þ gains
� �

ð1� pmÞ
OðHÞ
In the proposed algorithm, as the population size varies each generation, the schema lower bound for the
varying population size becomes,
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

ð1� lossesÞ þ gains
� �

ð1� pmÞ
OðHÞ ð4Þ
where nt is population size at generation t.
If we consider loss to be any crossover that disrupts the schema, then our calculation of gain must account

for the preservance of the schema when both parents are of the schema H. Now for an n point crossover to be
non-disruptive, even number of crossover points, only can occur between fixed bits of schema [5] as shown in
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Fig. 1. The remaining crossover points must be outside defining length. Hence the probability of n point
crossover generating only even number of crossovers between fixed bits for a schema of k order hyperplane
is Pk,even. Probability of disruption Pd of n point crossover is bounded by,
P dðn;H kÞ 6 1� P k;evenðn;H kÞ
Fig. 1 shows an n point crossover which is non-disruptive. d1, d2 and d3 are fixed bits, L1 and L2 are dis-
tances of d3 and d2 from d1 respectively and L is the string length. As a special case, probability of even number
of crossover points falling between fixed bits for a second order hyperplane is given by [35]
P 2;evenðn; L; L1Þ ¼
Xn

2

i¼0

nC2i
L1

L

2iL� L1

L

n�2i

ð5Þ
That is, the probability is given by the product of number of ways of choosing an even number of points from
an n point crossover, the probability of placing an even number of points between the two defining points and
the probability of placing the other points outside the defining points. L here is the string length and L1 is the
defining length.

We can extend the probability of disruption for a kth order hyperplane as
P k;evenðn; L; L1; . . . ; Lk�1Þ ¼
Xn

2

i¼0

nC2i
L1

L

2iL� L1

L

n�2i

P k�1;evenðn; L1; L2; . . . ; Lk�1Þ ð6Þ
That is, probability that an even number of crossover points fall between k defining bits Pk,even is given by
the probability that even number of crossover points fall between the first two defining bits and the
rest of the points fall outside the defining bits into Pk�1,even. Hence, taking bound on the probability of
disruption
P dðH kÞ 6 1�
Xn

2

i¼0

nC2i
L1

L

2iL� L1

L

n�2i

P k�1;evenðn; L1; . . . ; Lk�1Þ ð7Þ
Now, as mentioned earlier, the lower bound on the gain is given by the preservance of schema when dis-
ruptive crossover occurs between two parents both following the same schema. Hence, gain is given by
gains P n � P d� Probability that P1 and P2 are in schema H.

After selection, the number of individuals in schema H is given by MðH ; tÞ f ðHÞ
favg

. Total number of individuals

in a population is n. Hence probability that given a parent, it is in schema H is given by MðH ;tÞ
n

f ðHÞ
favg

. Hence the
gain is got as,
gains P ntþ1P d
MðH ; tÞ

nt

f ðHÞ
favg

MðH ; tÞ
nt

f ðHÞ
favg

ð8Þ
d3d2d1

L1

L

L2

Fig. 1. Non-disruptive n point crossover.
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Using this lower bound on gains in Eq. (4) and replacing loss with disruption
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

ð1� P dÞ þ ntþ1P d
MðH ; tÞ

nt

f ðHÞ
favg

� �2
" #

ð1� pmÞ
OðHÞ
Simplifying,
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

1� P d þ P d
MðH ; tÞ

nt

f ðHÞ
favg

� �� �
ð1� pmÞ

OðHÞ
But ntfavg ¼
P

f for generation t. Therefore we get the schema theorem as
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

1� P d 1�MðH ; tÞf ðHÞP
f

� �� �
ð1� pmÞ

OðHÞ ð9Þ
This is the schema theorem that deals with a single population. An ecosystem of population where populations
with better fitness have more number of individuals than those with low fitness population is considered in our
algorithm. Consider a low fitness population in the low yielding region of the search space. Consider the case
when this population comes across a high fitness point in the search space. Let H be the schema with high
fitness that the low fitness population came across. All other individuals in population have a low fitness com-
pared to this high fitness point and hence
f ðHÞ ¼
X

f

Applying this to Eq. (9) we get
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

½1� P dð1�MðH ; tÞÞ�ð1� pmÞ
OðHÞ
Since we have only found a single point with high fitness, MðH ; tÞ ¼ 1. Therefore
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntþ1

f ðHÞ
favg

ð1� pmÞ
OðHÞ
Thus there is no disruption. favg ¼
P

f =nt and f ðHÞ ¼
P

f . Therefore
MðH ; t þ 1ÞP MðH ; tÞ
nt

ntntþ1ð1� pmÞ
OðHÞ
But MðH ; tÞ ¼ 1. Therefore
MðH ; t þ 1ÞP ntþ1ð1� pmÞ
OðHÞ
Thus if a population Pi in the low fitness region comes across even one high fitness solution, in the very next
generation approximately ni;tþ1ð1� pmÞ

OðHÞ of the ni,t+1 individuals of the population in the next generation
are in schema H . This immediate drift towards high fitness region of a low fitness population, suggests the
robust performance of the method. The assumption that the fitness of the best solution is approximately equal
to sum of fitness of all individuals in the population is used to display the power of the algorithm when the
entire population is in a very low fitness area of search space. This analysis is a proof for the performance of
the algorithm in the worst case. In general, the drift towards high fitness region is faster when the population
lies in a low fitness region. The high fitness populations of the ecosystem drive the low fitness populations to
perform a more explorative search while the high fitness populations perform a concentrated exploitational
search in the high yielding regions. As soon as the low fitness populations find a better region, the individuals
in the population crowd this region of the search space. This competitive nature of populations ensures robust
performance. The search conducted by the genetic algorithm can thus be explained as exploitational with re-
spect to high yielding regions of the search space and explorative with respect to other regions. The adaptive
updates to the parameters of number of points of crossover and rate of mutation for each population are
responsible for the explorative nature of the low fitness population. The adaptive parameter of population size
helps in concentrated search in high fitness region of search space. The term explorative indicates that larger
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area of search space is covered by the search. There is no doubt that as mutation rate increases, the search is
more explorative.

Lemma 1. The total number of individuals in the ecosystem is a constant; that is,
Xnp

i¼1

ni;t ¼
Xnp

i¼1

ni;tþ1 ¼ constant
Let the initial number of individuals in the ecosystem be nsum. Therefore,
Xnp

i¼1

ni;0 ¼ nsum ¼ constant
Now at generation t, let total number of individuals in the ecosystem be n0sum. Therefore,
Xnp

i¼1

ni;t ¼ n0sum
In the next generation t + 1, apply the update given by Eq. (1) to all the populations, then the total number of
individuals in the ecosystem in generation t + 1 is given by,
Xnp

i¼1

ni;tþ1 ¼
Xnp

i¼1

ni;t þ
f ðP iÞ

�f
� 1

� �

Xnp

i¼1

ni;tþ1 ¼
Xnp

i¼1

ni;t þ
Xnp

i¼1

f ðP iÞ
�f
�
Xnp

i¼1

1

Therefore
Xnp

i¼1

ni;tþ1 ¼ n0sum þ
1
�f

Xnp

i¼1

f ðP iÞ � np
But
�f ¼
Pnp

i¼1f ðP iÞ
np
Therefore
Xnp

i¼1

ni;tþ1 ¼ n0sum þ np � np ¼ n0sum ¼
Xnp

i¼1

ni;t
Substituting t = 0 we get
Xnp

i¼1

ni;0 ¼
Xnp

i¼1

ni;t ¼ n0sum ¼ nsum ¼ constant
Thus, the number of individuals in the ecosystem is constant, i.e., the algorithm just groups these individ-
uals into different populations such that, individuals in the same population reproduce and show co-operation
while individuals in different populations compete to perform better. Thus the algorithm displays interpopu-
lation competition and intra population co-operation.

5.1. Convergence analysis

The convergence rate of a genetic algorithm is defined in this paper as the rate at which the hamming dis-
tance between the individuals of ecosystem becomes zero. In other words, convergence occurs when all indi-
viduals of population have the same genotype. Therefore, the convergence rate of the genetic algorithm is the
rate at which the number of copies of this individuals increases till all the individuals of the ecosystem have
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same genotype ( zero hamming distance). Hence we can derive a bound on the rate of convergence by fixing
rate of increase of expectation value of individual shown in Eq. (9).

Before deriving rate of change of expectation value consider the update to number of individuals in a pop-
ulation. From Eq. (1) we have,
ni;t ¼ ni;t�1 þ
f ðP i;t�1Þ

�ft�1

� 1
Expanding the recursive equation for t generations we get,
ni;t ¼ ni;0 þ
Xt�1

j¼0

f ðP i;jÞ
�f j
� t ð10Þ
Now, the use of Elitist selection guarantees the convergence of the genetic algorithm. During the process of
convergence under steady state, a population is either increasing or decreasing in population size. This sug-
gests a linear relation of the summation term in Eq. (10) and t. Let the coefficient of linear term be b.
Therefore,
ni;t ¼ ni;0 þ bt � t
Therefore, the population size is linearly dependent on number of generations. Thus,
ni;t ¼ ni;0 þ ðb� 1Þt ð11Þ

where b is some constant.

Applying this in Eq. (9) we get,
MiðH ; tÞP MiðH ; tÞðni;0 þ ðb� 1ÞtÞ f ðHÞP �f ni;t�1

1� P d 1�MiðH ; tÞf ðHÞP
fi;t

� �� �
ð1� pmÞ

OðHÞ ð12Þ
where Mi(H, t) is the expectation value of schema H in population Pi. Let
f ðHÞ ¼ �f þ c�f
where c is some constant. That is the average fitness of schema H is above the average fitness of the population
by a factor c. Therefore,
f ðHÞ
�f
¼ constant
Now,
ni;t�1 ¼ ni;0 þ ðb� 1Þðt � 1Þ

Now to calculate a bound on convergence rate, we use the H notation. As ni,t and ni,t�1 are linearly depen-

dent on t, in the calculation of order of convergence they cancel each other out. Mutation just induces small
randomness into the search and it does not alter the order of convergence but only the actual convergence rate.

From Eq. (12) the order of convergence H(Mi(H, t)) as,
HðMiðH ; tÞÞ ¼ HðaMiðH ; t � 1Þ2Þ
Expanding the recursion of Mi(H, t � 1) we get,
HðMiðH ; tÞÞ ¼ Hða3MiðH ; t � 2Þ4Þ
Further expanding the recursive relation we get,
HðMiðH ; tÞÞ ¼ Hða7MiðH ; t � 3Þ8Þ

Finally expanding the entire recursive relation we get,
HðMiðH ; tÞÞ ¼ Hða1þ2þ4þ���þ2t�1Þ
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Fig. 2. Plot of actual versus predicted convergence.
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As the term in power is the summation of geometric series with factor two, we get,
HðMiðH ; tÞÞ ¼ Hða2t�1Þ

Thus the rate of convergence of the algorithm is of the order,
HðMiðH ; tÞÞ ¼ Hða2tÞ

Clearly this is of exponential of exponential order. This shows that the algorithm has a much better conver-
gence rate as compared to simple GA.

The graph in Fig. 2 shows a plot of convergence of the proposed Genetic Algorithm for the first De Jongs
test bed function (F1) and the convergence rate derived. From the graph it is clear that the convergence rate of
the algorithm is close to predicted convergence rate. The actual convergence rate was compared with the
function,
CðxÞ ¼ eex
Such that,
1:54078 P x 6 0:163734
This clearly proves that the actual convergence rate of the algorithm is indeed exponential of exponential as
predicted from mathematical analysis.

6. Experiments

Each population of the ecosystem can be run in parallel on different processors as the algorithm is a parallel
genetic algorithm. However, the algorithm was implemented on a single processor system. Fig. 3 shows a view
of the ecosystem implemented. The ecosystem consists of a linked list of populations and variables to hold
average fitness of population and average number of individuals in a population. The linked list structure
helps in an easy implementation of the phenomenon of extinction where, when the population becomes extinct
that node is simply removed.

Each population which is a node of the linked list is a structure consisting of the population parameters
like, number of points of crossover, population size and rate of mutation. Further, the population also con-
tains an array of bit strings which represent the individuals of the population. The genotype to phenotype con-
version and fitness evaluation is performed by a fitness function.

To evaluate the performance of the algorithm, it was used to find the minimal points of complex high
dimensional landscapes obtained using the testbed functions shown in Table 1. Function F1, which is the
De Jong’s function 1, is a unimodal function with one distinct peak. Function F2 (Rosenberg function), is
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Table 1
Testbed functions used

F1 f ðxÞ ¼
P10

1 x2
i � 5:12 6 xi 6 5:12

F2 f ðxÞ ¼ 100ðx2
1 � x2

2Þ þ ð1� x1Þ2 � 2:048 6 xi 6 2:048

F3 f ðxÞ ¼ 200þ
P10

i¼1x2
i � 10 cosð2pxiÞ � 5:12 6 xi 6 5:12

F4 f ðxÞ ¼
P10

i¼1x � sinðxÞ � 5:12 6 xi 6 5:12
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a function which is basically an almost flat valley and hence finding the minimal point becomes a difficult
problem. Function F3 (Rastragin function) is a multimodal function with many peaks. The function is a good
testbed function as any algorithm has a good chance of getting stuck at one of the peaks which is a local min-
ima. Function F4 is again a multimodal function. In the experiments conducted, the IGA and SAMGA both
had 10 populations of 60 individuals each. The SGA had 600 individuals in its population. For SGA and IGA
the crossover rate chosen was 1 and mutation rate 0.01.

The plot in Fig. 3 shows the convergence of our algorithm(SAMGA), island model (IGA) and simple
genetic algorithm (SGA) for the function F1. It is observed that the Self-Adaptive Migration GA (SAMGA)
converges much faster than the other algorithms. The plot in Fig. 4 shows the convergence of the three algo-
rithms for Rosenberg function. As our function is low dimensional, the fitness was multiplied by 1000 before
plotting. Similarly, the plot in Fig. 5 shows the convergence for Rastragin function. This is a multimodal func-
tion with many peaks of almost equal heights. In both the cases, SAMGA outperforms IGA and SGA.
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The plot in Fig. 6 shows the convergence for function F4. Here SAMGA and SGA have similar perfor-
mance and both outperform IGA. The graphs in Fig. 7–10, shows the convergence rate of all the three
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Fig. 5. Convergence for function F3.
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algorithms for varying generations and functions. In all these cases, the performance of SAMGA is most sig-
nificant in the later generations nearer to convergence.

To test how the explorative power of the proposed algorithm helps in overcoming GA-deception the algo-
rithm along with simple GA and Island GA was used to solve ugly 3 bit deceptive function. With 250 indi-
viduals in four populations, SAMGA was able to overcome deception in 150 generations, whereas IGA
overcame deception only after 228 generations. With 1000 individuals SGA was able to overcome deception
in 557 generations. This experiment proves that the explorative nature on the lower fitness populations in
SAMGA helps in overcoming GA deception better.

6.1. Example search

Consider the landscape given by the equation
y ¼ ðx� 1Þ � cosðx� 1Þ

The proposed GA was used on this landscape with an initialization of three populations of four individuals
each. Fig. 11 shows the function plot along with the initial set of individuals in the ecosystem. Fig. 12 shows
the search result after 10 generations and Fig. 13 shows the search result after 20 generations. The number of
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individuals present is not clear from the graph as in the 10th and 20th generations, many individuals have the
same bit string. However, from Lemma 1, the total number of individuals is the same in ecosystem. From the
result it can be seen that from the initial random distribution, in the 10th generation individuals get settled at
the first and second peaks (one individual at the lower peak and eleven at higher peak). Finally, in the 20th
generation, all the individuals get settled at the higher peak which is the maxima.

7. Performance analysis

To evaluate the performance of the algorithm on real data mining applications, a Michigan Style classifier
was built (see Appendix for details on classifier system) and the classifier was tested on Datamining applica-
tions from the UCI Machine learning repository. The training set used was the first 40% of the data. The next
60% was used for testing. The various data mining applications chosen for the test were

• Pima Indian Diabetes (PID) Database with 768 cases, 2 classes and 8 attributes.
• Wisconsin Breast Cancer Database (Wisc) with 699 entries, 2 classes and 9 attributes.
• Hepatitis Database (Hep) with 155 entries, 2 classes and 19 attributes.
• Ionosphere Database (Ion) with 351 entries, 2 classes and 34 attributes.

The different methods that were compared are given below. For a survey of these methods on machine
learning problems refer [26]:

• Self-Adaptive Migration GA (SAMGA) – The proposed algorithm.
• Learning Vector Quantization (LVQ) – Establishes number of codebooks to approximate various domains

of input vector by quantized values.
• Backpropagation Neural Network (Bpnn) – A neural network that uses feedback of errors for learning.
• Radial Basis Function neural network (RBF) – It is a Neural network
• Incremental Decision Tree Induction (ITI) – Builds decision tree incrementally as new training instances are

provided.
• Linear Machine Decision Tree (LMDT) – Uses multi-class decision trees with multivariate tests at internal

decision nodes.

The table in Fig. 14 summarizes the performance of SAMGA and other machine learning techniques. It can
be seen that SAMGA has consistently good performance and relatively high classification rates as compared
to other methods. It can be seen that the performance of the methods vary from application to application but
SAMGA gives consistent good performance for all the applications.
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Similarly, the performance of SAMGA after 10-fold cross validation of the datasets used is given in Fig. 15.
It can be seen that SAMGA shows better performance when compared with the other techniques even after
the 10-fold cross validation of the datasets.

8. Conclusions

Genetic Algorithms have proved to be a robust general purpose search technique. They have a central place
in data mining applications due to their ability to search large search spaces efficiently. In this paper we have
proposed a Self-Adaptive Migration GA search techniques, have two central but competing concepts of
exploitation and exploration. The proposed algorithm can be characterized by focused and deeper exploita-
tion of the heuristically promising regions of the search space and wider exploration of other regions of the
search space. The algorithm achieves this by varying the number of individuals in a population which helps
in better exploitation of high fitness regions of the search space by increasing the number of individuals in
the region. The algorithm also helps in better exploration by increasing the number of crossover points and
the mutation rates for the low fitness population.

The paper provides a mathematical analysis of the method using schema theorem which accounts for lower
bound on the gain. It has been shown that the method proposed assures that, when a low fitness population of
the ecosystem stumbles across a high fitness solution due to its explorative nature there is an immediate drift of
that population towards the high fitness region of search space.

The proposed method has been tested on a set of testbed functions and on real data mining problems of
classification. The results show that the method achieves faster convergence and provides better accuracies
in classification. The convergence of the method has been compared with those using single population
genetic algorithm and Island model GA and results prove that the proposed algorithm outperforms both
SGA and IGA. The classifier system built using SAMGA was evaluated against other classification
systems.

Appendix

Genetic Algorithm classifiers can be divided into two classes, the Michigan Approach classifiers and the
Pittsburg approach classifier based on how rules are encoded in the population of individuals. In the Michigan
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approach, each individual of the population is a single rule of the entire rule base. In the Pittsburg approach,
each individual encodes a set of prediction rules. The classifier used in this paper is a Michigan approach
classifier.

In the classifier system, each rule is represented by a bit string. Consider the rule
if ð18 6 age 6 21Þ and ð50 6 weight 6 70Þ
then class ¼ normal
Now if there are only two classes, normal(0) and abnormal(1), then this rule can be represented in the format
given by Fig. 16. Fig. 17 gives the bit string representation of the same rule. Generally for the fitness evaluation
of the rule credit assignments are provided. For the Michigan style classifier, care should be taken to eliminate
identical individuals from the population so that the rule base is not made up of the same highly fit rule.
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