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Abstract

The combined effects of vertical d.c. electric field and uniform internal heat generation on the onset of convection in a
horizontal poorly conducting dielectric fluid layer heated uniformly from below are investigated. The Galerkin method is used to
solve the resulting eigenvalue problem. Parametric study is conducted to know the effects of varying electric Rayleigh number, Re

and dimensionless heat source strength, Ns. It is found that these two parameters exhibit a dual effect on the onset of natural
convection; a result noticed in contrast to their effects when they are acting in isolation.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of Rayleigh–Benard instability, which is due to gravitational force caused by vertical density
stratification, and also the effect of a uniform vertical magnetic field on such thermal instability, called
magnetoconvection, has been studied extensively by Chandrasekhar [1]. Besides, several studies have also been
carried out to assess the effect of electric field on natural convection due to the fact that many problems of practical
importance involve poorly conducting dielectric fluids wherein electric forces essentially govern the motion rather than
the magnetic forces. Roberts [2] was the first to make an individual study on electrohydrodynamic convection by
considering the dielectric constant as well as electrical conductivity as a linear function of temperature. Turnbull [3],
Takashima and Aldridge [4], Martin and Richardson [5], Maekawa et al. [6], Pontiga and Castellanos [7], Douiebe et al.
[8] and Othman [9] have studied natural convection in the presence of an applied electric field.

Nonetheless, in electrothermoconvective instability problems, it is pertinent that in a dielectric fluid the applied electric
field increases the vibrations of the atoms and eventually this will cause Joule heating throughout the fluid due to the flowof
current. It is but natural to question how this heating affects the onset of convection in dielectric fluids under an applied
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electric field. This can aptly be modeled as volumetric heat generation within the dielectric fluid causing basic temperature
distribution to be nonlinear which in turn has a profound effect on the stability of the system. The onset of thermal instability
in a horizontal ordinary viscous fluid layer, subject to an internal heat generation, has been analyzed by Sparrow et al. [10]
and Shivakumara and Suma [11]. In the latter paper an additional effect of vertical throughflow is also considered.

However, it is of interest and importance to know in what way the stability of the dielectric fluid layer would be
affected in the simultaneous presence of electric field and volumetric heat generation which have not been given due
attention in the literature. This has motivated the present study. The present work is of interest in the design of efficient
heat exchangers and also in image processing devices which involve electric fields and fluids [5]. In these problems, the
flow is likely to become unstable due to variation in temperature and hence examining its instability gains importance.
From a geophysical standpoint, it is important that the electric field and internal heat generation together can provide
the driving force in the laboratory models of thermal convection of electrically conducting fluids in the Earth's core [4].
Moreover, the present study also throws light to understand atmospheric electricity and control of thermal convective
instability by means of conductivity variation induced by non-uniform thermal gradients [8]. In the present study, the
linear stability theory is applied and the resulting eigenvalue problem is solved numerically.

2. Mathematical formulation

We consider a horizontal poorly conducting dielectric fluid layer of characteristic thickness d with a uniformly
distributed volumetric internal heat generation within the fluid. A Cartesian coordinate system with the z-axis pointing
vertically upward is chosen such that the origin is at the bottom of the layer and the boundaries are assumed to be rigid. The
lower boundary z=0 is maintained at a constant temperature T0+ΔT /2 and a constant electric potentialφ0−Δφ /2, while
the upper boundary z=d is maintained at a constant temperature T0−ΔT /2 and a constant electric potential φ0+Δφ /2
with ΔTN0 and ΔφN0. The governing equations are [2]:

jdYq ¼ 0 ð1Þ

q0
AYq
At

þ ðYqdjÞYq
� �

¼ �jpþ qYg þ lj2YqþYf e ð2Þ
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þ ðYqdjÞT ¼ jj2T þ Q ð3Þ

q ¼ q0f1� aðT � T0Þg; ð4Þ

whereYq ð¼ u; v;wÞ is the velocity vector, T the temperature, p the pressure, ρ the fluid density, μ the fluid viscosity, α the
thermal expansion coefficient, ρ0 the fluid density at T=T0, κ the thermal diffusivity, Q the uniformly distributed
volumetric internal heat generation in the fluid layer and

Y
f e is the force of electrical origin which can be expressed as
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Here, ρe is the charge density, ε is the dielectric constant and
Y
E is the electric field. In Eq. (5), the first term on the right hand

side is the Coulomb force which involves the free charge and the last two terms represent forces induced by the non-
uniformity of the dielectric constant. We note that the last term can be absorbed into pressure and it has no effect on an
incompressible fluid.

Since the fluid is poorly electrically conducting, the magnetic field effect is negligible and the Maxwell equations
become

j�YE ¼ 0 or YE ¼ �ju ð6Þ
Aqe
At

þjd
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where φ is the electric potential, YJ is the current density and σ is the electrical conductivity. Since the problem is
investigated under d.c. electric field, the Coulomb force becomes more dominant than the dielectric force [6]. Under the
circumstances, the dielectric force is neglected (i.e., ε=constant) and the electrical conductivity is assumed to vary
linearly with temperature in the form σ=σ0[1+β (T−T0)], where β (N0) is the thermal coefficient of electrical
conductivity. The basic steady state is assumed to be quiescent and consider the solution of the form
Yq ¼ 0; p ¼ pbðzÞ; T ¼ TbðzÞ;u ¼ ubðzÞ, where the subscript b denotes the basic state. The unperturbed basic
temperature and the electric potential are found to be

TbðzÞ ¼ T0 þ DT
1
2
� z
d

� �
þ Qd2

2j
z
d
� z2

d2

� �
;ubðzÞ ¼ u0 � Du

1
2
� z
d

� �
ð8a; bÞ

where we have assumed β≪1. It may be noted that the basic temperature distribution is nonlinear with the fluid layer
height due to internal heat generation, and which has important implications on the stability of the system.

To study the stability of the basic state, we perturb the variables in the form

Yq ¼ YqV; p ¼ pbðzÞ þ pV; T ¼ TbðzÞ þ T V;u ¼ ubðzÞ þ uV: ð9Þ

Substituting Eq. (9) into the governing equations, linearzing, eliminating the pressure from the momentum equation by
operating curl twice and retaining the vertical component, we obtain the following perturbed equations (after ignoring
the primes):
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On introducing the following dimensionless quantities (x⁎, y⁎, z⁎)= (x /d,y /d,z /d ), w⁎=w / (κ /d ), t⁎= t / (d2 /κ),
T⁎=T /ΔT and φ⁎=φ / (βΔϕΔT ) in Eqs. (10)–(12) and neglecting the asterisks for simplicity, we obtain
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In the above equations Rt=α gΔTd3 /νκ and Re=ε(Δϕ)2βΔT /μκ are respectively, the thermal and electric
Rayleigh numbers, Pr= ν /κ is the Prandtl number, Pe=εκ /σ0d

2 is the normalized thermal diffusivity, and

f ðzÞ ¼ dTb=dz ¼ Nsð1� 2zÞ � 1 ð16Þ

is the basic temperature gradient, where Ns=Qd
2 / 2κΔT is the dimensionless heat source strength. The boundaries

are assumed to be rigid with fixed temperature and electric potential and hence the associated boundary conditions
are

w ¼ Aw=Az ¼ 0 ¼ h ¼ u at z ¼ 0; 1: ð17Þ
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We now assume the normal mode solution for the dependent variables in the form

ðw; T ;uÞ ¼ ½W ;H;U�eiðS xþmyÞþxt ð18Þ

where ω is the growth rate, ℓ and m are the wave numbers in the x and y-directions, respectively. Substituting Eq.
(18) in Eqs. (13)–(15) and noting that the principle of exchange of stability is valid [2,6] (i.e., ω=0), we arrive at
the following stability equations (after eliminating Φ from the momentum equation):

ðD2 � a2Þ2W ¼ Rta
2Hþ Rea

2DH ð19Þ

ðD2 � a2ÞH ¼ f ðzÞW : ð20Þ

where D=d /dz and a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ m2

p
is the overall horizontal wave number.

The required boundary conditions are

W ¼ DW ¼ H ¼ 0 at z ¼ 0; 1: ð21Þ

3. Method of solution

Eqs. (19) and (20) with boundary conditions (21) constitute an eigenvalue problem with Rt or Re as an eigenvalue.
The resulting eigenvalue problem is solved numerically using Galerkin method. Accordingly, the unknown variables
are written in a series of base functions as

W ¼
XN
i¼1

AiWi ; H ¼
XN
i¼1

BiHi ð22Þ

where Ai and Bi are constants and the base functions Wi and Θi are represented by modified Tchebychev polynomials
as trial functions satisfying the boundary conditions. Substituting Eq. (22) into Eqs. (19) and (20) and the Galerkin
procedure of demanding that the residues be orthogonal to the basis functions applied, we get the following system of
homogeneous algebraic equations.

CjiAi þ DjiBi ¼ 0 ð23aÞ

EjiAi þ FjiBi ¼ 0: ð23bÞ

The coefficients Cji to Fji involve inner products of the basis functions and are given by

Cji ¼ bD2WjD2Wi þ 2a2DWjDWi þ a4WjWi N;Dji ¼ �Rta2 bWjHi N� Rea2 bDWjHiN
Eji ¼ b f ðzÞHjWiN;Fji ¼ bDHjDHi þ a2HjHi N

ð24Þ

where the inner product is defined as b fgN ¼ R 1
0 fgdz.

4. Numerical calculations and discussion

The determinental equation, formed from Eqs. (23a) and (23b) for the existence of non-trivial solution, is solved
numerically to obtain the critical Rayleigh number Rtc as a function of the wave number a for different values of Re and
Ns. The inner products involved in the elements of the determinant are evaluated analytically rather than numerically to
avoid errors in the numerical integration. It is noted that eight terms (i.e., N=8) in the series expansion of Eq. (22) are
sufficient to achieve the convergence within an error of 0.001% for all the choices of parametric values. To validate the
solution procedure, computations are carried out first under the limiting conditions of Re=0 and also when Ns=0. The
critical Rayleigh number Rtc obtained for Re=0 and for various values of Ns are compared with the results of Sparrow



Table 1
Comparison of Rtc and ac for different values of Ns with Re=0

Sparrow et al. [10] Present study

Ns Rtc ac Rtc ac

0 1707.765 3.12 1707.762 3.113
0.5 1704.453 3.121 1704.53 3.119
1.0 1694.953 3.13 1694.95 3.127
5.0 1462.863 3.30 1462.86 3.304
10.0 1118.480 3.53 1118.43 3.529
15.0 878.339 3.68 878.303 3.659
20.0 717.201 3.74 717.20 3.736
30.0 521.403 3.82 521.403 3.819
40.0 408.558 3.86 408.558 3.863
70.0 247.075 3.92 247.075 3.920
100.0 176.936 3.94 176.936 3.944
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et al. [10] in Table 1, while Rtc obtained for Ns=0 and for different values of Re are compared with those of Roberts [2]
in Table 2. From the tables we note that the agreement is excellent and thus verifies the accuracy of the method
employed.

We now look into simultaneous presence of electric force (Re) and internal heating (Ns) which have opposing effect
on the stability of the system. It is observed that these two mechanisms compensate each other in some cases or
dominate over one another depending on their strength to behave in an unusual manner and the same is evident from
Figs. 1 and 2). Fig. 1(a) shows that the critical Rayleigh number, Rtc decreases monotonically with Ns when Re=0 (see
also Table 1) and thus its primary effect is to promote instability because of the increase in energy supply to the system.
To the contrary, Rtc is increasing, rather than decreasing, with Ns initially when the electric field is present (i.e., for
Re≠0) but soon it starts decreasing as Ns values are further increased. In other words, the internal heat generation
initially shows some stabilizing effect on thermally unstable dielectric fluid layer when the electric field is present; a
result not noticed in the absence of electric field. As is evident from Fig. 1a, there are crossings of curves among
different values of Re. In particular, the crossing of Re=2000 curve over the other curves may be attributed to the fact
that increase in Re leads to increase in electric field strength which in turn generates large Joule heating within the
dielectric fluid layer and hence causes more instability due to available additional heat energy to the system. One can
also notice a similar trend for Re=1000. In this case, the crossing of curve is shifted towards higher value of Ns due to
decrease in electric field strength. Although the critical wave number increases with an increase in the value of Nswhen
Re=0, a mixed type of variation in ac could be seen when Re≠0 (see Fig. 1b). We note that, ac decreases initially with
an increase in the value of Ns; again starts increasing and reaches a maximum value, then decreases with further
increase in the value of Ns.

Fig. 2a is a plot of Rtc versus Re for different values of Ns. From the figure we note that Rtc increases with Re when
Ns=0 (see also Table 2) and thus the primary effect of d.c. electric field is to delay the onset of convection. In contrast to
this, Rtc decreases when once Re exceeds a certain value; which in turn depends on the strength of internal heat
generation (i.e., for Ns≠0). Thus the electric field has a destabilizing effect on the system in the presence of internal
Table 2
Comparison of Rtc and ac for different values of Re with Ns=0

Roberts [2] Present study

Re Rtc ac Rtc ac

0 1707.762 3.116 1707.76 3.113
200 1722.826 3.112 1722.83 3.104
400 1767.670 3.068 1767.66 3.068
600 1841.106 3.008 1841.09 3.008
800 1941.160 2.926 1941.14 2.926
1000 2065.034 2.824 2065.00 2.824



Fig. 1. (a) Variation of critical thermal Rayleigh number with Ns for different values of Re. (b).Variation of critical wave number with Ns for different
values of Re.
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heat generation and this could be attributed to the nonlinearity of the basic temperature distribution due to internal heat
generation. The reason for the crossing of curve can be explained based on the same argument put forth previously. The
effect of increasing Re is to decrease the critical wave number and hence its effect is to increase the size of convection
cells (Fig. 2b).
Fig. 2. (a).Variation of critical thermal Rayleigh number with Re for different values of Ns. (b).Variation of critical wave number with Re for different
values of Ns.
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5. Conclusion

In the present paper we have analyzed the simultaneous effects of d.c. electric field and uniform internal heat
generation on the onset of convection in a poorly conducting dielectric fluid layer heated from below. Contrary to their
individual behavior, it is observed interestingly that an increase in the value of Re and also Ns can have destabilizing
and stabilizing effects, respectively on the system when they are acting together. The critical wave number decreases
with an increase in the electric Rayleigh number for a fixed value of Ns , while it passes through a minimum and a
maximum with an increase in the heat source strength for a fixed value of Re.
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