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Summary. The effect of Coriolis force and different forms of basic temperature gradients on the onset of

Marangoni ferroconvection in a horizontal layer of ferrofluid is investigated theoretically. The lower

boundary is assumed to be rigid-isothermal, while the upper free boundary on which the surface tension

acts is non-deformable and insulating to temperature perturbations. The Galerkin technique is used to

obtain the critical stability parameters. It is shown that convection sets in as oscillatory motions provided

that the Prandtl number is less than unity. A mechanism for suppressing or augmenting Marangoni

ferroconvection by rotation, nonlinearity of magnetization and different forms of basic temperature

gradients is discussed in detail. It is found that the inverted parabolic temperature profile indicates a

reinforcement of stability, whereas the step function temperature profile indicates a diminution of stability.

Comparisons of results between the present and the existing ones are made under the limiting conditions

and good agreement is found.

1 Introduction

Convection in ferromagnetic fluids in the presence of a uniform magnetic field, called

ferroconvection, is analogous to the Rayleigh-Benard convection in a horizontal layer of an

ordinary viscous fluid heated from below and cooled from above. Ferroconvection in a

horizontal layer of ferrofluid has been studied extensively because of its diverse applications,

namely, energy conversion systems, liquid cooled loudspeakers, magnetic fluid seals and in

many other engineering and technological applications [1]–[3]. Finlayson [4] was the first to

study the linear stability of ferroconvection in a horizontal layer of ferrofluid heated from

below in the presence of a uniform vertical magnetic field. Lalas and Carmi [5] have

analyzed the same problem using the energy method. A similar analysis but with the fluid

confined between ferromagnetic plates has been carried out by Gotoh and Yamada [6] using

the linear stability analysis. Schwab et al. [7] have conducted experiments and their results

are found to be in good agreement with [4]. Stiles and Kagan [8] have extended the problem

to allow for the dependence of effective shear viscosity on temperature and colloid con-

centration. Recently, Kaloni and Lou [9] have studied convective instability in a horizontal

layer of a magnetic fluid by considering the relaxation time and the rotational viscosity

effects.
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The effect of Coriolis force on ferroconvection has also been investigated because the fer-

rofluids are known to exhibit peculiar characteristics when set to rotation. Das Gupta and

Gupta [10] have studied the convective instability in a rotating layer of ferrofluids between two

free boundaries. Rudraiah and Sekhar [11] have analyzed the effect of uniform distribution of

heat source on the onset of stationary ferroconvection. Venkatasubramanian and Kaloni [12]

have discussed the effect of rotation on thermo-convective instability of a horizontal layer of

ferrofluid confined between stress-free, rigid-paramagnetic and rigid-ferromagnetic boundaries

for uniform temperature gradient. The corresponding problem for ferroconvection in a rotating

porous medium is discussed by Sekar et al. [13], and Vaidyanathan et al. [14]. In the latter

paper, the effect of magnetic field dependent viscosity is also taken into consideration. The

weakly nonlinear instability of a rotating ferromagnetic fluid layer heated from below is dis-

cussed by Kaloni and Lou [15].

It is known that, apart from buoyancy, convective instability can also occur due to the local

variation of surface tension when the fluid surface is free [16]. This type of convective instability

is referred to as Marangoni convection. Much of the available literature on Marangoni con-

vection has been concerned with viscous liquid layers and very little is known about Marangoni

convection in ferrofluids, called Marangoni ferroconvection. In view of the fact that heat

transfer is greatly enhanced due to convection, Marangoni ferroconvection offers new possi-

bilities for applications in microgravity environments. Qin and Kaloni [17] have studied linear

and nonlinear stability problems of combined buoyancy-surface tension effects in a ferrofluid

layer heated from below. Recently, Shivakumara et al. [18] have discussed in detail the effect of

different forms of basic temperature gradients on the onset of ferroconvection driven by

combined surface tension and buoyancy forces.

Inviewof the fact that rotationgives rise to interestingpractical situations, the object of this paper

is to study the combined effect of rotation and different forms of basic temperature gradients on the

linear stability of Marangoni ferroconvection. In this study the lower rigid boundary is considered

to be isothermal and the upper non–deformable free boundary is insulating to temperature per-

turbations. The resulting eigenvalue problem is solved numerically by employing the Galerkin

technique. A comparative study is conducted to analyze the relative effects of different temperature

profiles on the onset of convection and with the other works as well under the limiting conditions.

2 Formulation of the problem

We consider an infinite horizontal layer of an electrically non-conducting Boussinesq

ferromagnetic fluid of depth d permeated by a uniform magnetic field acting normal to the

boundaries. The layer is rotating uniformly about its vertical axis with angular velocity ~X ¼ X k̂,

which is bounded below by a rigid-isothermal surface and above by a non-deformable free-

insulating surface. A temperature drop DT is acting across the boundaries and a Cartesian

coordinate system (x; y; z) is used with the origin at the bottom of the surface and the z-axis

vertically upwards. The surface tension r is assumed to vary linearly with temperature as

r ¼ r0 � rTDT, where r0 is the unperturbed value and rT is the rate of change of surface tension

with temperature.

The relevant governing equations in the rotating frame of reference are [1], [4], [10]:

r �~q ¼ 0; ð1Þ

q0

@~q

@t
þ ~q � rð Þ~q

� �
¼ �rpþ l0 ð~M � rÞ~H þ lr2~qþ 2 q0~q � ~X þ q0

2
r ~X � ~r
��� ���2
� �

; ð2Þ

114 I. S. Shivakumara and C. E. Nanjundappa



q0CV ;H � l0
~H � @~M

@T

 !
V ;H

2
4

3
5DT

Dt
þ l0T

@~M

@T

 !
V ;H

� D
~H

Dt
¼ kr2T; ð3Þ

r �~B ¼ 0; r� ~H ¼ 0; ð4:1; 2Þ

~B ¼ l0
~M þ ~H
� �

; ð5Þ

~M ¼ M

H
H;Tð Þ~H; ð6Þ

M ¼ M0 þ vðH � H0Þ � KðT � �TÞ; ð7Þ

where ~q ¼ ðu; v;wÞ is the velocity, p is the pressure, T is the temperature, ~H is the magnetic

field, ~M is the magnetization, CV ;H is the specific heat at constant volume and magnetic field, ~B

is the magnetic induction, l is the coefficient of viscosity, l0 is the magnetic permeability of

vacuum, q0 is the reference density, k is the thermal conductivity, �T is the average temperature,

v ¼ ð@M=@HÞH0;�T
is the magnetic susceptibility, K ¼ �ð@M=@TÞH0;�T

is the pyromagnetic coef-

ficient, M0 ¼ MðH0; �TÞ, and H0 is the imposed uniform vertical magnetic field.

The basic state is given by

~q ¼ 0; p ¼ pbðzÞ; �dTb

dz
¼ f ðzÞ;

~Hb ¼ H0 þ
K Tb � �T
� 	
1þ v

� �
k̂; ~Mb ¼ M0 �

K Tb � �T
� 	
1þ v

� �
k̂ ;

ð8Þ

where k̂ ¼ ð0; 0; 1Þ is the unit vector in the z-direction, the subscript b denotes the basic state

and f ðzÞ is the basic temperature gradient, such that
R d

0 f ðzÞdz ¼ � DT
d
.

We shall analyze the stability of the basic state by introducing the following perturbations:

~q ¼~q0; p ¼ pbðzÞ þ p0; T ¼ TbðzÞ þ T0; ~H ¼ ~HbðzÞ þ ~H0; ~M ¼ ~MbðzÞ þ ~M0; ð9Þ

where the primed quantities are perturbed ones and they are assumed to be small.

Substituting Eq. (9) into Eqs. (5) and (6) and using Eqs. (4) and (7), we get

H0i þM0i ¼
1þM0

H0

� �
H0i; i ¼ 1; 2; ð10Þ

H03 þM03 ¼ 1þ vð ÞH03 � KT0; ð11Þ

where we have assumed KðTb � �TÞ � ð1þ vÞH0.

Using Eq. (9) in Eq. (2), linearizing and then taking curl on the resulting equation (after

neglecting primes), the z-component can be written as

q0

@n
@t
¼ lr2nþ 2q0X

@w

@z
; ð12Þ

which is the vorticity transport equation and n ¼ @v=@x� @u=@y is the z-component of vor-

ticity. Substituting Eq. (9) in Eq. (2), linearizing, taking curl twice and then using Eqs. (10) and

(11) together with ~H0 ¼ ru0, the z-component of the resulting equation can be written as (after

neglecting the primes)

q0

@

@t
� lr2

� �
r2w ¼ �2q0X

@n
@z
� l0K f ðzÞ @

@z
r2

1u
� 	

þ l0K2 f ðzÞ
1þ v

r2
1T: ð13Þ
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As before, using Eq. (9) in Eq. (3), and after linearizing, the equation obtained is (neglecting

primes)

q0C0
@T

@t
� kr2T � l0KT0

@

@t

@u
@z

� �
¼ q0C0 �

l0 K2T0

ð1þ vÞ

� �
w f ðzÞ; ð14Þ

where q0C0 ¼ q0CV ;H þ l0KH0; r2
1 ¼ @2=@x2 þ @2=@y2 and r2 ¼ r2

1 þ @2=@z2:

Finally Eqs. (4.1, 2), after using Eqs. (10) and (11) together with ~H0 ¼ ru0 become

(neglecting primes)

1þM0

H0

� �
r2

1uþ 1þ vð Þ @
2u
@z2
� K

@T

@z
¼ 0: ð15Þ

We perform normal mode expansion of the dependent variables in the form

w;T;u; nf g ¼ WðzÞ; hðzÞ;uðzÞ; nðzÞf g exp iðlxþmyÞ þ xt½ �; ð16Þ

where l and m are wave numbers in the x- and y-direction, respectively, x is the growth rate,

WðzÞ; hðzÞ, uðzÞ and nðzÞ are the amplitudes of the z-component of the perturbation velocity,

perturbation temperature, perturbation magnetization and the z-component of the perturba-

tion vorticity, respectively.

Substituting Eq. (16) into Eqs. (12)–(15), we get

q0x� l D2 � a2
� 	
 �

D2 � a2
� 	

W ¼ a2l0K f ðzÞDu� a2l0K2f ðzÞ
1þ v

h� 2q0X Dn; ð17Þ

x h� jðD2 � a2Þh� l0K T0

q0C0
xDu ¼ 1� l0K2T0

ð1þ vÞq0C0

� �
W f ðzÞ; ð18Þ

1þ vð ÞD2u� 1þM0

H0

� �
a2u� KDh ¼ 0; ð19Þ

q0 xn ¼ lðD2 � a2Þnþ 2q0X DW ; ð20Þ

where D ¼ d=dz is the differential operator and a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2
p

is the overall horizontal wave-

number.

Equations (17)–(20) are nondimensionalized by setting

W� ¼ d

m
W; a� ¼ ad; D� ¼ dD; t� ¼ m

d2
t; n� ¼ d2

m
n;

x� ¼ d2

m
x; h� ¼ j

bmd
h; u� ¼ 1þ vð Þj

Kbmd2
u; f ðzÞ� ¼ 1

b
f ðzÞ b ¼ �DT

d

� �
:

ð21Þ

Thus Eqs. (17)–(20) become (after neglecting the asterisks)

D2 � a2 � x
� 	

D2 � a2
� 	

W ¼ Ta1=2 Dnþ Na2f ðzÞh� Na2f ðzÞDu; ð22Þ

D2 � a2 � xPr
� 	

hþ xPrM2Du ¼ � 1�M2ð ÞW f ðzÞ; ð23Þ

D2 � a2M3

� 	
u � Dh ¼ 0; ð24Þ

D2 � a2 � x
� 	

n ¼ �Ta1=2DW : ð25Þ

Here Ta1=2 ¼ 2Xd2=m is the square root of the Taylor number, N ¼ l0K2b2
d4=ð1þ vÞjl is the

magnetic Rayleigh number, M3 ¼ ð1þM0=H0Þ=ð1þ vÞ is the measure of nonlinearity of

magnetisation, Pr ¼ m=j is the Prandtl number, and M2 ¼ l0T0K2=q0C0ð1þ vÞ is the nondi-

116 I. S. Shivakumara and C. E. Nanjundappa



mensional parameter and is neglected in the subsequent analysis since its value is negligible [4],

and f ðzÞ is the nondimensional basic temperature gradient, such that
R 1

0 f ðzÞ dz ¼ 1.

The corresponding boundary conditions for the perturbed nondimensional variables take the

form

W ¼ DW ¼ u ¼ h ¼ n ¼ 0 at z ¼ 0; ð26Þ

W ¼ D2W þMa a2h ¼ Du ¼ Dh ¼ Dn ¼ 0 at z ¼ 1; ð27Þ

where Ma ¼ rTDTd=lj is the Marangoni number.

To investigate the effect of nonuniform temperature gradients on the convective instability,

the following types of basic temperature profiles are considered:

Model 1: Linear temperature profile:

f ðzÞ ¼ 1:

Model 2: Piecewise linear temperature profile heating from below:

f ðzÞ ¼
1

e
for 0 � z < e

0 for e < z � 1:

8<
:

Model 3: Piecewise linear temperature profile cooling from above:

f ðzÞ ¼
0 for 0 � z < e
1

ð1� eÞ for e < z � 1:

8<
:

Model 4: Step function temperature profile:

f ðzÞ ¼ dðz� eÞ:

Model 5: Inverted parabolic temperature profile:

f ðzÞ ¼ 2ð1� zÞ:

Model 6: Parabolic temperature profile:

f ðzÞ ¼ 2z:

Regarding the applicability of the above temperature profiles in the situation considered, it may

be noted that these can be achieved by sudden heating or cooling of boundaries and also by a

uniform volumetric heat source (for details see [19]).

3 Method of solution

The governing equations (22)–(25) together with the boundary conditions (26) and (27) con-

stitute an eigenvalue problem with Ma as an eigenvalue. To solve the resulting eigenvalue

problem, the Galerkin technique is used. Accordingly, the variables are written in a series of

basis functions as

W ¼
Xn

i¼1

Ai WiðzÞ; hðzÞ ¼
Xn

i¼1

Bi hiðzÞ; uðzÞ ¼
Xn

i¼1

Ci uiðzÞ; n ¼
Xn

i¼1

Ei niðzÞ; ð28Þ

Marangoni ferroconvection 117



where the trial functions WiðzÞ, hiðzÞ, uiðzÞ and niðzÞ will be generally chosen in such a way

that they satisfy the respective boundary conditions, and Ai, Bi, Ci, and Ei are constants.

Substituting Eq. (28) into Eqs. (22)–(25), multiplying the resulting momentum equation by

WjðzÞ, the energy equation by hjðzÞ, the magnetic potential equation by ujðzÞ and the vorticity

equation by njðzÞ, performing the integration by parts with respect to z between z ¼ 0 and

z ¼ 1 and using the boundary conditions (26) and (27), we obtain the following system of linear

homogeneous algebraic equations:

CjiAi þ DjiBi þ EjiCi þ FjiEi ¼ 0; ð29Þ

GjiAi þ HjiBi ¼ 0; ð30Þ

IjiBi þ JjiCi ¼ 0; ð31Þ

KjiAi þ LjiEi ¼ 0: ð32Þ

The coefficients Cji � Lji involve the inner products of the basis functions and are given by

Cji ¼ hD2WjD
2Wii þ ð2a2 þ xÞhDWj DWii þ a2ða2 þ xÞhWjWii;

Dji ¼ �a2Nh f ðzÞhjWii þ a2Ma DWjð1Þhið1Þ;

Eji ¼ a2Nh f ðzÞWjDuii;

Fji ¼ �Ta1=2hWjDfii;

Gji ¼ �h f ðzÞhjWii;

Hji ¼ hDhjDhii þ ða2 þ xPrÞhhjhii;

Iji ¼ hujDhii;

Jji ¼ hDujDuii þ a2 M3hujuii;

Kji ¼ �Ta1=2hfjDWii;

Lji ¼ hDfjDfii þ ða2 þ xÞhfjfii;

where the inner product is defined as h� � � � � �i ¼
R 1

0 ð� � �Þdz.

The above set of homogeneous algebraic equations can have a non-trivial solution if and

only if

Cji Dji Eji Fji

Gji Hji 0 0

0 Iji Jji 0

Kji 0 0 Lji

����������

����������
¼ 0: ð33Þ

We select the trial functions as

Wi ¼ ziþ1 � ziþ2; hi ¼ zi � ziþ1

2
; ui ¼ ziþ1 � 2

3
ziþ2 and fi ¼ ziþ1 � 2

3
ziþ2; ð34Þ

such that they satisfy all the corresponding boundary conditions except the one, namely

D2W þMa a2h ¼ 0 at z ¼ 1, but the residual from this equation is included as a residual from

the differential equation.

At this juncture, it would be instructive to look at the results for i ¼ j ¼ 1 and for this order

Eq. (33) gives the following characteristic equation:

118 I. S. Shivakumara and C. E. Nanjundappa



Ma ¼ � ðg1 þ 2 xPrÞ
1575 a2h f ðzÞWhi

147 Ta

ðg2 þ 13xÞ þ 2ðg3 þ g4xÞ
� �

� 63 Nh f ðzÞW Dui
2g5

� 2 Nh f ðzÞWhi;

ð35Þ

where g1 ¼ 2 a2 þ 5; g2 ¼ 42þ 13a2; g3 ¼ a4 þ 28a2 þ 420; g4 ¼ 14þ a2 and g5 ¼ 42þ 13

M3a2.

To examine the stability of the system, we take x ¼ i x in Eq. (35) and clear the complex

quantities from the denominator of Eq. (35), to get

Ma ¼ � 1

1575a2h f ðzÞWhi
147Taðg1g2 þ 26x2 PrÞ

ðg2
2 þ 169 x2Þ

þ 2ðg1g3 � 2 x2g4PrÞ
� �

� 2Nh f ðzÞWhi � 63 Nh f ðzÞWDui
2g5

þ ixD; ð36Þ

where

D ¼ � 1

1575a2h f ðzÞWhi
147Tað2 g2 Pr�13g1Þ
ðg2

2 þ 169 x2Þ
þ 2 2g3 Prþþ g1g4ð Þ

� �
: ð37Þ

Since Ma is a physical quantity it must be real, so that it implies either x ¼ 0 or D ¼ 0ðx 6¼ 0Þ;
and accordingly the condition for steady and oscillatory onset is obtained.

The steady onset is governed by x ¼ 0 and it occurs at Ma ¼ Mas, where

Mas ¼ � g1

1575 a2 h f ðzÞW hi
147 Ta

g2

þ 2 g3

� �
� 2 Nh f ðzÞWhi � 63 N h f ðzÞW Dui

2g5

: ð38Þ

The oscillatory convection occurs at Ma ¼ Ma0, where

Ma0 ¼ � 2ða1a2
4 þ a2a4 þ a3Þ

1575 a4a2h f ðzÞWhi � 2Nh f ðzÞWhi � 63Nh f ðzÞWDui
2g5

: ð39Þ

Here a1 ¼ g1g2 � 26
169

Pr g2
2; a2 ¼ g1g3 þ 2

169
Pr g4g

2
2 þ 147

13
Ta Pr; a3 ¼ � 147

169
Ta Pr g4; and

a4 ¼ g1g4þ2 Pr g3

13g1�26 Pr g2
:

The corresponding frequency of oscillations is given by

x2 ¼ � g2
2

169
þ 147Ta

26g4

1� 2b1 Pr

1þ 2b2 Pr

� �
; ð40Þ

where

b1 ¼
42þ 13 a2

65þ 26 a2
and b2 ¼

a4 þ 28a2 þ 420

2a4 þ 33a2 þ 70
:

For the occurrence of oscillatory onset x2 should be positive and the necessary conditions

for the same are

Pr <
ða2 þ 2:5Þ
ða2 þ 3:23Þ and Ta >

26

24843
g2

2g4

1þ 2b2 Pr

1� 2b1 Pr

� �
: ð41Þ

It is thus evident that for the oscillatory onset to exist the Prandtl number Pr should be less than

unity as observed in the classical viscous liquids. But for most of the ferrofluids, whether they

are water based or any other organic liquid based, the Prandtl number is greater than unity and

hence the overstability is not a preferred mode of instability [12], [15].

In what follows we restrict ourselves to the case of steady onset and put x ¼ 0 in Eq. (33).

Now this determinantal equation leads to the characteristic equation giving the Marangoni
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number Ma as a function of the wavenumber a; basic temperature gradient f ðzÞ and the

parameters N, M3 and Ta. The inner products involved in the determinant were evaluated

analytically in order to avoid errors in the numerical integration. The critical Marangoni

numbers Maci ði ¼ 1 to 6Þ are obtained by minimizing respectively Mai ði ¼ 1 to 6Þ with respect

to the wavenumber a and thermal depth e (in the case of Models 2–4). Computations reveal

that the convergence in finding Maci ði ¼ 1 to 6Þ crucially depends on the value of Ta, and for

higher value of Ta more terms in the expansion given by Eq. (28) were found to be required.

The results presented here are for i ¼ j ¼ 8, the order at which the convergence is achieved, in

general.

4 Results and discussion

The linear stability theory is used to investigate the combined effects of Coriolis force and

different forms of basic temperature gradients on Marangoni ferroconvection in a rotating

ferrofluid layer. The lower boundary is taken to be rigid-isothermal and the upper non-

deformable free boundary is insulating to temperature perturbations. The Galerkin technique is

used to find the eigenvalues as this technique is found to be more convenient to tackle different

basic temperature profiles.

To know the validity of our solution procedure, first the critical values ðMac, ac, ecÞ obtained
from the present study under the limiting conditions are compared with those of Vidal and

Acrivos [20] and Lebon and Cloot [19] in Tables 1 and 2, respectively. The results tabulated in

Table 1 for different values of Ta are for f ðzÞ ¼ 1 and N ¼ 0 (i.e., Marangoni convection for

non-ferrofluids), while the results tabulated in Table 2 are for N ¼ 0, Ta ¼ 0 and for different

basic temperature profiles.

From these tables, it is evident that there is an excellent agreement between the present and

the previously published results. Further, it may be noted that an increase in the value of Ta is

Table 1. Comparison of Mac and ac for different values of Ta when N ¼ 0

Ta Vidal and Acrivos [20] Present study

Mac ac Mac ac

0 80 2:0 79:61 1:99

102 92 2:2 91:31 2:17

103 164 3:0 163:11 2:97

104 457 5:0 456:23 4:99

105 1400 8:6 1398:36 8:86

Table 2. Comparison of Mac, ac and ec for different basic temperature profiles when N ¼ 0 and Ta ¼ 0

Nature of temperature profile Lebon and Cloot [19] Present study

Mac ac ec Mac ac ec

Linear temperature profile 79:61 1:99 – 79:61 1:993 –

Piecewise linear profile heating

from below

78:1 2:03 0:96 78:1 1:980 0:959

Piecewise linear profile cooling from

above

42:62 2:25 0:675 42:63 2:259 0:678

Step function profile 34:3 2:305 0:815 34:27 2:226 0:813

120 I. S. Shivakumara and C. E. Nanjundappa



to increase Mac and ac, and thus having a stabilizing effect on the system (see Table 1). Also, in

the notation of the present study, it is noted that Mac4 < Mac3 < Mac2 < Mac4 indicating that the

non-uniform basic temperature gradients promote instability (see Table 2).

The results obtained for the complete problem for different basic temperature profiles (i.e.,

Models 1–6) are tabulated in Tables 3 and 4 for M3 ¼ 1 and 2, respectively, for different values

of Ta and N. A glance at the tabulated values reveals that the magnetic Rayleigh number has a

destabilizing effect on the system. In fact there is a strong coupling between the magnetic

Rayleigh and the Marangoni numbers. That is, when the buoyancy is predominant the surface

tension effect becomes negligible and the extent to which the surface tension effect is diminished

due to N depends on the form of basic temperature gradient f ðz), the nonlinearity of magne-

tization as well as on the strength of rotation. It can be seen that the surface tension effect

diminishes for Ta ¼ 0, 10 and 102 at a lesser value of N for M3 ¼ 1, while for Ta � 103 a similar

effect is noticed for M3 ¼ 2. Nonetheless, the critical Marangoni number increases with an

increase in the Taylor number and this indicates the presence of Coriolis force due to rotation is

to reduce the intensity of Marangoni ferroconvection. A comparison of critical Marangoni

numbers among different forms of basic temperature profiles shows that

Table 3. Values of Maci (i ¼ 1– 6) for different values of Ta and N when M3 ¼ 1

Ta N Mac1 ac Mac2 ac Mac3 ac Mac4 ac Mac5 ac Mac6 ac

0 0 79:61 1:993 78:16 1:978 42:63 2:259 34:27 2:226 130:91 1:844 56:91 2:075

100 68:57 1:969 66:34 1:949 30:93 2:117 17:96 1:969 119:05 1:845 45:06 2:028

183:625 59:22 1:951 56:18 1:929 20:33 2:034 0:0 1:905 108:84 1:847 35:02 1:939

334:900 42:06 1:924 37:13 1:901 0:0 1:934 90:35 1:854 16:56 1:900

468:234 26:67 1:906 19:58 1:890 73:82 1:865 0:0 1:939

610:840 9:95 1:892 0:0 1:898 55:88 1:882

694:631 0:0 1:888 45:19 1:895

1038:800 0:0 1:987

10 0 80:85 2:012 79:40 1:998 43:09 2:284 34:66 2:251 133:45 :862 57:71 2:095

100 69:86 1:989 67:78 1:970 31:49 2:141 18:56 1:994 121:67 1:863 45:91 2:049

186:840 60:18 1:970 57:12 1:948 20:56 2:055 0:0 1:927 110:97 1:865 35:52 2:014

340:530 42:80 1:944 37:82 1:920 0:0 1:955 92:16 1:873 16:84 1:960

476:595 27:13 1:926 19:94 1:911 75:25 1:885 0:0 1:921

621:740 10:14 1:914 0:0 1:921 56:94 1:903

707:263 0:0 1:910 45:99 1:917

1055:630 0:0 2:015

102 0 91:31 2:166 89:74 2:152 46:81 2:485 37:79 2:452 155:29 2:001 64:33 2:254

100 80:69 2:145 78:37 2:127 35:99 2:339 23:24 2:199 143:24 2:003 52:95 2:213

213:930 68:29 2:124 65:01 2:103 22:40 2:225 0:0 2:098 129:33 2:008 39:76 2:172

387:710 49:06 2:101 43:67 2:078 0:0 2:120 107:75 2:021 19:24 2:121

547:229 31:01 2:087 22:93 2:076 87:52 2:039 0:0 2:086

713:110 11:83 2:083 0:0 2:105 66:00 2:676

813:660 0:0 2:085 52:69 2:090

1193:430 0:0 2:234

103 0 163:11 2:971 160:43 2:952 66:36 3:605 54:48 3:541 329:35 2:718 107:81 3:086

100 154:23 2:956 151:13 2:936 59:04 3:461 44:59 3:365 316:94 2:721 98:48 3:059

405:813 125:98 2:924 121:10 2:896 32:34 3:135 0:0 3:080 277:49 2:741 68:93 2:996

716:400 95:47 2:912 44:03 2:944 0:0 2:995 234:75 2:780 37:30 2:965

1062:670 59:07 2:932 25:59 3:093 183:20 2:853 0:0 2:973

1334:430 28:41 2:974 0:0 3:132 138:95 2:941

1570:140 0:00 3:033 96:88 3:047

2025:880 0:0 3:352
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Mac4 < Mac3 < Mac6 < Mac2 < Mac1 < Mac5

for both ferro and non-ferrofluids. That is, the system is most unstable (i. e., augments con-

vection) in the case of step function type of basic temperature gradient because the jump in

temperature occurs nearer the less restrictive free surface, whereas the inverted parabolic type

of basic temperature gradient makes the system more stable. Thus, it is possible to control

Marangoni ferroconvection effectively by the choice of different forms of basic temperature

gradients including the effect of Coriolis force due to rotation. From the tables it is also noted

that the critical wavenumber decreases with the increase in the value of N but the decreasing

trend with N is not so significant, but an increase in the value of Ta significantly increases the

critical wavenumber. Hence the effect of an increase in Ta and decrease in N is to reduce the size

of the convection cells.

The variation of critical Marangoni numbers Mac2, Mac3 and Mac4 as a function of thermal

depth e showed that all of them decrease at first to a minimum value, and then increase steadily

with increasing e. The critical thermal depth ec obtained numerically for piecewise linear and

step function temperature profiles are listed in Table 5 for different values of Ta and N. It can

be seen that an increase in Ta is to increase ec, while an increase in N is to decrease the same.

Table 4. Values of Maci (i ¼ 1– 6) for different values of Ta and N when M3 ¼ 2

Ta N Mac1 ac Mac2 ac Mac3 ac Mac4 ac Mac5 ac Mac6 ac

0 0 79:61 1:993 78:16 1:978 42:63 2:259 34:27 2:226 130:91 1:844 56:91 2:075

100 68:98 1:979 66:77 1:959 31:21 2:137 18:60 2:069 119:32 1:851 45:44 2:044

194:744 58:76 1:969 55:64 1:947 19:47 2:065 0.0 2:071 108:19 1:860 34:41 2:019

342:630 42:53 1:959 37:52 1:938 0.0 2:003 90:54 1:879 16:89 1:989

482:545 26:85 1:957 19:42 1:952 73:49 1:904 0.0 1:971

624:260 10:63 1:964 0.0 2:996 55.83 1:938

715:481 0.0 1:973 44.21 1:966

1045:52 0.0 2:126

10 0 80:85 2:012 79:39 1:998 43:09 2:284 34:67 2:251 133:45 1:862 57:71 2:095

100 70:26 1:999 68:05 1:979 31:77 2:162 19:13 2:093 121:84 1:896 46:28 2:064

197:797 59:74 1:989 56:60 1:967 19:72 2:087 0.0 2:096 110:4 1:879 34:93 2:039

348:120 43:28 1:979 38:22 1:959 0.0 2:025 92:35 1:898 17:18 2:011

490:752 27:31 1:978 19:77 1:974 74:91 1:925 0.0 1:993

634:641 10:85 1:986 0.0 2:022 56:89 1:959

727:742 0.0 1:973 44:97 1:989

1060:770 0.0 2:155

102 0 91:31 2:166 89:74 2:152 46:81 2:485 37:79 2:452 155:29 2:001 64:33 2:254

100 80:98 2:154 78:74 2:137 36:19 2:357 23:33 2:284 143:54 2:009 53:25 2:228

223:195 68:02 2:145 64:69 2:124 21:75 2:261 0.0 2:295 128:83 2:023 39:35 2:202

394:100 49:59 2:140 44:12 2:121 0.0 2:200 107:93 2:049 19:62 2:179

559:742 31:22 2:147 22:68 2:148 87:05 2:084 0.0 2:171

720:941 12:82 2:165 0.0 2:221 66:05 2:131

830:388 0.0 2:185 51:33 2:172

1185:020 0.0 2:379

103 0 163:11 2:971 160:43 2:953 66:36 3:605 54:48 3:541 329:35 2:718 107:81 3:086

100 154:34 2:963 151:27 2:943 59:08 3:469 44:63 3:348 316:99 2:726 98:55 3:068

392:315 127:60 2:950 122:89 2:923 33:68 3:189 0.0 3:358 279:22 2:758 70:41 3:034

711:215 96:29 2:959 88:32 2:935 0.0 3:102 234:71 2:814 37:76 3:033

1054:550 59:65 3:003 43:28 3:035 181:78 2:909 0.0 3:076

1287.194 32:69 3:054 0.0 3:274 141:94 3:001

1546:810 0.0 3:136 92:15 3:138

1939:690 0.0 3:423
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