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Abstract

This paper describes the effect of 8 MeV electron beam on the forward current gain of space borne commercial indigenous bipolar
junction transistors 2N2219A (npn), 2N3019 (npn) and 2N2905A (pnp). The devices are exposed to 8 MeV electron in the biased con-
dition. The collector characteristics and Gummel plots are obtained as a function of accumulated dose. An excess base current model as
well as Messenger–Spratt equation have been used to account for the observed gain degradation. The results indicate that 8 MeV elec-
trons of high dose rate induce gain degradation by increasing the base current as well as decrease in collector current. The current gain
degradation appears to be predominantly due to displacement damage in the bulk of the transistor. Off-line measurements of the hFE of
the irradiated transistors indicate that the displacement induced defect and recombination centers do not anneal even at 150 �C.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The study of radiation-induced effects in semiconductor
devices, in general, is important both from the basic as well
as applied point of view. From the basic point of view, it is
important to have a broader understanding of the damage
process. From the applied point of view, it is important to
assess the device performance when they need to be oper-
ated in radiation environment. A number of non-radhard
versions of the devices from international vendors have
been characterized for radiation-induced effects for use in
space applications. However, several semiconductor
devices, which are not available in radhard versions, are
still being used in spacecraft systems. In the recent years,
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there is an increasing need for some space agencies to
employ indigenously made devices for space applications.
As a result, it is essential to characterize these for radiation
induced effects and qualify the parts for use in spacecraft
systems.

Discrete BJTs are still employed for space applications
due to their current drive capability, linearity and excellent
matching characteristics. One of the important aspect of
the characterization of BJTs for radiation-induced effects
is the radiation-induced gain degradation. The BJTs are
particularly found to be vulnerable to ionizing radiation
and transistor gain degradation is the primary cause for
parametric shifts and functional failures. Although there
are several studies looking into the mechanism of gain deg-
radation in BJTs subjected to radiation, a widely accepted
model accounting for the same has not emerged. The deg-
radation of the forward current gain in the bipolar junction
transistor when exposed to radiation is dependent on many
factors including the nature of radiation particulate and
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dose rate. The radiation-induced degradation is also found
to be dependent on the manufacturing technology. The
effects of ionizing radiation on vertical linear bipolar junc-
tion transistors have been studied extensively [1–6]. Vertical
npn transistors exhibit very significant gain degradation,
particularly when they are irradiated at low dose rates (less
than about 10 rad (SiO2)/s). In contrast, vertical pnp tran-
sistors are relatively hard to ionizing radiation [1].

The effect of c-radiation on BJTs is well understood. It is
known that there are basically two possible mechanisms
contributing to current gain degradation in transistors
exposed to c-radiation: (i) surface degradation and (ii) bulk
degradation. Nowlin et al. [1], Kosier et al. [2] and Schmidt
et al. [3] have proposed excess base current model for the
total dose effect in bipolar devices to account for current
gain degradation. This model is based on the Shockley–
Read–Hall (SRH) recombination theory. This model is
applicable to both npn as well as pnp transistors. Several
mechanisms have been proposed which may cause the cur-
rent gain degradation viz., (1) depletion of the p-type emit-
ter, (2) recombination at the base surface, (3) electron
injection into the emitter and (4) surface hole depletion.
However, due to competing nature of these mechanisms,
it is rather difficult to identify the dominant mechanism.

On the other hand, there are relatively less reports on the
displacement damage effects in discrete BJTs. Displacement
damage in silicon due to Co60 c-ray exposure can be ana-
lyzed in terms of the photon induced secondary electron
spectrum. The secondary electron spectrum of Co60 source
is known to generate secondary electrons in the energy
range 0.2–1 MeV. These electrons produce displacement
damage in the bulk of the semiconductor, which is analyzed
in terms of the Messenger–Spratt equation [4]. Several npn
type transistors have been investigated in the literature for
current gain degradation based on these arguments [5,6].
In general, the pnp type transistors are also expected to
exhibit the same type of degradation. However, it appears
that there is little experimental evidence to support this.
Dale et al. [4] have studied the high energy electron induced
gain degradation in terms of displacement of atoms. Burke
[7], Summers et al. [8,9] and Xapsos et al. [10] have studied
the displacement damage produced by high energy electrons
and neutrons. In this work an attempt is made to assess the
radiation response of vertical discrete npn and pnp transis-
tors manufactured in a indigenous technology from Conti-
nental Device India Limited (CDIL) in comparison with the
devices of similar configurations reported already in the lit-
erature. The study of the effect of high dose 8 MeV electron
irradiation on two npn and one pnp transistors has been
undertaken to identify the mechanism responsible for
device degradation and to compare their radiation tolerance
with the devices from international vendors.

2. Experimental

Electrons are a convenient form of laboratory radiation
and can simulate quite accurately the effect of high-energy
ionizing radiation. Discrete space borne indigenous com-
mercial BJTs of the type 2N2219A, 2N3019 (both npn)
and 2N2905A (pnp) of CDIL make have been investigated
for electron induced effects. All the transistors are switch-
ing transistors with standard configurations. The transis-
tors have been manufactured by diffusion process. The
transistors have vertical structure and silicon is used for
the emitter. The two npn transistors selected for the study
differ in dimension of the emitter and collector, base thick-
ness and doping concentration. The base thickness of the
transistors 2N2219A, 2N3019 and 2N2905A are 2.0, 3.3
and 1.8 lm respectively. However, the SiO2 oxide thickness
of all the transistors are the same (1.2 lm). The transistors
were exposed to 8 MeV electrons at Microtron Centre,
Mangalore University, Mangalore. The devices are
exposed to a beam of electrons in the biased conditions,
VCE = 10 V and IB = 50 lA. Exposure of the devices to
radiation with or without bias application should not have,
in principle, any effect on the degradation of the device
parameters. The transistors are decapped using a decap-
ping tool and the die of the transistor was exposed to the
electron beam [8,9]. Although 8 MeV electrons can pene-
trate the lid of the device (range of 8 MeV electrons in Sil-
icon is about 10 mm), the devices are decapped to eliminate
the energy loss of the electrons in the lid. The collector
characteristics and Gummel plots were obtained after every
100 krad accumulated electron dose and upto 500 krad.
After a dose of 500 krad, the next measurement was made
at 1 Mrad electron dose. All measurements of the electrical
characteristics were made using Keithley instrument
(Model No. 236) as a function of accumulated dose (the
electron beam facility was calibrated for dose instead of flu-
ence). The measurements are made immediately when the
beam is turned off after a particular accumulated dose.
To verify the reproducibility of the results, two transistors
of the same batch (date code) were exposed. The results
obtained are identical for both the devices. Hence, results
of only one transistor are presented here.

3. Results and discussion

The collector characteristics (IC versus VCE) of the
transistors at constant base current IB = 50 lA and
VBE = 0.65 V have been measured as a function of accumu-
lated electron dose. The collector current in the plateau
region decreases by about 4–7 mA as the accumulated elec-
tron dose is increased from 0 krad to 1 Mrad (these plots
are not shown). Fig. 1 shows the variation of collector cur-
rent as a function of accumulated dose for all the three
transistors at VCE = 2 V, VBE = 0.65 V and IB = 50 lA.
Gummel plots are also obtained by measuring the collector
current IC and base current IB as a function of VBE when
VCE is held constant at 5 V [3,11]. Fig. 2 exhibits the vari-
ation of collector current as a function of VBE for different
accumulated electron dose at a fixed value of VCE = 5 V.
The results show that there is hardly any change in the col-
lector current (even on an extended scale of the plot). The
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Fig. 1. Collector current (IC) as a function of accumulated electron dose.
The lines are guide to the eye.
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Fig. 2. Collector current (IC) as a function of base–emitter voltage (VBE)
for different electron dose (VCE = 5 V).
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Fig. 3. Base current (IB) as a function of base–emitter voltage (VBE) for
different electron dose (VCE = 5 V).
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Fig. 4. Base current (IB) as a function of base–emitter voltage (VBE) for
different electron dose (VCE = 5 V).
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other npn and pnp transistors also show no variation in the
collector current. Similar type of results have been obtained
when vertical pnp BJTs devices are exposed to 10 keV
X-ray and Co60 c-ray by Schmidt et al. [3]. But Ohyama
et al. have observed a decrease in the collector current
when npn Si transistors are exposed to 2 MeV electrons
[12] which is attributed to an increase in the collector series
resistance. Figs. 3 and 4 exhibit the variation of IB as a
function of VBE with increasing accumulated electron dose
for the npn and pnp transistors respectively. The other npn
transistor (2N2219A) also shows the same trend. The base
current IB is found to increase with accumulated electron
dose for all the three transistors.

The gain degradation in discrete bipolar junction tran-
sistors can basically occur in two ways: (1) degradation
by ionization and (2) bulk degradation. Degradation by
ionization is a surface effect and mainly occurs in the oxide
passivation layer, particularly the oxide covering the
emitter–base junction region. Degradation by ionization
(surface degradation) leads to increase in base current pri-
marily due to two mechanisms: (i) the accumulation of
trapped charges in the oxides, (ii) the accumulation of
interface states at the silicon–silicon dioxide interface
[3,11,13]. Increase in base current can also occur due to
total ionizing dose (TID) effect in the emitter–base region.

The increase in the base current can be defined as DIB =
IB � IB0, and is given by the expression

DIB ¼ DIB0 exp
qV BE

nkT

� �
;

where IB0 is the pre-irradiation base current, IB is the post-
irradiated base current and DIB0 is the intercept current in
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DIB versus VBE graph; q, VBE, k and T have usual meaning
and n is known as ideality factor which may vary with
base–emitter voltage and is extracted from the slope of
the plot of excess base current (1 < n < 2). Schmidt et al.
[3] have observed two distinct regions of ideality factors
with a transition from n = 1 to n = 2 in the total-dose
effects (TDE) in bipolar transistors. For npn transistors,
value of n between 1 and 2 (for VBE < 0.7 V) is attributed
to the surface recombination and n of 2 (for VBE > 0.7 V)
to the recombination peak being beneath the surface.

The excess base current as a function of VBE for npn and
pnp transistors are shown in Figs. 5 and 6. In the present
measurements, although there is little scattering of data
points above VBE = 0.6 V (possibly due to voltage fluctua-
tions and consequent measurement errors), clearly there is
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Fig. 5. Excess base current as a function of base–emitter voltage (VBE) for
different electron dose.
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Fig. 6. Excess base current as a function of base–emitter voltage (VBE) for
different electron dose.
no change in the slope of the plot of excess base current for
VBE values > 0.7 V. The observed value of n is 1.1 for
almost the entire voltage range. Further, as accumulated
dose increase, there is no significant change in n. Thus it
appears that both surface degradation at the oxide layer
as well as TID effect in the emitter–base region could be
contributing to the observed excess base current.

It is known that electrons with kinetic energy greater
than 220 keV can produce displacement damage in the
bulk of the transistor. This bulk damage generates various
types of defects, which could act as recombination centers
[15,16]. A detailed analysis of the nature of the defects and
their densities require a DLTS study of the emitter–base
junction. When recombination centers are created in the
base region of the transistor, it leads to increases the base
current by decreasing the minority carrier lifetime [13–
16]. The decrease in the minority carrier lifetime will be
reflected on the degradation in the forward current gain
of the transistor. Fig. 7 shows the degradation of forward
current gain as a function of accumulated electron dose
for all the three types of transistors.

The displacement damage factor is a measure of gain
degradation; it can be calculated using the Messenger–
Spratt equation. In our case displacement damage factors
for the all three transistors are calculated using the Messen-
ger–Spratt equation by converting the accumulated elec-
tron dose into 8 MeV electron fluence [17–19]. The
reduction in hFE with incident particle fluence is given by
Messenger–Spratt equation [4]

hFE ¼
hFE0

ð1þ hFE0kuÞ ;

where hFE0 and hFE are the gain values before and after
irradiation, u is the fluence and k is the displacement dam-
age constant. Fig. 8 shows the displacement damage factor
as a function of accumulated electron dose.
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It is well known in the literature that the gain degrada-
tion in discrete BJTs could occur due to both increased
recombination in the emitter–base region (TID effect) and
Table 1a
TESEC measurement results of the transistor of the type 2N2219A (npn)

Test item Biasing conditions Pre-irradia

hFE VCE = 10.0 V IC = 0.10 mA 92.85
VCE = 10.0 V IC = 1.0 mA 107.8
VCE = 10.0 V IC = 10 mA 116.5
VCE = 10.0 V IC = 150 mA 111.9
VCE = 10.0 V IC = 500 mA 65.34

Table 1b
TESEC measurement results of the transistor of the type 2N3019 (npn)

Test item Biasing conditions Pre-irradia

hFE VCE = 10.0 V IC = 0.10 mA 116.8
VCE = 10.0 V IC = 1.0 mA 49.38
VCE = 10.0 V IC = 10.0 mA 62.11
VCE = 10.0 V IC = 150 mA 90.47
VCE = 10.0 V IC = 500 mA 75.31
VCE = 10.0 V IC = 1.0 A 29.52

Table 1c
TESEC measurement results of the transistor of the type 2N2905 A (pnp)

Test item Biasing conditions Pre-irradia

hFE VCE = 10.0 V IC = 0.10 mA 187.1
VCE = 10.0 V IC = 1.0 mA 200.6
VCE = 10.0 V IC = 10 mA 210.1
VCE = 10.0 V IC = 150 mA 176.6
VCE = 10.0 V IC = 500 mA 102.6
increased recombination in the neutral base mainly by dis-
placement damage. The decrease in the collector current as
a function of accumulated dose shown in Fig. 1 and Gum-
mel plot shown in Fig. 2 seem to indicate that both TID-
induced damage and displacement damage in the bulk of
the transistor seem to contribute to the observed gain deg-
radation. To verify which of the two mechanisms is domi-
nant, off-line measurements of the gain of the transistors
after thermal annealing have been made.

Off-line measurements of the forward current gain for
all the three types of transistors have been made after the
devices are exposed to a maximum accumulated dose of
1 Mrad. The hFE of the devices are measured at different
biasing conditions. Off-line measurements are carried out
using the TESEC transistor tester unit. The values of pre-
and post-irradiation hFE along with hFE of post-irradiated
devices annealed at 150 �C for 2 h are given in Table 1. It
is seen that exposure of the devices to electrons, results in
considerable reduction in hFE. When the irradiated devices
are annealed at 150 �C for 2 h, the gain is found to recover
only very slightly. It is well known that the displacement
damage is rather permanent and do not anneal after
tion Post-irradiation 1 Mrad Post-irradiation,
1 Mrad, annealed
at 150 �C for 2 h

35.56 38.00
58.03 60.35
79.49 82.03
88.28 90.68
53.58 54.38

tion Post-irradiation 1 Mrad Post-irradiation,
1 Mrad, annealed
at 150 �C, for 2 h

16.82 16.86
49.38 49.89
62.11 62.53
90.47 90.14
75.31 76.12
29.52 30.53

tion Post-irradiation 1 Mrad Post-irradiation,
1 Mrad, annealed
at 150 �C, for 2 h

29.66 32.96
54.37 56.03
82.98 85.49
88.28 90.98
53.05 55.58
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thermal annealing upto 175 �C [13]. This suggests that suf-
ficient defect and recombination centers are produced in
the present devices when exposed to 8 MeV electrons.
The gain degradation of the transistors investigated thus
appears to be predominantly due to displacement damage
produced in the bulk of the device. The fact that the gain
of the transistors do not recover after annealing indicates
that the surface recombination and TID effect in the emit-
ter–base region perhaps contribute little to gain
degradation.

4. Conclusion

The indigenous commercial BJT’s of type 2N2219A,
2N3019 and 2N2905A degrade, when exposed to high-
energy electrons, as much as the devices of other vendors.
8 MeV electrons at high dose rate induce current gain deg-
radation by decreasing the collector current and increasing
the base current. There appears to be two competing mech-
anisms responsible for the observed gain degradation. The
decrease in the collector current may be attributed to the
displacement damage in the neutral base. The increase in
the base current may be attributed to the defects and
recombination centers generated in the emitter–base region
of the transistor. However, gain measurements after ther-
mal annealing at 150 �C indicates that the electron induced
defects and recombination centers do not anneal. Thus, the
observed gain degradation appears to be predominantly
due to defects and centers induced by bulk damage. Mea-
surements made at low dose rate of electrons would per-
haps give additional information on the mechanism of
gain degradation.
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