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Abstract

Angular distributions of elastic scattering and inelastic scattering frﬁmsmte are measured

for 160 4+ 142,144,148 systems at several energies in the vicinity of the Coulomb barrier. The
angular distributions are systematically analyzed in coupled channel framework. Renormalized
double folded real optical and coupling potentials with DDM3Y interaction have been used in the
calculation. Relevant nuclear densities needed to generate the potentials are derisba! fnomadel
wavefunctions. A truncated shell model calculation has been performed and the calculated energy
levels are compared with the experimental ones. To simulate the absorption, a ‘hybrid’ approach is
adopted. The contribution to the imaginary potential of couplings to the inelastic channels, other
than the % target excitation channel, is calculated in the Feshbach formalism. This calculated
imaginary potential along with a short ranged volume Woods—Saxon potential to simulate the
absorption in fusion channel reproduces the angular distribution@r- 146Nd quite well. But

for 160 4 142.144\d systems additional surface absorption is found to be necessary to fit the angular
distribution data. The variations of this additional absorption term with incident energy and the mass
of the target are explored.
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1. Introduction

In quasi elastic scattering of heavy ions at energies near the Coulomb barrier, the relative
motion of the interacting nuclei are known to be dominated by strong coupling between
the individual reaction channels [1-6]. These couplings, on the one hand, dynamically
polarize the real potential inducing a marked energy dependence of its strength around the
Coulomb barrier energies and, on the other hand, contribute significantly to the absorptive
potential for elastic scattering at large distances. The extraordinary energy dependence of
the real potential, the so-callebdreshold anomaly, was experimentally observed [7-10]
and was demonstrated to be dispersively connected with an increase with the energy of
the imaginary potential accounting for the increasing number of open reaction channels
absorbing the incident flux [11,12].

The threshold behaviour has been shown to occur in many heavy ion scattering systems
[13]. In recent years, several attempts have been made to understand the polarization effect
and its dependence on the structure of the colliding nuclei by evaluating the nucleus—
nucleus potential on a microscopic basis using the formalism proposed by Feshbach [14—
19]. In a microscopic approach to the optical potential, the real part is derived by folding
an effective nucleon—nucleon interaction with the densities of the colliding nuclei. The
folding model, incorporating the structure informations directly in the evaluation of the
real potential, is widely and successfully used for describing the heavy ion elastic scattering
[20-23]. To derive the imaginary component microscopically several methods have been
adopted [1,24-27]. Of these the model proposed by Vinh Mau et al. [27] calculates the total
Feshbach potential considering all possible closed and open channels through the closure
approximation. A fairly good agreement was observed between the calculation and the
experiment for systems lik€O + 298pb, 325 + 40Ca and®>37Cl 4- 2“Mg [16,28-32]. The
model has been further modified by Pacheco et al. [16], for the conditions where a reduced
number of channels control the absorption. When the energy of the collision is close to the
Coulomb barrier and the colliding systems are deformed, it has been demonstrated that it
is necessary to calculate the polarization potential contribution separately for each of the
dominant nonelastic channel. In a detailed investigation on a number of different systems,
both deformed and spherical, it was observed that the microscopic imaginary potential
having contributions from the dominant inelastic excitations only is sufficient to reproduce
the total absorption in strongly deformed systems [17]. Whereas for spherical and weakly
deformed systems the corresponding absorption, localized in a narrow surface region, is
weak and necessitates the introduction of a long range absorptive term representing the
absorption in transfer channels. However, elastic scattering is unlikely to be very sensitive
to the absorptive potential near the barrier. On the other hand, inelastic scattering or transfer
reactions where the wavefunction plays an important role, will be more sensitive to the
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details of the potential. Hence, a simultaneous description of elastic and inelastic angular
distributions will be of further interest.

In our present study, we made an attempt to describe the elastic and-firstlastic
angular distributions fol80 +142.144.14fd systems measured around the Coulomb barrier
energies using the microscopically derived potentials, both real and imaginary, in a coupled
channel (CC) framework. The measurements have been performed at incident enegies
of 65, 70, 74 and 78 MeYV, i.e., from the top of the barrier to about 12 MeV above.
In the CC calculation, the renormalized folded M3Y potential has been used as the real
potential and the imaginary component is derived from contributions from different target
and projectile excitations following Pacheco et al. [16,17]. Since explicit coupling to the
first 2t state is considered, the microscopically calculated imaginary component will not
contain the contribution from this excitation channel. In these Nd isotopes, the nucleus
144Nd represents an intermediate step in shape transition from spherica**’Nd with
N = 82 neutron shell closed to the transitional-vibrational nuckdsd [33]. These
nuclei with large transitionaB (E2) values are quite soft towards quadrupole excitations.
Hence, the excitation to the first™2state will be one of the major contributors in the
derivation of imaginary potential. Thus the CC analysis with an imaginary potential not
containing the contribution of the dominant 2xcitation will provide a suitable basis to
explore the effect of other couplings in the absorption process. This is especially true at
near barrier energies where only a few of the reaction channels contribute in producing the
absorption.

The other important aspect of this study is the determination of the coupling potential
corresponding to© — 27 transition in the CC analysis using the folding model approach.
The necessary transition density is derived frédm| model wavefunctions. A truncated
shell model calculation has been performed to obtain the occupation probabilities and the
one body density matrices (OBDM) for constructing the densities. In recent years several
shell model calculations have been carried out fNd nucleus as a member of the
N = 82 isotones [34-37]. However, to the best of our knowledge, no such calculations
have been reported féf*Nd and*®Nd isotopes with two- and four-valence neutrons over
the N = 82 closed shell. A section with the details of the calculation has been included and
a comparison of the calculated energy levels with the experimental energy values has been
shown.

The paper has been organized as follows. The introduction will be followed by a
description of the experiment in Section 2. The details of the derivation of the densities,
the potentials and the analysis of the data with the derived potentials will be provided in
Section 3. Finally, we will discuss and summarise our observations in the last section.

2. Experimental set-up

The experiment was carried out using the 15UD Pelletron Accelerator at Nuclear
Science Centre (NSC), New Delhi®O beam was produced in a SNICS ion source,
accelerated (in the energy range 65—78 MeV), momentum analysed and allowed to impinge
on Nd targets. Beam current was maintained between 5 to 40 pnA. The neodymium targets
were made by vacuum evaporation of enrich&d14414fid oxide sandwiched between
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Table 1
Thicknesses of different isotopically enriched targets
ISOTOPE Enrichment Thickness of Thickness of Thickness of
% carbon backing neodymium oxide coating carbon layer
Hg/cm? Hg/cm? Hg/cm?

142Ndy 05 98.26 177 57.6 3.0

144Nd,05 97.51 100 45.0 3.0

146N d,04 97.63 60 45.0 25

two carbon foils [38]. Thickness and the enrichment of the neodymium targets are given in
the Table 1.

The angular distribution of the elastic and inelastic scattering was measured in a General
Purpose Scattering Chamber (GPSC) [39] of diameter 1.5 m. Ten silicon surface barrier
(SB) and passivated ion implanted planner surface (PIPS) detectors of 300 um depletion
depth were used and arranged in two movable arms on both sides of the beam axis. The
average effective solid angle subtended by each silicon detector was between 3.5 msr
to 7.5 msr. Two monitor detectors (300 um) were placed symmetrically 4918 on
either side of the beam. The monitors subtended an angle ©&0tBe target. An entrance
collimator of 2 mm diameter was used at a distance of 10 cm from the target. The beam was
properly steered to keep the elastic peak count in the two monitor detectors identical within
5%. Standard electronics were used, and the list mode data was recorded in a Micro-VAX
computer using the data acquisition programme ONLINE.

The incident energies chosen were 65, 70, 74 MeVf® on 142Nd and 65, 70,

74, 78 MeV for160 on 144140 d. The angular distributions were measured at angles

in the region from 30 to 164 (in lab.) in steps of 2to 6°. A few overlapping angles

were used for different detectors to check the consistency of the data. The results of such
measurements (properly normalised for solid angle) agree within statistics. Typical spectra
are shown in Figs. 1 and 2. In the spectra, peaks marked as ‘Ta’ are due to the contamination
from tantalum crucible used for vacuum evaporation of neodymium targets. However, the
Ta peaks were kinematically well separated from the elastic peaks of the Nd isotopes at
all the measured angles. The overall resolution obtained in different detectors varied from
250-450 keV.

The absolute cross section values were obtained by normalising the yield to the monitor
counts under the elastic peak. The cross section at the monitor angle is well described by
Rutherford cross section. The absolute error is estimated to be less then 10% for elastic
and 20% for inelastic data. The relative error is found to be less than 5%.

3. Analysis

The model potential used in the coupled channel (CC) analysis has the form
U(E,R)=[Vo(E,R) + AVR] +iW(E,R) + Vc. @)

Vo(E, R) is the average interaction between the two nuclei in the absence of any excitation
and includes the exchange terms that arise from antisymmetrisation between the two
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Fig. 1. Energy spectrum of particles from the elastic and inelastic scatterﬂfﬁpaﬂn 142Nd at Bap =70 MeV
and 6jap = 93° (top) and scattering of%0 on 144Nd at By, = 74 MeV and6y, = 68° (bottom). The peaks
marked Ta are from tantalum contamination.

ions resulting in weak energy dependencé/gf The real polarization parA Vr(E, R)
originates from the coupling of elastic channel to other nonelastic channels and it has
the contributions from both thepen and closed reaction channels. The imaginary part
W(E, R), to start with, is composed of two components

W(R, E) = Wr(R) + Wres(R, E), )

whereWses(R, E) is the imaginary polarization potential and it depends on the number of
open reaction channels. Details of the calculation of this microscopic imaginary potential
is given in a following sectionWg(R) has a squared volume Woods—Saxon form and is
chosen to simulate the ingoing wave boundary condition for fusion. This interior imaginary
potential has the parametersigp = 60 MeV, rg = 1.0 fm andar = 0.4 fm. This potential
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Fig. 2. Energy spectrum of particles from the elastic and inelastic scatterﬂfﬁpaﬂn 146Nd at Bap =70 MeV
andfjap = 66° (top). The peak marked Ta is from tantalum contamination. The angular detector spectrum at an
extreme backward angle is shown in the figure below.

has not been varied with incident energy. The sa¥es used for all the three isotopes.
Ve in (1) denotes the Coulomb potential.

3.1. Folded potentials

The real parts of optical potential and the transition potential are calculated by folding
an effective two-body interaction with the relevant densities of the two interacting nuclei.
The energy-dependent direct and exchange components of the potential are expressed as
[20,22],

Vo(E,R) = f 1t D P2t Vo, E. ) d%r dPra. 3
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Vex(E, R)=/pl(r1,r1+r)p2(r2,r2—r)v %0, E r)e 2 43 d%r, 4)

where p; (r;),i = 1,2, denote the densities of respective nuclei azB@JEx(p, E,r) is

the energy- and density-dependent direct/exchange component of the effective nucleon—
nucleon interaction. The coordinate is equal tor, — r1 + R, whereR is the centre to
centre separation between the two interacting nuk(®), the relative motion momentum,

is expressed as

2mM
K(R) = %[Ecm — V(E,R) - Ve(R)], (5)

with M the reduced mass; the nucleon mass in MeV., the centre-of-mass energy and
E the incident energy in laboratoryc(R) is the Coulomb potential and(E, R) denotes
the direct component of the folded potential.

The direct and the exchange components have been derived using the folding formulae
in momentum space as detailed in Ref. [20]. In the derivation of the exchange potential
Vex(E, R), however, we have chosen a closed expression for the potential in terms of a
series expansion of the Bessel functions [21]. The approximation yields equivalent result
as obtained in the iterative procedure, especially for the energy domain chosen by us where
the scattering is more sensitive to the potential at large radius.

3.1.1. Theinteraction

The semi-realistic M3Y interaction [40] is chosen as the effective nucleon—nucleon
interactionv™ in the present analysis. The interaction has been applied to heavy-ion
scattering at energies above of 5 MaWicleon with reasonable success [20—22]. The direct
part of the interaction is given as

e e—25r
o) = 79990 + 213425 (6)
A finite-range interact|on term [20]
n 74r 72 5r 70 7027
= 46318 1787. 13 7. 84747 7
vEx(r) & 25 © 0.702% 0

has been adopted to calculate the exchange contribution in the potential. The effect
of density dependence, though not so prominent for extremely peripheral collisions, is
included as an exponentially varying multiplicative factor

F(p) =c[1—|—oce_ﬂp] (8)

with ¢ = 0.2845,« = 3.6391 and8 = 2.9605 fn?* [20,41]. The density in the expression

is the sum of densities of the colliding nuclei at midpoint of the internucleon distance.
Finally, the interaction is made to depend explicitly on energy through an additional
producttermg(E) = (1 — 0.002E) [20,41].

3.1.2. Shell model calculationsfor nuclear densities
Nuclear ground-state and transition densities are determined from the shell model
wavefunctions. The code OXBASH [42] has been used to generate the wavefunctions.
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We have defined thenodel space, in the shell model calculation, to consist of
spherical single particle orbitals frolN = 4 oscillator shell (162, 0g7,2, 1d3/2, 251/2)
plus the intruder Ofy/, orbital from N = 5 oscillator shell for 10 valence protons
of Nd isotopes overZ = 50 closed shell and orbitals fronv = 5 oscillator shell
(Ohg2, 1f7/2, 1f5/2, 232, 2p1£{2) plus the intruder orbital @3> from N = 6 shell for
the valence neutrons éf414fd isotopes ovelV = 82 closed neutron shell. TH&2Sn
(Z =50, N = 82) is taken to be the core. Thmodel space is coded asZ50N82 in
OXBASH.

However, a full scale shell model calculation with a large basis being not feasible with
our available computational ability, we have followedrancation scheme, as described
in Ref. [43], in the present analysis. A partitiehthat specifies a set of occupancies for
the orbits under consideration is defined. The proton and neutron orbitals outsldéthe
(Z =50, N = 82) core are included in this partitidh as:

P=[m{(sy2)"*, (ds/2)"2, (d3/2)7>, (g7/2)"*, (h11/2)"°}

x v{(he/2)", (f772)"2, (fs2)"2, (32", (p12)"°, (i13/2)"°}]. 9

where p(i) andn(i) are the numbers of protons and neutrons respectively, occupying

the orbitals. Table 2 shows the restrictions imposed for diffeRergartitions in the

shell model calculation. One advantage of this procedure is that, since only the most

dominant partitions are considered for a particular state, the renormalization wiche

body interaction to incorporate the effects of the neglected partitions need not be large.
The effective interaction used in the shell model calculation is codedG&5082 in

OXBASH. TheCW5082 interaction originated frorKH5082 interaction [44] on replacing

the protonV = 4 two-body matrix elements (TBME) with the effective interaction of Kruse

and Wildenthal [45]. The KH5082 interaction utilizes the TBME of bare particle—particle

and one particle—one hole (1p1Hiubble’ Kuo—Herling (KH) interaction [46—48].

Ezlfezstrictions imposed on different subshells (partitions) in the shell model calculation
PIN Orbitals 142Nd 144Nd 146Nd
Max. Min. Max. Min. Max. Min.
Proton 1y 8 6 8 7 8 7
2d; 4 0 2 0 2 0
2d§ 4 0 2 0 2 0
3512 2 0 2 0 2 0
2h211 4 0 2 0 2 0
7
Neutron 1hy 2 0 4 0
2f12 2 0 2 0
2f; 2 0 4 0
3p2;s 2 0 4 0
Spi 2 0 2 0
i 2 0 4 0

=
NS N
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The single particle energies used in the calculation are taken from experiment ([44]
and references therein). The values usedsarg7,2) = —9.5958,¢(wds/2) = —8.6755,
8(7Td3/2) = —6.9352,¢(ms1/2) = —6.9278,8(7Th11/2) = —6.8379,8(\)hg/2) = —0.8950,
e(vfz7/2) = —2.38,e(vf5/2) = —0.89, e(vp3/2) = —1.625,e(vp1y2) = —1.16,(virz/2) =
—0.29 MeV. The resultant energy levels are shown in Fig. 3 along with the level scheme
obtained from experiment.

The calculatedoccupation numbers of all the fully or partially occupied valence
orbitals are given in Table 3. These numbers have been used with single particle radial
wavefunctions generated by a bound state potential of the Woods—Saxon form plus a
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Fig. 3. The experimental and theoretically calculated (shell model) energy level diagrafid-fd14&d.
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I:aatIJ(I:ilited occupation numbers in the ground states of neodymium nuclei
P/N Orbitals Nucleus
142N 144N 1467

Proton lg 7.981 80 8.0
2d; 1.732 1793 20
2d§ 0.043 Q031 Qo
3le 0.037 Q019 Qo
2h21_1 0.208 Q157 Qo

Neutron 1@2 0.0 0.192 1002
2f72 0.0 1238 16
2f§ 0.0 0.15 0848
3p2§ 0.0 0.129 Q172
3pi 0.0 0.044 Q379
1 1723 0.0 0.247 Qo

Table 4

Woods—Saxon potential parameters used to calculate the single particle wave functions

N/P Vo o ag Vso I'so aso rc

MeV fm fm MeV fm fm fm
Proton 59.312 1.268 0.802 6.0 1.10 0.65 1.218
Neutron 47.397 1.243 0.723 6.0 1.10 0.65

standard spin—orbit potential to construct the ground state densities of the isotopes. The
bound state potential parameters, shown in Table 4, are used in an orbit independent
method. We have searched for appropriate single particle binding energies by keeping the
parameters same for all the orbits. Tdre body density matrices (OBDM) (DS. L, i=p,N)

derived from shell model wavefunctions and listed in Table 5, are usec{ in the computer
code DENS [49] with the same bound state potential to generatetthe @+ transition
densities.

Tassie Model [50] is assumed to calculate the core polarization contribution. The
coefficients obtained are suitably adjusted to reproduce the experimental electric transition
rates. In the present study, effective chargespof 2.1¢ anden = 1.1e are found to be
necessary for all the three isotopes. The values of the effective charges are on the higher
side possibly because of the truncation used for the configuration space. A comparison
of estimatedB(E2) values with the experimental data is shown in Table 6. A shell model
calculation for the doubly magi®0 is also performed to obtain the required ground state
density.

The calculated nuclear densities, ground state as welfas @™ transition densities
of 1421441484 jsotopes are shown in Figs. 4 and 5. The charge transition densities
from inelastic electron scattering experiments [33,51,52] are shown in Figs. 5(a), (c), (d)
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Table 5
One-body transition density matrix elements calculated for theo®2* transitions

j_j/ 142Nd j_j/ 14409 146Nd

D D" D D" D D"
Ji’ i’ Ji’ i’ Ji’ Ji’

7 7 5 5

53 —0.00262 - 3-3 —0.74372 - 0.69490 -
7.5 5 3

-3 ~0.05103 - 3-3 0.00008 - - -
7_3 51

7-3 0.00074 - 3-3 ~0.00025 - - -
5 7 3.5

-3 0.00461 - 5—3 —0.00057 - - -
55 3 3

3-3 0.00812 - 3-3 0.00085 - - -
5 3 3.1

3-3 0.07128 - 3-3 0.00013 - - -
5 1 15

3-3 0.46005 - -3 ~0.00171 - - -
3.7 1.3

3-2 —0.04333 - 3-3 —0.00011 - - -
35 11 11

3-3 0.00872 - 4.1 000284 - - -
3.3 9 9

3-3 —0.01636 - 3-3 - -0.01117 - 0.20812
3-3 0.36517 - -3 - ~0.21163 - 0.38532
1.5 55

3-3 0.00719 - 3-3 - —0.00991 - 0.17206
-3 0.04136 - 3-3 - ~0.01378 - 0.01648
11 11 13_13
g4 _oo00262 - e - —0.01875 - -
Table 6
Experimental and calculated (shell model) transition rates for neodymium isotopes
Nuclei N z B(E2) (€2 fm%) Mp (e fm?) Mn (e fm?)

Expt. Calc. Calc.

142\q 82 60 2818 2908 —5393 —35.95
144Nd 84 60 4608 3683 —60.69 —5374
146N 86 60 6916 7745 —8801 —97.47

2 Ref. [52];

b Ref. [51];

¢ Ref. [33].

with open circles. The calculated point proton distributions reproduce the shape of the
experimental data quite well at large radius but underestimate the magnitudes slightly.
It is to be noted that42Nd being a spherical nucleus witN = 82 closed neutron
shell, the excitations, especially the low-lying excitations will mostly involve the proton
configurations. With 2 and 4 valence neutrons, respectively, the excitatidfid\d and

146N d, on the other hand, will receive increasing contributions from neutron configurations.
The feature is distinctly evident in Fig. 5(b) where the behaviours of neutron transition
densities for 0 — 2 excitations in142144.14d have been compared at large radial
values. The prominent surface peaked distributions of the transition densities in these
isotopes indicate the dominant collective nature of the fitse&citations. In an attempt

to estimate the accuracy of our shell model calculations, we plotted, in Fig. 6, the quantity
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Fig. 4. The ground state density distributionsl80 and142:144.14§d using shell model wave function. Here p
and n represent the proton and neutron distributions, respectively.

9, the ratio of transition matrix elemenﬁpp and Mqq derived from (p, ) and (d, d)
scattering [53], as a function of mass number This ratio in turn depends upon the
neutron and proton transition matricé% andMp. The calculatedk using the shell model

My, and My values for each mass lies within the range of experimental errors. However,
the experimental points (bullets) and quasiparticle phonon model (QPM) calculations
(box) denote the mean value of the ratio over the ensemble of transition matrix elements
determined for a given mass. We calculafednly with matrix elements for quadrupole
excitation of 0" — 2T,
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Fig. 5. The transition density distributions &#2:14414&d using shell model wave function along with the

electron scattering data taken from Refs. [33,52,53]. Here dotted and dashed-dotted lines represent the neutron
and proton distributions, respectively.

3.2. Theimaginary Feshbach potential

In the model proposed by Vinh Mau [27] based on Feshbach formalism [14], the
generalized optical potential for elastic scattering at enérggn be written as

Vopt(E, 7, 7")

(@olV |®o) + (PolV O

Vo+ AV,

E—Hgpgp+ie

QV|®o)

(10)
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Fig. 6. Ratios {t) of quadrupole transition matrix elements frg¢p p’) and(d, d’) experiments (black dot) with
QPM (box) and shell model (triangle) predictions.

where &g is the ground state wavefunctiof, is the projection operator that projects
off the open channeld{ is the total Hamiltonian and is the interaction operator. The
generalised potential, thus, can be expressed as a sugmtbe double folded potential and
AV, the polarization potential coming from the coupling of non-elastic channels (included
in the Q-projection of the channel space) to the open channel (here the elastic channel).
The termAV is complex, non-local and energy dependent in nature with the imaginary
AV contributing the absorptive potential required in the optical model analysis.

In the weak coupling limit, one can write the polarization potential for inelastic
excitations as [16]

AVt = VIO Ga(r, 1) Va(r), (11)
a#0

wherea denotes the possible inelastic excitation channels. @hé,r’) is the Green'’s
function for propagation of the system in chanaebnd can be approximated by the
WKB propagator [27].V,, denoting the transition matrix element for a statef angular
momentumk and projectioru, can be written as shown in Ref. [16],

Vo(r) = () e (0 (12)

1
Vor+1
Whereff“)(r) represents the nuclear form factor for the statd angular momenturi. In
our analysis the form factor has been determined from Copenhagen potential [54] assuming
vibrational excitations and taking the derivative of the potential as the formfactor. The
strengths of the target excitation channels are taken from [53] while those for the projectile
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excitations are from [17]. The local equivalent of V™ (r, r’) in the case of weak non-
locality can be written as

. M
IMAV™(R) = Wies(R) = ——— 3 ()L (R), (13)
2nkh Pty

where ﬁi‘;‘) denotes the strength of excitation of nuclgugtarget or projectile) with
multipolarity A in channek. The integration/, (R) corresponding to channelis given

by
2R

I(R) = / a’se(_""”sin(ks)sin(kas)[aU ‘)

or

aU“(r)

r=R+s/2 or

] (14)
r=R—s/2

in terms of the coordinate® = %(r +r’yands=r —r’ with

mM

mM Wres(R)
= T (15)
El=Ey+ Vo(R) + AV(R) + Vc(R). (16)

The local momentuni(R) is given by Eq. (4) andr is the reduced mass arM is the
nucleon mass in MeV. We derived theV polarization potential fof%0 + 142:144.14Rq
systems at necessary energies following the prescription of Pacheco et al. [16]. The
derivation included the dominant target inelastic excitations up to 3 MeV energy below
which the excitations are primarily one-step in nature and the(&13 MeV), 2

(6.92 MeV) and 2 (11.52 MeV) states of projecti®?O. The potential contributions of

these channels are evaluated term by term. The calculated imaginary Feshbach potentials
Wres(R) for 160 4 142.14Nd have been shown with dotted lines in Fig. 10.

3.3. Coupled channel calculation with Feshbach potential

In the evaluation of complex polarization potential/ at each energy, described in
the previous section, only the open channels contribute to produce the imaginary part. On
the other hand, all the open and closed channels contribute to form the real polarization
potential. Since, we included only the dominant open inelastic channels to produce the
necessary absorption of flux from the elastic channel, the effect of polarization of real
potential was incorporated through a renormalization factor and the effective real potential
was, therefore, of the form

Vo + AVR = AR(E) Volded- (17)

In the coupled channel (CC) calculation, performed with the code ECIS94 [55], we have
considered explicit coupling to first'2state of Nd target. In the first step, we analysed
the data with the renormalizable folded real potential and the two component imaginary
potential of Eqg. (2). The imaginary renormalization factprfor Wses was set equal to
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unity. The folded transition potential for'0— 2f transition was used as the real nuclear
coupling formfactor. As there is no standard prescription available for imaginary coupling
potential, we assumed the imaginary formfactor to be of the same shape as the real one
but its strength was reduced by 50% [56]. The normalization constants of unity and 0.5 for
real and imaginary coupling potentials respectively were kept constant throughout the CC
calculation. Thus in the CC analyses willg + Wies the only variable parameter was the
real renormalization factoxrg. We varied the factorr(E) to obtain simultaneously good

fit to the elastic and inelastic angular distributions. The resulting fits to the data are shown
in Figs. 7, 8, 9 with dashed lines. Reasonably good fits to the angular distributions at all
the energies are obtained f§i0 + 1*5Nd but for160 + 142.14Nd systems the calculated
angular distributions show steeper fall off at large angles compared to the data. From
Figs. 7 and 8 it is to be noted that the calculated angular distributions for both elastic

1604+142Nq
17
=
E
G
2
O
=
1100
410!
E 102
(x102) ]
2+ ]
104 1.576 MeV
3 ] \
1 L 1 L 1 L 1 I L I L L L | 10-3
40 80 120 160 40 80 120 160

0, (deg.) 0., (deg.)

Fig. 7. Coupled channel calculations (solid curves) for elastic and inelastic angular distributiéas-ef42Nd
system. The dashed curves represent the angular distributions obtained from coupled channel calculation without
the surface imaginary terni{(g).
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Fig. 8. Same as Fig. 7 but f6PO + 144Nd.

and inelastic scattering over predict the data arabgd = 80°. On the top of the barrier at
65 MeV, the imaginary potentidVr + Wies reproduces the elastic data quite well but not
the inelastic angular distributions. For the relatively deforrféid target, on the other
hand, the microscopically calculated imaginary potential due to inelastic excitations, along
with W, seems to be sufficient to generate the overall absorption at all the energies. The
best fit values of the real renormalizations for all the cases are shown in Table 7.

To investigate further this lack of absorption, we introduced a phenomenological surface
Woods—Saxon potential to enhance the absorption in the large radial region as was done by
Pacheco et al. [17]. The total imaginary potential now consists of three terms

W(R, E) = Wr(R) + Wres(R, E) + Ws(R, E). (18)

All the data were refitted with this new imaginary potential. Same optical potential was
used for both the channels considered in the coupling scheme. In this step, we fitted first
the 78 MeV data fot%0 + 144140 d and 74 MeV data fot%0 + 142Nd systems. All the

four parameters, i.eAg and (WSO, Rs, as) were varied simultaneously to obtain the best fits.
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Fig. 9. Same as Fig. 7 but f6P0O + 146Nd.

The resulting parameters are also given in Table 7. Subsequently to reproduce the lower
energy data we kept the radius parameter of the surface potential fixed to that obtained
from the search over the highest energy data. Therefore, only two parameters were varied
in the search procedure to fit the lower energy data. The fits to the data at all the incident
energies for both®0 + 142.14Nd systems improved significantly except for the inelastic
angular distributions at 65 MeV. The effect of introducing the additional surface absorption
was found to be minimum for more deform&D + 146Nd system.

In Fig. 10, the imaginary potentials resulted from the simultaneous fits to the elastic
and inelastic data fof%0 + 142140 d have been shown. It is clear from the figure that the
empirical surface absorption term has a longer range compared to the Feshbach absorptive
potential and peaks on or beyond the taigts(R). It is difficult to ascertain exactly the
type of reaction channels contributing to this additional teWs was constructed with
contributions from target excitations upto 3 MeV having significant transition probabilities.
Altogether 9 excited states 6#2Nd and 13 excited states each'6fNd and'4éNd were
considered to calculate the Feshbach potentials. Contributions from states with still higher
excitation energies may have some non-negligible effect. For instant®Nd there are
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Table 7
Best fit parameters obtained from coupled channels calculations WitB0 coupling ¢c = 1.25 fm)
System Elab AR N wo Rs as 022 (eb)
160 4 142nd 65 1.42 1.0
1.32 1.0 2.70 10.508 0.257 -0.20
70 1.26 1.0
1.18 1.0 4.02 10.508 0.335
74 1.35 1.0
1.05 1.0 2.14 10.508 0.462
160 4 144Nd 65 1.26 1.0
1.19 1.0 1.68 10.541 0.492 —0.39
70 1.15 1.0
1.18 1.0 7.03 10.541 0.304
74 1.14 1.0
1.02 1.0 3.05 10.541 0.402
78 1.20 1.0
1.06 1.0 271 10.541 0.426
160 4 146Nd 65 1.36 1.0
1.19 1.0 0.75 10.568 0.492 -0.72
70 1.18 1.0
1.07 1.0 0.19 10.568 0.919
74 1.05 1.0
1.04 1.0 0.11 10.568 0.919
78 117 1.0
1.02 1.0 0.34 10.568 0.919

Note: The imaginary potential in all the cases includes a squared vol. WS potﬂfpijawg = 60.0 MeV,
rg = 1.0 fm andag = 0.4 fm.

at least six states within 3 to 4 MeV excitation which have reduced isoscalar transition
probabilities in the range of 2 to 9 Weisskopf units and these states have non-negligible
contributions. But, the collective contribution of these omitted states peaks near 9.5 fm
and falls off to insignificant values near 11 fm. The excitations of projetfile besides
those considered do not contribute at those large radius values. Thus the empirical surface
imaginary potentiaWs which peaks at larger radius-(11 fm) originates predominantly
from channels other than the omitted target excited states. We assume that this long range
surface absorptive potential, necessary to fit¥#f@d and1#*Nd angular distributions,
simulates the absorption in transfer channels. Also the effect of this transfer absorption is
more prominent close to the barrier energy and decreases as the incident energy increases.
It is to be noted that the observed lack of absorption is quite prominent in the inelastic
channel as well for all the incident energies except near the top of the bariéer leV).
The improvement in the optical potential with the additional surface absorptive potential
also improved the fits to the measured inelastic angular distributions. We included the
reorientation coupling term in the coupled channel calculation in an attempt to improve
further the fit to the inelastic data. The quadrupole moment values used [57] are shown in
Table 7. But the inclusion of reorientation coupling term did not produce any significant
change on the inelastic angular distributions. However, it is obvious from the fits that the
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Fig. 10. Imaginary potentials used in the CC calculation}® + 142:144Nd. The dashed line represeni,

the interior fusion potentialWses, the Feshbach potential, and the empirical surface absorptive potéfgiate
represented by dotted and dashed-dotted curves, respectively.

microscopic @ — 2% nuclear form factor derived from the shell model wavefunctions
provide reasonably good description of inelastic scattering data.
4. Summary

The angular distributions of elastic and inelastic scattering téo 160 + 142:144.14fg
systems have been measured in the vicinity of the Coulomb barrier (65 to 78 MeV)
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and analysed in a systematic way using a coupled channel formalism with the necessary
potentials derived from a microscopic consideration. Attempts have been made to
simultaneously reproduce the elastic and inelastic angular distributions.

The microscopic approach to the analyses is based on two aspects. Firstly, we performed
a truncated shell model calculation to obtain the ground state éineb@f transition
densities. The shell model calculations with the chosen basis is quite successful in
reproducing the experimental level schemes of neutron shell cidddd isotope as well
as*Nd and!“®Nd nuclei with two and four valence nucleons respectively. The resulting
transition densities and transition matrix values describe the experimental data reasonably
well (Figs. 5 and 6). The derived densities are subsequently used to fold the density and
energy dependent effective M3Y interaction. With the renormalization factors these folded
diagonal and off-diagonal potentials are used in the coupled channel consideration. The
fits to the inelastic scattering data justify the use of microscopic form factors obtained
from shell model calculations.

Secondly, the contribution of coupling to inelastic excitations, except‘lﬂ‘e@tation,
has been evaluated term by term within the Feshbach formalism considering the excitations
upto 3 MeV energy for all the isotopes. This microscopic energy dependent imaginary
component along with an interior potential simulating the absorption due to fusion
reproduced the data of relatively deformié® + 146Nd quite well. On the other hand, for
160 4 142,144d systems the potentiali{r + Wres) is found to be inadequate in generating
the necessary absorption. The observed lack of absorption is also quite distinct in the
inelastic channel. Significant improvements have been observed in the fits to the measured
angular distributions off0 + 142.14Nd with an additional long ranged surface absorption.
While for 160+ 146Nd the additional surface absorption does not affect the nature of the fits
very much. The observation indicates that the Feshbach imaginary potential is sufficient to
produce the required surface absorption in casé®d target. Same inference has been
derived by Pacheco et al. [17] in their analyses of elastic scattering from deformed targets.
The added surface absorption term has a longer range compared to the Feshbach potential
for inelastic excitation. It has been found that omitted higher inelastic excitations cannot
introduce this absorption at large radius. A detailed coupled reaction channel claculation
is in progress to identify the origin of this long range absorption which is more promiment
just above the barrier energy.
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