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Abstract

Angular distributions of elastic scattering and inelastic scattering from 2+
1 state are measure

for 16O + 142,144,146Nd systems at several energies in the vicinity of the Coulomb barrier.
angular distributions are systematically analyzed in coupled channel framework. Renorm
double folded real optical and coupling potentials with DDM3Y interaction have been used
calculation. Relevant nuclear densities needed to generate the potentials are derived fromshell model
wavefunctions. A truncated shell model calculation has been performed and the calculated
levels are compared with the experimental ones. To simulate the absorption, a ‘hybrid’ appr
adopted. The contribution to the imaginary potential of couplings to the inelastic channels
than the 2+1 target excitation channel, is calculated in the Feshbach formalism. This calc
imaginary potential along with a short ranged volume Woods–Saxon potential to simula
absorption in fusion channel reproduces the angular distributions for16O + 146Nd quite well. But
for 16O+ 142,144Nd systems additional surface absorption is found to be necessary to fit the a
distribution data. The variations of this additional absorption term with incident energy and the
of the target are explored.
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1. Introduction

In quasi elastic scattering of heavy ions at energies near the Coulomb barrier, the r
motion of the interacting nuclei are known to be dominated by strong coupling bet
the individual reaction channels [1–6]. These couplings, on the one hand, dynam
polarize the real potential inducing a marked energy dependence of its strength aro
Coulomb barrier energies and, on the other hand, contribute significantly to the abs
potential for elastic scattering at large distances. The extraordinary energy depend
the real potential, the so-calledthreshold anomaly, was experimentally observed [7–1
and was demonstrated to be dispersively connected with an increase with the en
the imaginary potential accounting for the increasing number of open reaction ch
absorbing the incident flux [11,12].

The threshold behaviour has been shown to occur in many heavy ion scattering s
[13]. In recent years, several attempts have been made to understand the polarizatio
and its dependence on the structure of the colliding nuclei by evaluating the nu
nucleus potential on a microscopic basis using the formalism proposed by Feshbac
19]. In a microscopic approach to the optical potential, the real part is derived by fo
an effective nucleon–nucleon interaction with the densities of the colliding nuclei
folding model, incorporating the structure informations directly in the evaluation o
real potential, is widely and successfully used for describing the heavy ion elastic sca
[20–23]. To derive the imaginary component microscopically several methods have
adopted [1,24–27]. Of these the model proposed by Vinh Mau et al. [27] calculates th
Feshbach potential considering all possible closed and open channels through the
approximation. A fairly good agreement was observed between the calculation a
experiment for systems like16O+ 208Pb,32S+ 40Ca and35,37Cl + 24Mg [16,28–32]. The
model has been further modified by Pacheco et al. [16], for the conditions where a re
number of channels control the absorption. When the energy of the collision is close
Coulomb barrier and the colliding systems are deformed, it has been demonstrated
is necessary to calculate the polarization potential contribution separately for each
dominant nonelastic channel. In a detailed investigation on a number of different sy
both deformed and spherical, it was observed that the microscopic imaginary po
having contributions from the dominant inelastic excitations only is sufficient to repro
the total absorption in strongly deformed systems [17]. Whereas for spherical and w
deformed systems the corresponding absorption, localized in a narrow surface reg
weak and necessitates the introduction of a long range absorptive term represen
absorption in transfer channels. However, elastic scattering is unlikely to be very se

to the absorptive potential near the barrier. On the other hand, inelastic scattering or transfer
reactions where the wavefunction plays an important role, will be more sensitive to the
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details of the potential. Hence, a simultaneous description of elastic and inelastic a
distributions will be of further interest.

In our present study, we made an attempt to describe the elastic and first 2+ inelastic
angular distributions for16O+142,144,146Nd systems measured around the Coulomb ba
energies using the microscopically derived potentials, both real and imaginary, in a c
channel (CC) framework. The measurements have been performed at incident e
of 65, 70, 74 and 78 MeV, i.e., from the top of the barrier to about 12 MeV ab
In the CC calculation, the renormalized folded M3Y potential has been used as th
potential and the imaginary component is derived from contributions from different t
and projectile excitations following Pacheco et al. [16,17]. Since explicit coupling to
first 2+ state is considered, the microscopically calculated imaginary component w
contain the contribution from this excitation channel. In these Nd isotopes, the nu
144Nd represents an intermediate step in theshape transition from spherical142Nd with
N = 82 neutron shell closed to the transitional–vibrational nucleus146Nd [33]. These
nuclei with large transitionalB(E2) values are quite soft towards quadrupole excitati
Hence, the excitation to the first 2+ state will be one of the major contributors in t
derivation of imaginary potential. Thus the CC analysis with an imaginary potentia
containing the contribution of the dominant 2+ excitation will provide a suitable basis
explore the effect of other couplings in the absorption process. This is especially t
near barrier energies where only a few of the reaction channels contribute in produc
absorption.

The other important aspect of this study is the determination of the coupling pot
corresponding to 0+ → 2+ transition in the CC analysis using the folding model approa
The necessary transition density is derived fromshell model wavefunctions. A truncate
shell model calculation has been performed to obtain the occupation probabilities a
one body density matrices (OBDM) for constructing the densities. In recent years s
shell model calculations have been carried out for142Nd nucleus as a member of th
N = 82 isotones [34–37]. However, to the best of our knowledge, no such calcula
have been reported for144Nd and146Nd isotopes with two- and four-valence neutrons o
theN = 82 closed shell. A section with the details of the calculation has been include
a comparison of the calculated energy levels with the experimental energy values ha
shown.

The paper has been organized as follows. The introduction will be followed
description of the experiment in Section 2. The details of the derivation of the den
the potentials and the analysis of the data with the derived potentials will be provid
Section 3. Finally, we will discuss and summarise our observations in the last sectio

2. Experimental set-up

The experiment was carried out using the 15UD Pelletron Accelerator at Nu
Science Centre (NSC), New Delhi.16O beam was produced in a SNICS ion sour
accelerated (in the energy range 65–78 MeV), momentum analysed and allowed to im

on Nd targets. Beam current was maintained between 5 to 40 pnA. The neodymium targets
were made by vacuum evaporation of enriched142,144,146Nd oxide sandwiched between
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Table 1
Thicknesses of different isotopically enriched targets

ISOTOPE Enrichment Thickness of Thickness of Thickness of
% carbon backing neodymium oxide coating carbon la

µg/cm2 µg/cm2 µg/cm2

142Nd2O3 98.26 17.7 57.6 3.0
144Nd2O3 97.51 10.0 45.0 3.0
146Nd2O3 97.63 6.0 45.0 2.5

two carbon foils [38]. Thickness and the enrichment of the neodymium targets are gi
the Table 1.

The angular distribution of the elastic and inelastic scattering was measured in a G
Purpose Scattering Chamber (GPSC) [39] of diameter 1.5 m. Ten silicon surface
(SB) and passivated ion implanted planner surface (PIPS) detectors of 300 µm de
depth were used and arranged in two movable arms on both sides of the beam ax
average effective solid angle subtended by each silicon detector was between 3
to 7.5 msr. Two monitor detectors (300 µm) were placed symmetrically at 9.8◦ ± 1◦ on
either side of the beam. The monitors subtended an angle of 0.2◦ at the target. An entranc
collimator of 2 mm diameter was used at a distance of 10 cm from the target. The bea
properly steered to keep the elastic peak count in the two monitor detectors identical
5%. Standard electronics were used, and the list mode data was recorded in a Micr
computer using the data acquisition programme ONLINE.

The incident energies chosen were 65, 70, 74 MeV for16O on 142Nd and 65, 70,
74, 78 MeV for 16O on 144,146Nd. The angular distributions were measured at an
in the region from 30◦ to 164◦ (in lab.) in steps of 2◦ to 6◦. A few overlapping angle
were used for different detectors to check the consistency of the data. The results
measurements (properly normalised for solid angle) agree within statistics. Typical s
are shown in Figs. 1 and 2. In the spectra, peaks marked as ‘Ta’ are due to the contam
from tantalum crucible used for vacuum evaporation of neodymium targets. Howev
Ta peaks were kinematically well separated from the elastic peaks of the Nd isoto
all the measured angles. The overall resolution obtained in different detectors varie
250–450 keV.

The absolute cross section values were obtained by normalising the yield to the m
counts under the elastic peak. The cross section at the monitor angle is well descr
Rutherford cross section. The absolute error is estimated to be less then 10% for
and 20% for inelastic data. The relative error is found to be less than 5%.

3. Analysis

The model potential used in the coupled channel (CC) analysis has the form

U(E,R)= [
V0(E,R)+
VR

] + iW(E,R)+ VC. (1)
V0(E,R) is the average interaction between the two nuclei in the absence of any excitation
and includes the exchange terms that arise from antisymmetrisation between the two
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Fig. 1. Energy spectrum of particles from the elastic and inelastic scattering of16O on142Nd at Elab = 70 MeV
and θlab = 93◦ (top) and scattering of16O on 144Nd at Elab = 74 MeV andθlab = 68◦ (bottom). The peaks
marked Ta are from tantalum contamination.

ions resulting in weak energy dependence ofV0. The real polarization part
VR(E,R)
originates from the coupling of elastic channel to other nonelastic channels and
the contributions from both theopen and closed reaction channels. The imaginary p
W(E,R), to start with, is composed of two components

W(R,E)=WF(R)+Wfes(R,E), (2)

whereWfes(R,E) is the imaginary polarization potential and it depends on the numb
open reaction channels. Details of the calculation of this microscopic imaginary pot
is given in a following section.WF(R) has a squared volume Woods–Saxon form an

chosen to simulate the ingoing wave boundary condition for fusion. This interior imaginary
potential has the parameters ofW0 = 60 MeV,rF = 1.0 fm andaF = 0.4 fm. This potential
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Fig. 2. Energy spectrum of particles from the elastic and inelastic scattering of16O on146Nd at Elab = 70 MeV
andθlab = 66◦ (top). The peak marked Ta is from tantalum contamination. The angular detector spectrum
extreme backward angle is shown in the figure below.

has not been varied with incident energy. The sameWF is used for all the three isotope
VC in (1) denotes the Coulomb potential.

3.1. Folded potentials

The real parts of optical potential and the transition potential are calculated by fo
an effective two-body interaction with the relevant densities of the two interacting n
The energy-dependent direct and exchange components of the potential are expre
[20,22], ∫
VD(E,R)= ρ1(r1)ρ2(r2)v
nn
D (ρ,E, r) d

3r1 d
3r2, (3)
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VEX(E,R)=
∫
ρ1(r1, r1 + r)ρ2(r2, r2 − r)vnn

EX(ρ,E, r)e
ik(R)r12

M d3r1 d
3r2 (4)

whereρi(ri ), i = 1,2, denote the densities of respective nuclei andvnn
D/EX(ρ,E, r) is

the energy- and density-dependent direct/exchange component of the effective nu
nucleon interaction. The coordinater12 is equal tor2 − r1 + R, whereR is the centre to
centre separation between the two interacting nuclei.k(R), the relative motion momentum
is expressed as

k2(R)= 2mM

h̄2

[
Ecm − V (E,R)− VC(R)

]
, (5)

withM the reduced mass,m the nucleon mass in MeV,Ecm the centre-of-mass energy a
E the incident energy in laboratory.VC(R) is the Coulomb potential andV (E,R) denotes
the direct component of the folded potential.

The direct and the exchange components have been derived using the folding fo
in momentum space as detailed in Ref. [20]. In the derivation of the exchange po
VEX(E,R), however, we have chosen a closed expression for the potential in term
series expansion of the Bessel functions [21]. The approximation yields equivalent
as obtained in the iterative procedure, especially for the energy domain chosen by us
the scattering is more sensitive to the potential at large radius.

3.1.1. The interaction
The semi-realistic M3Y interaction [40] is chosen as the effective nucleon–nu

interactionvnn in the present analysis. The interaction has been applied to heav
scattering at energies above of 5 MeV/nucleon with reasonable success [20–22]. The di
part of the interaction is given as

vnn
D (r)= 7999.0

e−4r

4r
+ 2134.25

e−2.5r

2.5r
. (6)

A finite-range interaction term [20]

vnn
EX(r)= 4631.8

e−4r

4r
+ 1787.13

e−2.5r

2.5r
+ 7.8474

e−0.7027r

0.7027r
(7)

has been adopted to calculate the exchange contribution in the potential. The
of density dependence, though not so prominent for extremely peripheral collisio
included as an exponentially varying multiplicative factor

F(ρ)= c
[
1+ αe−βρ

]
(8)

with c= 0.2845,α = 3.6391 andβ = 2.9605 fm3 [20,41]. The densityρ in the expression
is the sum of densities of the colliding nuclei at midpoint of the internucleon dista
Finally, the interaction is made to depend explicitly on energy through an addit
product termg(E)= (1− 0.002E) [20,41].

3.1.2. Shell model calculations for nuclear densities

Nuclear ground-state and transition densities are determined from the shell model

wavefunctions. The code OXBASH [42] has been used to generate the wavefunctions.
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We have defined themodel space, in the shell model calculation, to consist
spherical single particle orbitals fromN = 4 oscillator shell (1d5/2,0g7/2,1d3/2,2s1/2)
plus the intruder 0h11/2 orbital from N = 5 oscillator shell for 10 valence proton
of Nd isotopes overZ = 50 closed shell and orbitals fromN = 5 oscillator shell
(0h9/2,1f7/2,1f5/2,2p3/2,2p1/2) plus the intruder orbital 0i13/2 from N = 6 shell for
the valence neutrons of144,146Nd isotopes overN = 82 closed neutron shell. The132Sn
(Z = 50,N = 82) is taken to be the core. Themodel space is coded asZ50N82 in
OXBASH.

However, a full scale shell model calculation with a large basis being not feasible
our available computational ability, we have followed atruncation scheme, as described
in Ref. [43], in the present analysis. A partitionP that specifies a set of occupancies
the orbits under consideration is defined. The proton and neutron orbitals outside the132Sn
(Z = 50,N = 82) core are included in this partitionP as:

P = [
π

{
(s1/2)

p1, (d5/2)
p2, (d3/2)

p3, (g7/2)
p4, (h11/2)

p5}
× ν

{
(h9/2)

n1, (f7/2)
n2, (f5/2)

n3, (p3/2)
n4, (p1/2)

n5, (i13/2)
n6}], (9)

wherep(i) and n(i) are the numbers of protons and neutrons respectively, occup
the orbitals. Table 2 shows the restrictions imposed for differentP partitions in the
shell model calculation. One advantage of this procedure is that, since only the
dominant partitions are considered for a particular state, the renormalization of thtwo-
body interaction to incorporate the effects of the neglected partitions need not be larg

The effective interaction used in the shell model calculation is coded asCW5082 in
OXBASH. TheCW5082 interaction originated fromKH5082 interaction [44] on replacing
the protonN = 4 two-body matrix elements (TBME) with the effective interaction of Krus
and Wildenthal [45]. The KH5082 interaction utilizes the TBME of bare particle–par
and one particle–one hole (1p1h) “bubble” Kuo–Herling (KH) interaction [46–48].

Table 2
The restrictions imposed on different subshells (partitions) in the shell model calculation

P/N Orbitals 142Nd 144Nd 146Nd

Max. Min. Max. Min. Max. Min.

Proton 1g7
2

8 6 8 7 8 7

2d5
2

4 0 2 0 2 0

2d3
2

4 0 2 0 2 0

3s1
2

2 0 2 0 2 0

2h11
2

4 0 2 0 2 0

Neutron 1h9
2

· · · · · · 2 0 4 0

2f 7
2

· · · · · · 2 0 2 0

2f 5
2

· · · · · · 2 0 4 0

3p3
2

· · · · · · 2 0 4 0

3p1
2

· · · · · · 2 0 2 0
1i 13
2

· · · · · · 2 0 4 0
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The single particle energies used in the calculation are taken from experiment ([
and references therein). The values used areε(πg7/2) = −9.5958,ε(πd5/2) = −8.6755,
ε(πd3/2) = −6.9352,ε(πs1/2) = −6.9278,ε(πh11/2) = −6.8379,ε(νh9/2) = −0.8950,
ε(νf7/2)= −2.38, ε(νf5/2) = −0.89, ε(νp3/2) = −1.625,ε(νp1/2) = −1.16, ε(νi13/2) =
−0.29 MeV. The resultant energy levels are shown in Fig. 3 along with the level sc
obtained from experiment.

The calculatedoccupation numbers of all the fully or partially occupied valenc
orbitals are given in Table 3. These numbers have been used with single particle
wavefunctions generated by a bound state potential of the Woods–Saxon form
Fig. 3. The experimental and theoretically calculated (shell model) energy level diagram for142,144,146Nd.



8

s. The
endent
ing the

puter

. The
nsition

higher
arison
odel
tate
S. Mandal et al. / Nuclear Physics A 720 (2003) 222–244 231

Table 3
Calculated occupation numbers in the ground states of neodymium nuclei

P/N Orbitals Nucleus

142Nd 144Nd 146Nd

Proton 1g7
2

7.981 8.0 8.0

2d5
2

1.732 1.793 2.0

2d3
2

0.043 0.031 0.0

3s1
2

0.037 0.019 0.0

2h11
2

0.208 0.157 0.0

Neutron 1h9
2

0.0 0.192 1.002

2f 7
2

0.0 1.238 1.6

2f 5
2

0.0 0.15 0.848

3p3
2

0.0 0.129 0.172

3p1
2

0.0 0.044 0.379

1i 13
2

0.0 0.247 0.0

Table 4
Woods–Saxon potential parameters used to calculate the single particle wave functions

N/P V0 r0 a0 Vso rso aso rc
MeV fm fm MeV fm fm fm

Proton 59.312 1.268 0.802 6.0 1.10 0.65 1.21
Neutron 47.397 1.243 0.723 6.0 1.10 0.65

standard spin–orbit potential to construct the ground state densities of the isotope
bound state potential parameters, shown in Table 4, are used in an orbit indep
method. We have searched for appropriate single particle binding energies by keep
parameters same for all the orbits. Theone body density matrices (OBDM) (Di

jj ′ , i = p,n)
derived from shell model wavefunctions and listed in Table 5, are used in the com
code DENS [49] with the same bound state potential to generate the 0+ → 2+ transition
densities.

Tassie Model [50] is assumed to calculate the core polarization contribution
coefficients obtained are suitably adjusted to reproduce the experimental electric tra
rates. In the present study, effective charges ofep = 2.1e anden = 1.1e are found to be
necessary for all the three isotopes. The values of the effective charges are on the
side possibly because of the truncation used for the configuration space. A comp
of estimatedB(E2) values with the experimental data is shown in Table 6. A shell m
calculation for the doubly magic16O is also performed to obtain the required ground s
density.

The calculated nuclear densities, ground state as well as 0+ → 2+ transition densities

of 142,144,146Nd isotopes are shown in Figs. 4 and 5. The charge transition densities
from inelastic electron scattering experiments [33,51,52] are shown in Figs. 5(a), (c), (d)
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Table 5
One-body transition density matrix elements calculated for the 0+ to 2+ transitions

j–j ′ 142Nd j–j ′ 144Nd 146Nd

D
p
jj ′ Dn

jj ′ D
p
jj ′ Dn

jj ′ D
p
jj ′ Dn

jj ′
7
2–7

2 −0.00262 - 5
2–5

2 −0.74372 – 0.69490 –
7
2–5

2 −0.05103 - 5
2–3

2 0.00008 – – –
7
2–3

2 0.00074 - 5
2–1

2 −0.00025 – – –
5
2–7

2 0.00461 – 3
2–5

2 −0.00057 – – –
5
2–5

2 0.00812 – 3
2–3

2 0.00085 – – –
5
2–3

2 0.07128 – 3
2–1

2 0.00013 – – –
5
2–1

2 0.46005 – 1
2–5

2 −0.00171 – – –
3
2–7

2 −0.04333 – 1
2–3

2 −0.00011 – – –
3
2–5

2 0.00872 – 11
2 –11

2 −0.00284 – – –
3
2–3

2 −0.01636 – 9
2–9

2 – −0.01117 – 0.20812
3
2–1

2 0.36517 – 7
2–7

2 – −0.21163 – 0.38532
1
2–5

2 0.00719 – 5
2–5

2 – −0.00991 – 0.17206
1
2–3

2 0.04136 – 3
2–3

2 – −0.01378 – 0.01648
11
2 –11

2 −0.00262 – 13
2 –13

2 – −0.01875 – –

Table 6
Experimental and calculated (shell model) transition rates for neodymium isotopes

Nuclei N Z B(E2) (e2 fm4) Mp (e fm2) Mn (e fm2)

Expt. Calc. Calc.
142Nd 82 60 2810a 2908 −53.93 −35.95
144Nd 84 60 4600b 3683 −60.69 −53.74
146Nd 86 60 6910c 7745 −88.01 −97.47

a Ref. [52];
b Ref. [51];
c Ref. [33].

with open circles. The calculated point proton distributions reproduce the shape
experimental data quite well at large radius but underestimate the magnitudes s
It is to be noted that142Nd being a spherical nucleus withN = 82 closed neutron
shell, the excitations, especially the low-lying excitations will mostly involve the pro
configurations. With 2 and 4 valence neutrons, respectively, the excitations in144Nd and
146Nd, on the other hand, will receive increasing contributions from neutron configura
The feature is distinctly evident in Fig. 5(b) where the behaviours of neutron tran
densities for 0+ → 2+

1 excitations in142,144,146Nd have been compared at large rad
values. The prominent surface peaked distributions of the transition densities in

isotopes indicate the dominant collective nature of the first 2+ excitations. In an attempt
to estimate the accuracy of our shell model calculations, we plotted, in Fig. 6, the quantity
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Fig. 4. The ground state density distributions of16O and142,144,146Nd using shell model wave function. Here
and n represent the proton and neutron distributions, respectively.

�, the ratio of transition matrix elements̃Mpp and M̃dd derived from (p, p′) and (d, d′)
scattering [53], as a function of mass numberA. This ratio in turn depends upon th
neutron and proton transition matricesMn andMp. The calculated� using the shell mode
Mn andMp values for each mass lies within the range of experimental errors. How
the experimental points (bullets) and quasiparticle phonon model (QPM) calcul
(box) denote the mean value of the ratio over the ensemble of transition matrix ele

determined for a given mass. We calculated� only with matrix elements for quadrupole
excitation of 0+ → 2+.
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Fig. 5. The transition density distributions of142,144,146Nd using shell model wave function along with th
electron scattering data taken from Refs. [33,52,53]. Here dotted and dashed-dotted lines represent th
and proton distributions, respectively.

3.2. The imaginary Feshbach potential

In the model proposed by Vinh Mau [27] based on Feshbach formalism [14]
generalized optical potential for elastic scattering at energyE can be written as

Vopt(E, r, r
′) = 〈Φ0|V |Φ0〉 + 〈Φ0|VQ 1

QV |Φ0〉

E −HQQ + iε

= V0 +
V, (10)
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Fig. 6. Ratios (�) of quadrupole transition matrix elements from(p,p′) and(d,d′) experiments (black dot) with
QPM (box) and shell model (triangle) predictions.

whereΦ0 is the ground state wavefunction,Q is the projection operator that projec
off the open channels,H is the total Hamiltonian andV is the interaction operator. Th
generalised potential, thus, can be expressed as a sum ofV0, the double folded potential an

V , the polarization potential coming from the coupling of non-elastic channels (incl
in theQ-projection of the channel space) to the open channel (here the elastic cha
The term
V is complex, non-local and energy dependent in nature with the imag

V contributing the absorptive potential required in the optical model analysis.

In the weak coupling limit, one can write the polarization potential for inela
excitations as [16]


V in(r, r′)=
∑
α �=0

V ∗
α (r)Gα(r, r

′)Vα(r′), (11)

whereα denotes the possible inelastic excitation channels. TheGα(r, r′) is the Green’s
function for propagation of the system in channelα and can be approximated by th
WKB propagator [27].Vα , denoting the transition matrix element for a stateα of angular
momentumλ and projectionµ, can be written as shown in Ref. [16],

Vα(r)= 1√
2λ+ 1

f
(α)
λ (r)Y

µ
λ (r) (12)

wheref (α)λ (r) represents the nuclear form factor for the stateα of angular momentumλ. In
our analysis the form factor has been determined from Copenhagen potential [54] as

vibrational excitations and taking the derivative of the potential as the formfactor. The
strengths of the target excitation channels are taken from [53] while those for the projectile
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excitations are from [17]. The local equivalent of Im
V in(r, r′) in the case of weak non
locality can be written as

Im
V in(R)≡Wfes(R)= mM

2πkh̄2

∑
λ,α �=0

(
β
(α)
λi

)2
Iα(R), (13)

where β(α)λi denotes the strength of excitation of nucleusi (target or projectile) with
multipolarity λ in channelα. The integrationIα(R) corresponding to channelα is given
by

Iα(R)=
2R∫
0

ds e(−καs) sin(ks)sin(kαs)

[
∂Uc(r)

∂r

∣∣∣∣
r=R+s/2

∂Uc(r)

∂r

∣∣∣∣
r=R−s/2

]
(14)

in terms of the coordinatesR = 1
2(r + r′) ands = r − r′ with

k2
α = mM

h̄2

[
Ecm −E∗

α +
√
(Ecm −E∗

α)
2 +W2

fes(R)
]
,

κα = mM

h̄2

Wfes(R)

kα
, (15)

E∗
α =Eα + V0(R)+
V (R)+ VC(R). (16)

The local momentumk(R) is given by Eq. (4) andm is the reduced mass andM is the
nucleon mass in MeV. We derived the
V polarization potential for16O + 142,144,146Nd
systems at necessary energies following the prescription of Pacheco et al. [16
derivation included the dominant target inelastic excitations up to 3 MeV energy b
which the excitations are primarily one-step in nature and the 3− (6.13 MeV), 2+
(6.92 MeV) and 2+ (11.52 MeV) states of projectile16O. The potential contributions o
these channels are evaluated term by term. The calculated imaginary Feshbach po
Wfes(R) for 16O+ 142,144Nd have been shown with dotted lines in Fig. 10.

3.3. Coupled channel calculation with Feshbach potential

In the evaluation of complex polarization potential
V at each energy, described
the previous section, only the open channels contribute to produce the imaginary p
the other hand, all the open and closed channels contribute to form the real polar
potential. Since, we included only the dominant open inelastic channels to produ
necessary absorption of flux from the elastic channel, the effect of polarization o
potential was incorporated through a renormalization factor and the effective real po
was, therefore, of the form

V0 +
VR = λR(E)Vfolded. (17)

In the coupled channel (CC) calculation, performed with the code ECIS94 [55], we
considered explicit coupling to first 2+ state of Nd target. In the first step, we analys

the data with the renormalizable folded real potential and the two component imaginary
potential of Eq. (2). The imaginary renormalization factorλI for Wfes was set equal to
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unity. The folded transition potential for 0+ → 2+
1 transition was used as the real nucle

coupling formfactor. As there is no standard prescription available for imaginary cou
potential, we assumed the imaginary formfactor to be of the same shape as the r
but its strength was reduced by 50% [56]. The normalization constants of unity and 0
real and imaginary coupling potentials respectively were kept constant throughout t
calculation. Thus in the CC analyses withWF +Wfes the only variable parameter was t
real renormalization factorλR. We varied the factorλR(E) to obtain simultaneously goo
fit to the elastic and inelastic angular distributions. The resulting fits to the data are s
in Figs. 7, 8, 9 with dashed lines. Reasonably good fits to the angular distributions
the energies are obtained for16O + 146Nd but for16O + 142,144Nd systems the calculate
angular distributions show steeper fall off at large angles compared to the data.
Figs. 7 and 8 it is to be noted that the calculated angular distributions for both e

Fig. 7. Coupled channel calculations (solid curves) for elastic and inelastic angular distributions of16O+ 142Nd

system. The dashed curves represent the angular distributions obtained from coupled channel calculation without
the surface imaginary term (WS).
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Fig. 8. Same as Fig. 7 but for16O+ 144Nd.

and inelastic scattering over predict the data aroundΘcm = 80◦. On the top of the barrier a
65 MeV, the imaginary potentialWF +Wfes reproduces the elastic data quite well but
the inelastic angular distributions. For the relatively deformed146Nd target, on the othe
hand, the microscopically calculated imaginary potential due to inelastic excitations,
with WF, seems to be sufficient to generate the overall absorption at all the energie
best fit values of the real renormalizations for all the cases are shown in Table 7.

To investigate further this lack of absorption, we introduced a phenomenological s
Woods–Saxon potential to enhance the absorption in the large radial region as was d
Pacheco et al. [17]. The total imaginary potential now consists of three terms

W(R,E)=WF(R)+Wfes(R,E)+Ws(R,E). (18)

All the data were refitted with this new imaginary potential. Same optical potentia
used for both the channels considered in the coupling scheme. In this step, we fitt

the 78 MeV data for16O + 144,146Nd and 74 MeV data for16O + 142Nd systems. All the
four parameters, i.e.,λR and (W0

s ,Rs, as) were varied simultaneously to obtain the best fits.
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Fig. 9. Same as Fig. 7 but for16O+ 146Nd.

The resulting parameters are also given in Table 7. Subsequently to reproduce th
energy data we kept the radius parameter of the surface potential fixed to that ob
from the search over the highest energy data. Therefore, only two parameters were
in the search procedure to fit the lower energy data. The fits to the data at all the in
energies for both16O + 142,144Nd systems improved significantly except for the inela
angular distributions at 65 MeV. The effect of introducing the additional surface abso
was found to be minimum for more deformed16O+ 146Nd system.

In Fig. 10, the imaginary potentials resulted from the simultaneous fits to the e
and inelastic data for16O + 142,144Nd have been shown. It is clear from the figure that
empirical surface absorption term has a longer range compared to the Feshbach ab
potential and peaks on or beyond the tail ofWfes(R). It is difficult to ascertain exactly th
type of reaction channels contributing to this additional term.Wfes was constructed with
contributions from target excitations upto 3 MeV having significant transition probabil
Altogether 9 excited states of142Nd and 13 excited states each of144Nd and146Nd were

considered to calculate the Feshbach potentials. Contributions from states with still higher
excitation energies may have some non-negligible effect. For instance, in142Nd there are



sition
ligible
.5 fm

surface
y
g range
,
tion is
creases.
lastic

ential
d the
ove
own in
240 S. Mandal et al. / Nuclear Physics A 720 (2003) 222–244

Table 7
Best fit parameters obtained from coupled channels calculations with 0+–2+ coupling (rc = 1.25 fm)

System ELab λR λI W0
s Rs as Q22 (eb)

16O+ 142Nd 65 1.42 1.0
1.32 1.0 2.70 10.508 0.257 −0.20

70 1.26 1.0 · · ·
1.18 1.0 4.02 10.508 0.335 · · ·

74 1.35 1.0 · · ·
1.05 1.0 2.14 10.508 0.462 · · ·

16O+ 144Nd 65 1.26 1.0
1.19 1.0 1.68 10.541 0.492 −0.39

70 1.15 1.0 · · ·
1.18 1.0 7.03 10.541 0.304 · · ·

74 1.14 1.0 · · ·
1.02 1.0 3.05 10.541 0.402 · · ·

78 1.20 1.0 · · ·
1.06 1.0 2.71 10.541 0.426 · · ·

16O+ 146Nd 65 1.36 1.0
1.19 1.0 0.75 10.568 0.492 −0.72

70 1.18 1.0 · · ·
1.07 1.0 0.19 10.568 0.919 · · ·

74 1.05 1.0 · · ·
1.04 1.0 0.11 10.568 0.919 · · ·

78 1.17 1.0 · · ·
1.02 1.0 0.34 10.568 0.919 · · ·

Note: The imaginary potential in all the cases includes a squared vol. WS potentialWF: W0
F = 60.0 MeV,

rF = 1.0 fm andaF = 0.4 fm.

at least six states within 3 to 4 MeV excitation which have reduced isoscalar tran
probabilities in the range of 2 to 9 Weisskopf units and these states have non-neg
contributions. But, the collective contribution of these omitted states peaks near 9
and falls off to insignificant values near 11 fm. The excitations of projectile16O besides
those considered do not contribute at those large radius values. Thus the empirical
imaginary potentialWS which peaks at larger radius (∼ 11 fm) originates predominantl
from channels other than the omitted target excited states. We assume that this lon
surface absorptive potential, necessary to fit the142Nd and144Nd angular distributions
simulates the absorption in transfer channels. Also the effect of this transfer absorp
more prominent close to the barrier energy and decreases as the incident energy in

It is to be noted that the observed lack of absorption is quite prominent in the ine
channel as well for all the incident energies except near the top of the barrier (∼ 65 MeV).
The improvement in the optical potential with the additional surface absorptive pot
also improved the fits to the measured inelastic angular distributions. We include
reorientation coupling term in the coupled channel calculation in an attempt to impr
further the fit to the inelastic data. The quadrupole moment values used [57] are sh

Table 7. But the inclusion of reorientation coupling term did not produce any significant
change on the inelastic angular distributions. However, it is obvious from the fits that the
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Fig. 10. Imaginary potentials used in the CC calculation for16O + 142,144Nd. The dashed line representsWF,
the interior fusion potential.Wfes, the Feshbach potential, and the empirical surface absorptive potentialWS are
represented by dotted and dashed-dotted curves, respectively.

microscopic 0+ → 2+ nuclear form factor derived from the shell model wavefuncti
provide reasonably good description of inelastic scattering data.

4. Summary

+
The angular distributions of elastic and inelastic scattering to 21 for 16O+ 142,144,146Nd
systems have been measured in the vicinity of the Coulomb barrier (65 to 78 MeV)
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and analysed in a systematic way using a coupled channel formalism with the nec
potentials derived from a microscopic consideration. Attempts have been ma
simultaneously reproduce the elastic and inelastic angular distributions.

The microscopic approach to the analyses is based on two aspects. Firstly, we per
a truncated shell model calculation to obtain the ground state and 0+ → 2+

1 transition
densities. The shell model calculations with the chosen basis is quite succes
reproducing the experimental level schemes of neutron shell closed142Nd isotope as wel
as144Nd and146Nd nuclei with two and four valence nucleons respectively. The resu
transition densities and transition matrix values describe the experimental data reas
well (Figs. 5 and 6). The derived densities are subsequently used to fold the dens
energy dependent effective M3Y interaction. With the renormalization factors these f
diagonal and off-diagonal potentials are used in the coupled channel consideratio
fits to the inelastic scattering data justify the use of microscopic form factors obt
from shell model calculations.

Secondly, the contribution of coupling to inelastic excitations, except the 2+
1 excitation,

has been evaluated term by term within the Feshbach formalism considering the exc
upto 3 MeV energy for all the isotopes. This microscopic energy dependent imag
component along with an interior potential simulating the absorption due to fu
reproduced the data of relatively deformed16O+ 146Nd quite well. On the other hand, fo
16O+ 142,144Nd systems the potential (WF +Wfes) is found to be inadequate in generati
the necessary absorption. The observed lack of absorption is also quite distinct
inelastic channel. Significant improvements have been observed in the fits to the me
angular distributions of16O+ 142,144Nd with an additional long ranged surface absorpti
While for 16O+146Nd the additional surface absorption does not affect the nature of th
very much. The observation indicates that the Feshbach imaginary potential is suffic
produce the required surface absorption in case of146Nd target. Same inference has be
derived by Pacheco et al. [17] in their analyses of elastic scattering from deformed t
The added surface absorption term has a longer range compared to the Feshbach
for inelastic excitation. It has been found that omitted higher inelastic excitations c
introduce this absorption at large radius. A detailed coupled reaction channel clacu
is in progress to identify the origin of this long range absorption which is more promi
just above the barrier energy.
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