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DISCUSSION
Comments on the articles Although it was not pointed out ifiL], Chandrasekharaiah
“ . .. did note in[2] several physically unrealistic results associ-
Hyperbolic thermoelasticity: ated with TRDTE, in particular the fact that the displacement
A review of recent literature” suffers jump discontinuities in the presence of a step tem-
. erature BC. A natural question that arises is why was this
(Chandrasekharalah DS, 1998, Broblem with TRDTE ngt reported ifil], especially)// since
App/ Mech Rev 51(12), 705_729) the authr:)r of thfat paper deriveddpartzsof the] smcejxll—r;[ime fsolu—
“ s : tion to the DP for a TRDTE medium(®Bee[2] and the ref-
and Thermoelast|0|ty V_Vlth erences therein for a discussion of the problems with
second sound: A review” TRDTE)
(Chandrasekharaiah DS. 1986 The intent of the present Letter is the followirig: Show
! ! that the small-time expression given [iti] for the normal
A,D,D/ Mech Rev 39(3), 355_376) stress corresponding to the DP for a TRDTE medium is in-
] correct;ii) Show how this erroneous expression could have
P Puri lead to the aforementioned shortcoming of TRDTE being
Department of Mathematics, University of New Orleangissed in1]; andiii) Give for the record the correct small-
New Orleans LA 70148; ppuri@math.uno.edu time expressions for the normal stress, displacement, and
strain corresponding to the DP for a TRDTE medium. Lastly,
PM Jordan * all quantities below are dimensionless, unless stated other-
Code 7181, Naval Research Laboratory, wise the same notation employed[it] is used here, and the
Stennis Space Center, MS 39529; reader is referred tp1] for the definition of all undefined
symbols.

pjordan@nrlssc.navy.mil ) .
In the Laplace transform domain, the normal stress is

In the articlesThermoelasticity with second sound: A reviewiven by (see Eq(5.53 of [1])

[1] and Hyperbolic thermoelasticity: A review of recent lit- ki

erature [2], Chandrasekharaiah has presented an in-depth_ S):T03(1+as){e Ve " 0
look at nonconventionala.k.a. generalized or non-Founier ' ni—ns3 '

theories of thermoelasticity. The motivation driving the for- h is the t ¢ ter. For | it b
mulation of these theories is the desire to overcome the in\fvh eres 1 the transiorm parameter. -or farge it can be
nite propagation speed of thermal signals predicted by comoWn that
ventional the_rmoelasticit(/CTE), the so-called “paradox of Ny~ s/ViZ—}-rl‘z,

heat conduction.”

In [1], two of these nonconventional theories are exam- 1 1 No 1 ) SNS)
ined in the context of the Danllc_)vskayg problgdP). (I_n nf—n%w 52\/M_o+ s3M8/2 234M8’2 (1+¢) M_o ,
the DP, the homogeneous and isotropic thermoelastic half- @)
spacex>0, under a stress free boundary conditi®C) at
x=0, is subjected to a Heaviside, or step, temperature BCYtereVi, (V3 >V7) andM, are positive constants and
time t=0".) The first he refers to as extended thermoelagenotes the speed of the second soliedtherma) wave.
ticity (ETE) and the second as temperature-rate depend&ifing Egs.(2), the larges expression foir(x,s) is found to
thermoelasticity(TRDTE). In both ETE and TRDTE, the be
parabolic diffusion equation of CTE is replaced with a hy-

perbolic heat transport equation. As a result, both theories(x g)~ To(1tas) E+ 2‘0 - 31
predict thermal wavesie, second soundpropagating with WM, s s°Mg 2s°Mg
finite speeds. 2
In ETE, a single relaxation time>0 appears and second x| (1+€)2— %) {exd — (rq+s/V)x]
sound propagates with speeg¢= \/x/ 7, wherex is used here Mo

to denote the thermal diffusivity. It is noted that ETE reduces
to CTE in the limit7— 0. TRDTE was presented in 1972 by
Green and Lindsaj3]. This theory involves the two relax- Expanding and rearranging E@) into increasing powers of
ation timesa, and @, where@=a,>0 and, in the case of 1/s, and then truncating all terms aftersl/so as to match
homogeneous and isotropic materials, reduces to CTE in {4, gives

limit a«—0. (While it has been postulated tha is actually

—exd —(ro+s/V3)x]}. 3)

non-negative, it must be noted that TRDTE admits second — To 1 So
. X,8)~ —|a+ < (1+aRy) + exd —(r
sound only whenyy>0 [1].) An important aspect of TRDTE (%) VM, s( Ro) s? {ex = (ry
is that Fourier’s heat law is not violated in materials that . .
have a center of symmetry at each pdia3]. +s/VI)x]—exd — (ra+s/V3)x]}, (4)
*Corresponding author
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where Ry=Ng/M, and Sy=(2Ry—aMy*(1+¢€)?
+3aR3)/2. (The quantityS, does not appear ifil], it is
introduced here for conveniengelnverting Eg. (4), the

small-time expression for the normal stress is found to be

2

a(X,t)~ ) HH({E=x/V)

X[(1+ aRg) + (t—=x/V}) Sl e "%, (5)

where H(-) is the Heaviside unit step function an®{-)

denotes the Dirac delta functiof he notation used here for

H(-) is slightly different than that df1].) Equation(5) is the

correct form of Eq(5.58 in [1]. Comparing the former with
the latter it is clear why the latter is incorrect; the contribu-

tion of the termas, which is part of the quantity (& as) in

the numerator of Eq5.53 of [1], is missing in the inverse.

Indeed, no term with coefficient that appears in Eq5) is
present in Eq(5.58 of [1]. In particular, Eq.(5.58 of [1]

does not contain the two delta function terms that it should.
A second consequence of these missing terms is that theuy ,= =

expressions given in Eq(5.61) of [1] for o7,, where
Tooi =[o"—0 ] X% —U(X121t+0) o(x1,,t—0) de-

note the amplitudes of the jumps inacross the wavefronts

X=XJ,, are also incorrect. Specifically, since th@orrec)

expression foro(x,t) exhibits two propagating delta func-

tions, |07 /= in the sense of4].
From the Laplace transforms of E¢$.49 and(5.5J) in
[1], it can be shown thati=s™?(do/dx), whereu is the

image of thex-component of the displacement vector in th

Laplace transform domain. Consequently, using #qg, it
follows that

To(1+ as){n,e”"*—n,e™ ">}
s(ni—n3)

u(x,s)=-— (6)

Again using the approximations given in E@8), the large-
s expansion olu turns out to be
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Fig.1 uvs.xfor ¢g=0.05,#=0.1, e=0.0356, andl,=1. Solid:

Discussion 452

u(x,s)~

1

a'RO
T2
S

+1
s
(7)

On inverting Eq.(7), the small-time solution foo is found
to be

ar;+ exp — (rj+s/Vj)x].

2
u(x,t)~—=—
\/_ =
CYRO+ 1
V?*

—1) —+(t X/V*)(al’j

e H(t—x/VT). (8)

From Eq.(8), it is clear thatu always admits two propagat-
ing jump discontinuities, the amplitudes of which are given

by

e~ rl,zx’lk,z_

©)

o
ViaMo

In Eq. (9), Tou’1*2:[u —U ]y= X3, denote the amplitudes of

the jumps inu acrossx=x7 ,. (The quantitiesy , are intro-
duced here in a manner consistent with the notation conven-
tion of [1].)

While not given in[1], the small-time relation for the
strain will be given here for completeness. To this end, Eq.

éG) is diﬁerentiated with respect to, re- expressed using the

dentities n$ ,={s(1+ €) +s’Lo=(n{—n3)}/2 and the ap-
proximations given in Eq€2), and then inverted to yield the
small-time strain relation

au
( t)~—j o(x,t")dt’ +—a(x t)

T : —IiX * *
?2 MH(t=x/VF)+ad(t=x/VF)}.

(10)

In Eq. (10), o(X,-) denotes the right-hand side of E&).

Figure 1 shows a comparison of the inverse of Ej.
with the small-time solution given in E@8). The inverse of
Eq. (6) was computed numerically using Tzou's Riemann
sum inversion algorithniTRSIA) [5] and the values of the
material parameters were obtained from Table I[Df As
shown in Fig. 1, Eq(8) is a very good/excellent approxima-
tion tou for t=<0.05. In addition, the two propagating jumps
are clearly visible, witjut|>|u3|, and it is noted thax7 ,
are the elastiqtrailing) and thermal(leading wavefronts,
respectively.

It must be pointed out that the presence of propagating
jumps inu violates the continuity of displacements require-
ment[[6], p. 142, and thus indicates that TRDTE is incon-
sistent with the continuum theory of matter under a step

Inverse of Eq(6) computed using TRSIA with 1000 terms. Broken{actually any discontinuowisemperature BGsee[2] and the

Small-time solution given in Eq8).

references therejin These jumps, which occur in both the
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coupled €>0) and uncoupled¢=0) cases, vanish only in A thor’s Response to “Comments
the limit «—0. (For a treatment of the uncoupled, spheri-

cally symmetric case for a shell, sgg.) on the artICI_e_S Hyperb_ohc
Finally, it should be mentioned that an error similar to thﬁhermoelastlcny: A review of recent

one corrected here, in which adl(-) and &'(-) terms are |jterature’ (Chandrasekharaiah
missing from the Laplace inverse, occurs in the expressi

for the strain(ie, Eq.(48)) in [8]. (It is of interest to note that ﬁs’ 1998’ Appl Mech Rev_ _51(12)1

had the correct expression for the strain been obtaingglin 705—729) and ‘Thermoelasticity

the drawbacks with TRDTE could have been uncovered \§ith second sound: A

1980) However, while Eq(5.58 of [1] is incorrect, and this . ) .

error appears to have directly resulted in the primary phy‘J,‘i(-:)VIew (Chandrasekharalah DS,

cally objectionable feature of TRDTE being overlooked i1986, Appl Mech Rev 39(3),

[1] as well as to the mistaken claifil], p 370 that the 355—376)"

TRDTE expression foer(x,t) reduces to its ETE counterpart

(ie, Eq.(4.39 of [1]) whena= ay= 7, Chandrasekharaiah’s DS Chandrasekharaiah

two articles[1,2] nevertheless provide an excellent review of Department of Mathematics, Bangalore University,

the literature on nonconventional thermoelasticity and con- Bangalore 560001, India

tain a wealth of information on the subject.

PM Jordan was supported by CORE/ONR/NRL funding The authors of the Letter to the Editor have reinvestigated

(PE 602435M the Danilovskaya’s problem (DP) in the context
of TRDTE. They have suggested some correction terms
to the expressiongs.58 and (5.61) of [1]. They have also
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