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PM Jordan *
Code 7181, Naval Research Laboratory,
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In the articlesThermoelasticity with second sound: A revie
@1# and Hyperbolic thermoelasticity: A review of recent li
erature @2#, Chandrasekharaiah has presented an in-de
look at nonconventional~a.k.a. generalized or non-Fourie!
theories of thermoelasticity. The motivation driving the fo
mulation of these theories is the desire to overcome the
nite propagation speed of thermal signals predicted by c
ventional thermoelasticity~CTE!, the so-called ‘‘paradox of
heat conduction.’’

In @1#, two of these nonconventional theories are exa
ined in the context of the Danilovskaya problem~DP!. ~In
the DP, the homogeneous and isotropic thermoelastic h
spacex.0, under a stress free boundary condition~BC! at
x50, is subjected to a Heaviside, or step, temperature B
time t501.) The first he refers to as extended thermoel
ticity ~ETE! and the second as temperature-rate depen
thermoelasticity~TRDTE!. In both ETE and TRDTE, the
parabolic diffusion equation of CTE is replaced with a h
perbolic heat transport equation. As a result, both theo
predict thermal waves~ie, second sound! propagating with
finite speeds.

In ETE, a single relaxation timet.0 appears and secon
sound propagates with speedvT5Ak/t, wherek is used here
to denote the thermal diffusivity. It is noted that ETE reduc
to CTE in the limitt→0. TRDTE was presented in 1972 b
Green and Lindsay@3#. This theory involves the two relax
ation timesa0 and a, wherea>a0.0 and, in the case o
homogeneous and isotropic materials, reduces to CTE in
limit a→0. ~While it has been postulated thata0 is actually
non-negative, it must be noted that TRDTE admits sec
sound only whena0.0 @1#.! An important aspect of TRDTE
is that Fourier’s heat law is not violated in materials th
have a center of symmetry at each point@2,3#.
Appl Mech Rev vol 56, no 4, July 2003 45
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Although it was not pointed out in@1#, Chandrasekharaiah
did note in @2# several physically unrealistic results asso
ated with TRDTE, in particular the fact that the displaceme
suffers jump discontinuities in the presence of a step te
perature BC. A natural question that arises is why was
problem with TRDTE not reported in@1#, especially since
the author of that paper derived parts of the small-time so
tion to the DP for a TRDTE medium?~See@2# and the ref-
erences therein for a discussion of the problems w
TRDTE.!

The intent of the present Letter is the following:i ) Show
that the small-time expression given in@1# for the normal
stress corresponding to the DP for a TRDTE medium is
correct;i i ) Show how this erroneous expression could ha
lead to the aforementioned shortcoming of TRDTE be
missed in@1#; and i i i ) Give for the record the correct smal
time expressions for the normal stress, displacement,
strain corresponding to the DP for a TRDTE medium. Las
all quantities below are dimensionless, unless stated ot
wise the same notation employed in@1# is used here, and the
reader is referred to@1# for the definition of all undefined
symbols.

In the Laplace transform domain, the normal stress
given by ~see Eq.~5.53! of @1#!

s̄~x,s!5
T0s~11as!$e2n1x2e2n2x%

n1
22n2

2 , (1)

where s is the transform parameter. For larges, it can be
shown that

n1,2's/V1,2* 1r 1,2,

1

n1
22n2

2 '
1

s2AM0

1
N0

s3M0
3/22

1

2s4M0
3/2S ~11e!22

3N0
2

M0
D ,

(2)

whereV1,2* (V2* .V1* ) andM0 are positive constants andV2*
denotes the speed of the second sound~ie, thermal! wave.
Using Eqs.~2!, the large-s expression fors̄(x,s) is found to
be

s̄~x,s!'
T0~11as!

AM0
F1

s
1

N0

s2M0
2

1

2s3M0

3S ~11e!22
3N0

2

M0
D G$exp@2~r 11s/V1* !x#

2exp@2~r 21s/V2* !x#%. (3)

Expanding and rearranging Eq.~3! into increasing powers o
1/s, and then truncating all terms after 1/s2 so as to match
@1#, gives

s̄~x,s!'
T0

AM0
Fa1

1

s
~11aR0!1

S0

s2G$exp@2~r 1

1s/V1* !x#2exp@2~r 21s/V2* !x#%, (4)
*Corresponding author
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where R05N0 /M0 and S05(2R02aM0
21(11e)2

13aR0
2)/2. ~The quantityS0 does not appear in@1#, it is

introduced here for convenience.! Inverting Eq. ~4!, the
small-time expression for the normal stress is found to b

s~x,t !'
T0

AM0
(
j 51

2

~21! j 11$ad~ t2x/Vj* !1H~ t2x/Vj* !

3@~11aR0!1~ t2x/Vj* !S0#%e2r j x, (5)

where H(•) is the Heaviside unit step function andd(•)
denotes the Dirac delta function.~The notation used here fo
H(•) is slightly different than that of@1#.! Equation~5! is the
correct form of Eq.~5.58! in @1#. Comparing the former with
the latter it is clear why the latter is incorrect; the contrib
tion of the termas, which is part of the quantity (11as) in
the numerator of Eq.~5.53! of @1#, is missing in the inverse
Indeed, no term with coefficienta that appears in Eq.~5! is
present in Eq.~5.58! of @1#. In particular, Eq.~5.58! of @1#
does not contain the two delta function terms that it shou
A second consequence of these missing terms is that
expressions given in Eq.~5.61! of @1# for s1,2* , where
T0s1,2* [@s12s2#x5x

1,2* [s(x1,2* ,t10)2s(x1,2* ,t20) de-

note the amplitudes of the jumps ins across the wavefront
x5x1,2* , are also incorrect. Specifically, since the~correct!
expression fors(x,t) exhibits two propagating delta func
tions, us1,2* u5` in the sense of@4#.

From the Laplace transforms of Eqs.~5.49! and ~5.51! in
@1#, it can be shown thatū5s22(]s̄/]x), where ū is the
image of thex-component of the displacement vector in t
Laplace transform domain. Consequently, using Eq.~1!, it
follows that

ū~x,s!52
T0~11as!$n1e2n1x2n2e2n2x%

s~n1
22n2

2!
. (6)

Again using the approximations given in Eqs.~2!, the large-
s expansion ofū turns out to be
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ū~x,s!'
T0

AM0
(
j 51

2

~21! jF1

s S a

Vj*
D

1
1

s2 S ar j1
aR011

Vj*
D Gexp@2~r j1s/Vj* !x#.

(7)

On inverting Eq.~7!, the small-time solution foru is found
to be

u~x,t !'
T0

AM0
(
j 51

2

~21! jF a

Vj*
1~ t2x/Vj* !S ar j

1
aR011

Vj*
D Ge2r j xH~ t2x/Vj* !. (8)

From Eq.~8!, it is clear thatu always admits two propagat
ing jump discontinuities, the amplitudes of which are giv
by

u1,2* 57S a

V1,2* AM0
D e2r 1,2x1,2* . (9)

In Eq. ~9!, T0u1,2* [@u12u2#x5x
1,2* denote the amplitudes o

the jumps inu acrossx5x1,2* . ~The quantitiesu1,2* are intro-
duced here in a manner consistent with the notation conv
tion of @1#.!

While not given in @1#, the small-time relation for the
strain will be given here for completeness. To this end, E
~6! is differentiated with respect tox, re-expressed using th
identities n1,2

2 5$s(11e)1s2L06(n1
22n2

2)%/2 and the ap-
proximations given in Eqs.~2!, and then inverted to yield the
small-time strain relation

]u

]x
~x,t !'

~11e!

2 E
0

t

s~x,t8!dt81
L0

2
s~x,t !

1
T0

2 (
j 51

2

e2r j x$H~ t2x/Vj* !1ad~ t2x/Vj* !%.

(10)

In Eq. ~10!, s(x,•) denotes the right-hand side of Eq.~5!.
Figure 1 shows a comparison of the inverse of Eq.~6!

with the small-time solution given in Eq.~8!. The inverse of
Eq. ~6! was computed numerically using Tzou’s Riema
sum inversion algorithm~TRSIA! @5# and the values of the
material parameters were obtained from Table II of@1#. As
shown in Fig. 1, Eq.~8! is a very good/excellent approxima
tion to u for t&0.05. In addition, the two propagating jump
are clearly visible, withuu1* u.uu2* u, and it is noted thatx1,2*
are the elastic~trailing! and thermal~leading! wavefronts,
respectively.

It must be pointed out that the presence of propaga
jumps inu violates the continuity of displacements requir
ment @@6#, p. 142#, and thus indicates that TRDTE is incon
sistent with the continuum theory of matter under a s
~actually any discontinuous! temperature BC~see@2# and the
references therein!. These jumps, which occur in both th
:

Fig. 1 u vs.x for a050.05,a50.1, e50.0356, andT051. Solid:
Inverse of Eq.~6! computed using TRSIA with 1000 terms. Broke
Small-time solution given in Eq.~8!.
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coupled (e.0) and uncoupled (e50) cases, vanish only in
the limit a→0. ~For a treatment of the uncoupled, sphe
cally symmetric case for a shell, see@7#.!

Finally, it should be mentioned that an error similar to t
one corrected here, in which alld(•) and d8(•) terms are
missing from the Laplace inverse, occurs in the express
for the strain~ie, Eq.~48!! in @8#. ~It is of interest to note tha
had the correct expression for the strain been obtained in@8#,
the drawbacks with TRDTE could have been uncovered
1980.! However, while Eq.~5.58! of @1# is incorrect, and this
error appears to have directly resulted in the primary ph
cally objectionable feature of TRDTE being overlooked
@1# as well as to the mistaken claim~@1#, p 371! that the
TRDTE expression fors(x,t) reduces to its ETE counterpa
~ie, Eq.~4.39! of @1#! whena5a05t, Chandrasekharaiah’
two articles@1,2# nevertheless provide an excellent review
the literature on nonconventional thermoelasticity and c
tain a wealth of information on the subject.

PM Jordan was supported by CORE/ONR/NRL fundi
~PE 602435N!.
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The authors of the Letter to the Editor have reinvestigat
the Danilovskaya’s problem ~DP! in the context
of TRDTE. They have suggested some correction term
to the expressions~5.58! and ~5.61! of @1#. They have also
obtained small-time solutions for the displacement and stra
fields, which were not reported in@1#. Their analysis brings
out the fact that some physically unrealistic features
TRDTE ~summarized in @2#! can be seen in DP as
well.

But for the unnecessarily aggressive language, repetit
statements, and undue length, the letter makes a useful c
tribution to the literature on TRDTE. I am thankful to the
authors of the letter for correcting a couple of mathematic
expressions which I had derived some 20 years back.

I am moved by their overall opinion on my two Review
Articles @1,2#.
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