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Abstract

Simple location-shifts for the study or auxiliary character are proposed under Midzuno–Sen
sampling from a 1nite population. These aim at improving the e2ciency of the classical Horvitz–
Thompson estimator or the unbiased ratio estimator of a population total. It is demonstrated that
the choice of the translation parameters is 4exible. A few methods for assessing these parameters
are outlined. The gain in e2ciency of estimation is illustrated. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The well-known Midzuno–Sen (MS) scheme (Midzuno, 1952; Sen, 1952) is an
elegant method for unequal probability sampling (UPS). Here the 1rst sample unit is
drawn with probability proportional to size (PPS) and the other units by simple random
sampling without replacement (SRSWOR) from those units remaining in the population
after the 1rst draw. An added advantage with the scheme is that it accomplishes a
probability proportional to aggregate size (PPAS) sample which makes the conventional
ratio estimator exactly design unbiased. However, the use of the classical Horvitz–
Thompson estimator (HTE) with the MS scheme is not quite e2cient. To remedy this,
eAorts have been made to revise the initial probabilities of selection such that the 1rst
order inclusion probabilities �i are proportional to size (�PS) (e.g. see Rao, 1963;
Asok and Sukhatme, 1978). But these generally impose stringent restrictions on the
initial probabilities which are di2cult to meet in survey practice (Brewer and Hanif,
1983, p. 25). As a consequence, the use of HTE after MS sampling is generally not
preferred.

Suppose that U = {1; 2; : : : ; N} denotes a labelled 1nite population of N units. The
study variate y and a related auxiliary variate x take real values (Yi; Xi) on unit i∈U .
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The Xi values are assumed to be positive and known for all the units. In this set-up
UPS is often used for improved estimation and the character x provides the basis for
Pi, the initial selection probabilities of units. With x as size measure, Pi =Xi=X; where
X =

∑
i∈U Xi. We consider below, the estimation of the population total Y =

∑
i∈U Yi

from a random sample s (⊂ U ) of n units drawn without replacement, with particular
focus on the MS scheme.
Horvitz–Thompson estimator
The classical HTE of Y is

Ŷ =
∑
i∈s

Yi=�i (1.1)

with variance

V (Ŷ ) =
∑

1
i;j∈U

�ij(Yi=�i − Yj=�j)2; (1.2)

where
∑

1 denotes the sum over all the diAerent pairs of units in the population,
�ij = (�i�j −�ij) and �ij are second-order inclusion probabilities for the units i and
j. It is immediately noted from (1.1) or (1.2) that the success of HTE hinges on
near proportionality between Yi and �i. In order to achieve this, we 1rst consider a
transformation of y by con1ning our attention to the class of schemes where �i is a
linear function of Xi. That is, for i= 1; 2; : : : ; N

�i = �+ �Xi; (1.3)

where � and � are constants which depend on the sampling scheme. For instance, the
MS scheme belongs to this class and has

�= (n− 1)=(N − 1); �= (N − n)=(N − 1)X: (1.4)

PPSWOR schemes which ensure �i = nPi also belong to this class and have �= 0,
�= n=X . Examples for this are the commonly used PPx systematic sampling (Madow,
1949) and Sampford’s (1967) rejective scheme. In order to motivate a suitable trans-
formation of y; consider the simple situation where, for i= 1; 2; : : : ; N

Yi = � + �Xi: (1.5)

Then

Yi=�i = (� + �Xi)=(�+ �Xi) is not a constant in general;

whereas
Yi − (�− ��=�)

�i
=
�Xi + ��=�
�+ �Xi

= �=� (1.6)

is a constant for all i. Motivated by this fact, consider the location-shift for y de1ned
by

Y ∗
i = (Yi − �); i= 1; 2; : : : ; N; (1.7)

where �= (�− ��=�): For the MS scheme, � and � are as in (1.4) and

�= �− �(n− 1)X=(N − 1): (1.8)
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Thus, it follows that if a good assessment of � can be made, even as late as the
estimation stage in a sample survey, the sampling variance of Ŷ can be controlled by
a location shift as in (1.7). The methods for assessing � are discussed in the next
section. The proposed alternative to Ŷ is

Ŷ 1 =
∑
i∈s

(Y ∗
i =�i) + N�; (1.9)

which is readily noted to be unbiased for Y . Further, an expression for the sampling
variance is given by (1.2), with Y ∗

i now replacing Yi.

2. Choice of �

The choice of � for which the variance is minimised is easily obtained by writing

V (Ŷ 1) =
∑

1
i; j∈U

�ij

[(
Yi
�i

− Yj
�j

)
− �

(
1
�i

− 1
�j

)]2

= V (Ŷ ) + � 2�1 − 2��2; (2.1)

where

�1 =
∑

1
i; j∈U

�ij

(
1
�i

− 1
�j

)2

; (2.2)

�2 =
∑

1
i; j∈U

�ij

(
Yi
�i

− Yj
�j

) (
1
�i

− 1
�j

)
: (2.3)

It is noted from (2.1) that V (Ŷ 1) is minimised with respect to � by the choice

�opt =�2=�1 (2.4)

and the corresponding

Vmin(Ŷ 1) =V (Ŷ ) − �2
2=�1: (2.5)

Thus, the reduction in sampling variance associated with optimum location shift for
y is �2

2=�1. In general, V (Ŷ 1)¡V (Ŷ ) as long as � lies between 0 and 2�opt. From
(2.3), we notice that when {Yi=�i} diAer considerably among themselves �2 can be
expected to be large and in this situation there will be su2cient 4exibility in the choice
of �. This is precisely when the classical HTE by itself is not very e2cient.

Interestingly, �1 is free from the study character and it depends only on �i. Thus,
for a given procedure like the MS scheme, �1 can be computed. But �2 cannot be com-
puted in general as it depends on all the y-values. Stuart (1986) has shown that for any
general UPS design, small 1xed errors in determining �opt are not serious. If, instead of
�opt, we use 1xed �= �opt(1+�); then the variance reduction is (1−�2) �2

2=�1. A glance
at (1.8) and (2.4) shows that � can be chosen in the following two diAerent ways.

(1) By assessing � and � separately.
(2) By estimating � directly.
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A few guidelines for this purpose are given below.
Method 1: Assessing � and �: Since � and � may be considered as the y-intercept

and the slope in the population regression line of y on x, we may assess their values
as follows.

(1a). Based on experience, past data or a pilot study make a careful assessment of
� and �.

(1b). In a scatter plot of Yi=�i versus Xi=�i following MS sampling, gauge the
intercept on the vertical axis and also the slope of the best-1tting line. Use these,
respectively, as � and �.
Method 2: Estimating �: Obtain sample analogues of �1 and �2 after attaching

weights �−1
ij . Thus estimate � by

�̂=

∑
1i; j∈s

�ij(Yi=�i − Yj=�j)(1=�i − 1=�j)�−1
ij∑

1 i; j∈s �ij(1=�i − 1=�j)2�−1
ij

: (2.6)

A 1xed � in (1.9) does not aAect sampling variance, while it is not so when a
sample based estimate of �, as in (2.6), is used. This impact can be illustrated by
writing the estimator Ŷ 1 in (1.9) with � estimated as

t= Ŷ − �̂
∑
i∈s

(
1
�i

− N
n

)
; (2.7)

which has the form (t1−t2 ·t3) involving three non-independent statistics. An interesting
discussion in this context, pointing out that the use of �̂ may not necessarily in4ate
variance is in Stuart (1986). In any case, the use of nonrandom �; �, as implied by
Method 1, is simpler to implement though it has an element of subjectivity.
Particular case of �= 0: In model (1.5) if we overlook the intercept term and take

�= 0, we have further simpli1ed premises which will need the assessment of only
�. In this set-up Narasimha Prasad and Srivenkataramana (1980) discuss a location
shift for y after MS sampling while Rao (1988) proposes a location shift for x of
the type

X ∗
i =Xi + d JX ; i= 1; 2; : : : ; N; (2.8)

where JX =X=N and suggests the choice d= − {(n− 1)N}={n(N − 1)} which renders
the scheme IPPS. However, for (2.8) to be operative we need X ∗

i ¿ 0 for all i. This
in turn imposes the restriction that Pi ¿ (n − 1)=n(N − 1) for all i. A translation
of x has the advantage that its values are readily available while translation of y

allows the 4exibility of using a separate shift for each study variate when multiple
characteristics are being estimated from the same sample. It may be remarked that
the approach of the present paper is more general as it does not implicitly force
the intercept term � to be zero. For other transformations on x, we refer to Bedi
(1996).
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3. Unbiased ratio estimator (URE)

A speci1c advantage with the MS scheme is that it provides a simple procedure for
PPAS sampling which renders the ratio estimator

Ŷ 2 =X
(∑
i∈s

Yi

/∑
i∈s

Xi

)
(3.1)

exactly design unbiased for Y . A formal expression for variance of Ŷ 2 can be written
down from 1rst principles (Des Raj, 1968, p. 94) as

V (Ŷ 2) =
(
X
N ∗

)∑
2

[(∑
i∈s

Yi

)2 /∑
i∈s

Xi

]
− Y 2 ; (3.2)

where
∑

2 denotes the sum over all possible samples s and N ∗ = (N−1
n−1 ) is the number

of possible SRSWOR samples after the 1rst draw. It follows from (3.2) that V (Ŷ 2)
vanishes when Yi is proportionate to Xi. Also see Rao (1983). The premises in (1.5)
thus motivate a location shift

Y ∗∗
i =Yi − �; i= 1; 2; : : : ; N (3.3)

for y and prompt the unbiased ratio estimator

Ŷ 3 =X
(∑

i∈s

Y ∗∗
i

/∑
i∈s

Xi

)
+ N� (3.4)

with variance given by (3.2), where Y ∗∗
i now replaces Yi and (Y − N�) replaces Y .

A bit of algebra shows that we can write

V (Ŷ 3) =V (Ŷ 2) + �2�1 − 2��2; (3.5)

where

�1 = (nX=N ∗)
∑

2 (1= Jx − 1= JX ); (3.6)

�2 = (nX=N ∗)
∑

2 ( Jy= Jx − JY = JX ) (3.7)

and Jy=
∑

i∈s Yi=n; JX =
∑

i∈s Xi=n; JY =Y=N . It follows from (3.5) that the variance
minimizing location shift is given by

�opt = �2=�1 =
∑

2( Jy= Jx − JY = JX )∑
2(1= Jx − 1= JX )

(3.8)
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with the corresponding

Vmin (Ŷ 3) =V (Ŷ 2) − �2
2=�1 (3.9)

and �2
2=�1 is the reduction in variance provided by the optimum location shift. However,

this cannot be determined, being dependent on all possible samples. In survey practice,
� may be assessed as in Method 1 outlined in the previous section and as long as it
is between 0 and 2�opt, there will be a variance reduction.
Location-shift for x: We may promote a translation of the size measure x by rewrit-

ing (1.5) as

Yi = � (Xi + �); (3.10)

where �= �=�. Thus one may consider a location shift

X ∗∗
i =Xi + � (3.11)

and use X ∗∗
i as the size measure for MS sampling and construct an unbiased ratio

estimator

Ŷ 4 =X ‖
(∑

i∈s

Yi

/∑
i∈s

X ∗∗
i

)
(3.12)

for Y , where X ∗∗ = (X + N�) is the population total of the location shifted measure
of size. Also see Bedi (1996). The sampling variance is now given by (3.2) with
xi replaced by x‖i . However, a simple representation of variance similar to that in
(3.5) is not possible here in view of the parameter occuring in the denominator of the
expression. In any case the variance minimising choice for � is obtained as a solution
of

∑
2

[(
Jy

( Jx + �)

)2

( Jx − JX )

]
= 0: (3.13)

Again, for practical use �= �=� may be chosen by assessing � and � separately as
outlined in the preceding section. However, the use of X ∗∗

i as size measure imposes a
restriction, viz.

Xi + �¿ 0 for all i= 1; 2; : : : ; N: (3.14)

Since the study variate is directly related to the auxiliary variate, � is always positive.
But this may not be the case with the intercept term �. If � is also positive then �¿ 0
and the requirement (3.14) is readily met. On the other hand, a negative � renders
�¡ 0 and (3.14) needs the smallest Xi to exceed −�. If this is not true, one may
either reset � so that (3.14) is met or alternatively translate y as in (3.3).

4. Illustration

In order to compare the e2ciency of the suggested estimators with that of the usual
estimators under MS sampling, four populations are considered. Population I consists
of the number of cattle (y) and the number of farms (x) in 13 clusters as in Table 1.
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Table 1
Population I

x : 19 28 28 30 31 46 51 53 55 56 61 64 83
y : 168 326 396 360 331 697 586 739 914 930 619 784 906

Table 2
Populations A; B and C

Unit Xi y values for population

A B C

1 0.1 0.5 0.8 0.2
2 0.2 1.2 1.4 0.6
3 0.3 2.1 1.8 0.9
4 0.4 3.2 2.0 0.8

Total 1.0 7.0 6.0 2.5

Table 3
E2ciency E1 of HTE

Population �opt Departure percentage 100 · |1 − �=�opt|
0 20 40 60

I 4217.44 239 226 200 159
A −4:8390 5655 1755 644 269
B −1:6662 724 586 389 224
C −1:1479 294 273 231 173

The other three are small hypothetical populations considered by Yates and Grundy
(1953) with details as shown in Table 2.

We examine the e2ciency under MS sampling for n= 2 units and with estimation
strategies as follows:

I. HTE without and with a translation of y as in (1.7).
II.URE without and with a translation of y as in (3.3).

The e2ciencies E1 = 100V (Ŷ )=V (Ŷ 1) under I and E2 = 100V (Ŷ 2)=V (Ŷ 3) under II for
optimum choice of translation parameter as well as for speci1ed departures from it are
displayed in Tables 3 and 4. They show that the e2ciency gain is often substantial and
it is not too sensitive to departures from the optimum. For population C; �opt is quite
small and hence the translation Y ∗∗

i =Yi − � is unable to provide much improvement
over the URE Ŷ 2. Similar is the case with Population I, relative to values of y.

5. Discussion

The usefulness of location shifts for study and auxiliary variates, y and x, respec-
tively, is demonstrated for improving the e2ciency of estimators in UPS from 1nite
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Table 4
E2ciency E2 of URE

Population �opt Departure percentage 100 · |1 − �=�opt|
0 20 40 60

I −13:19 100.22 100.21 100.18 100.07
A −0:5 681 551 353 220
B 0:5 681 551 353 220
C −0:096 113 112 110 107

populations. The main focus is on the MS sampling scheme which is simple to operate
and guarantees a non-negative Yates–Grundy variance estimator for HTE. The scheme
also ensures a PPAS sample which renders the usual ratio estimator exactly design
unbiased. However, the sampling variability of the HTE or URE is often unacceptably
high so that MS sampling followed by HTE or URE is not generally preferred. In
this scenario variate translations are proposed in order to reduce sampling variance. A
linear relation between y and x is assumed to motivate suitable location shifts. The
classical HTE and URE strategies are examined in this context. It is illustrated that an
attractive gain in e2ciency can be achieved with reasonable 4exibility in the choice
of the translation parameters. The methods for assessment of these parameters are also
discussed.

A translation of y has the inbuilt advantages that (a) it can be eAected after the
sample arrives, and (b) separate location shifts can be made for diAerent study variates
as dictated by the relation with x. As a consequence of (a), the information in the
current sample may be used for deciding the translation parameter. Advantage (b)
particularly suits multivariate surveys with several important study characters.

A location shift for x is associated with the convenience that its values are known
beforehand for the entire population. But these translations are subject to non-negativity
conditions on the values of the location shifted x, to be used as a measure of size of
the units, which may sometimes be very restrictive. The generalisation of the results
of this paper to a strati1ed population is straightforward. Separate location shifts may
be adopted in the diAerent strata. It may be pointed out that translations of both y

and x may be used in conjunction in a given survey. This is particularly handy in
multivariate surveys where a translation of x may be followed by suitable individual
translations for the y-characters. The modalities of such several translations are worth
being looked into.

Acknowledgements

The author wishes to thank the referee for several useful suggestions and Dr. K.
Harish Chandra for computational help.



T. Srivenkataramana / Journal of Statistical Planning and Inference 102 (2002) 179–187 187

References

Asok, C., Sukhatme, B.V., 1978. A note on Midzuno scheme of sampling—an abstract. J. Ind. Soc. Agric.
Statist. 30 (2), 131.

Bedi, P.K., 1996. E2cient utilization of auxiliary information at estimation stage. Biometrical J. 8, 973–976.
Brewer, K.R.W., Hanif, M., 1983. Sampling with Unequal Probabilities. Lecture Notes in Statistics, Vol. 15.

Springer, New York.
Madow, W.G., 1949. On the theory of systematic sampling II. Ann. Math. Statist. 20, 333–354.
Midzuno, H., 1952. On the sampling system with probability proportional to sum of sizes. Ann. Inst. Statist.

Math. 3, 99–107.
Narasimha Prasad, N.G., Srivenkataramana, T., 1980. A modi1cation to the Horvitz–Thompson estimator

under the Midzuno–Sen sampling scheme. Biometrika 67, 709–711.
Rao, J.N.K., 1963. On two systems of unequal probability sampling without replacement. Ann. Inst. Statist.

Math. 15, 67–72.
Rao, T.J., 1983. Transformation on the auxiliary variate for Midzuno–Sen sampling scheme. Technical Report

No. 8=83, Stat-Math Division, Indian Statistical Institute, Calcutta.
Rao, T.J., 1988. Transformation on the auxiliary variate for Midzuno–Sen sampling scheme. J. Ind. Soc.

Agric. Statist. 40 (3), 173–177.
Sampford, M.R., 1967. On sampling without replacement with unequal probabilities of selection. Biometrika

54, 449–513.
Sen, A.R., 1952. Present status of probability sampling and its use in estimation of farm characteristics, An

abstract. Econometrica 27, 130.
Stuart, A., 1986. Location-shifts in sampling with unequal probabilities. J. Roy. Statist. Soc. Ser. A 149,

349–365.
Yates, F., Grundy, P.M., 1953. Selection with replacement from within strata with probability proportional

to size. J. Roy. Statist. Soc. Ser. B 15, 253–262.


