
Journal of Computational and Applied Mathematics 131 (2001) 65–88
www.elsevier.nl/locate/cam

A new quadrature rule based on a generalized mixed
interpolation formula of exponential type

Hamsapriye
Department of Mathematics, Central College Campus, Bangalore University, Bangalore – 560001, India

Received 3 July 1999; received in revised form 15 February 2000

Abstract

A new method of approximating a function f(x) uniquely by a function fn(x) of the form fn(x) = elx(aU1(kx) +
bU2(kx) +

∑n−2
i=0 cixi), so that fn(x) interpolates f(x) at (n + 1) equidistant points x0; x0 + h; : : : ; x0 + nh, with h¿ 0, is

derived in a closed-form. Various equivalent forms of the interpolation formula are also derived. A closed-form expression
is derived for the error involved in such an approximation. With the aid of the newly derived interpolation formula, a
set of Newton Cotes quadrature rules of the closed type are also derived. The total truncation error involved in these
quadrature rules are analysed and closed-form expressions for error terms are proposed as conjectures in the two cases
when n is odd and when n is even, separately. A more general exponential-type interpolation formula and quadrature rules
based upon the generalized mixed interpolation formula are also explained and discussed. A few numerical examples are
worked out as illustrations and the results are compared with the results of some of the earlier methods. c© 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Generalized mixed interpolation; Exponential-type interpolation; Newton Cotes quadrature formulae

1. Introduction

Recently (see [7]), new quadrature formulae, based on an “exponential-type interpolation for-
mula”, of the form

fn(x) = elx
(

n∑
i=0

cixi
)

(1.1)

have been derived, which extends (more precisely, generalizes) the classical Newton Cotes closed-type
quadrature rules and which have been proved to be advantageous in cases wherein the integrands
show exponential behaviour. Further, various quadrature formulae based on the idea of mixed trigono-
metric interpolation formula have been derived (see [8]), which are again an extension of the Newton

E-mail address: preethi@bgl.vsnl.net.in (Hamsapriye)

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00322-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints@Bangalore University

https://core.ac.uk/display/72796926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

66 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Cotes quadrature rules. These rules have been proved to be advantageous in cases wherein the in-
tegrands show a periodic or quasi-periodic behaviour (see [2,3,8,9,12]). The mixed trigonometric
interpolation consists of the two basic trigonometric functions cos(kx) and sin(kx) and a polynomial
of certain degree. Furthermore (see [4]), the idea of mixed interpolation has been generalized to what
is called as “generalized mixed interpolation formula” and several quadrature formulae have been
developed, of the Newton Cotes closed type, as well as Newton Gregory type (see [5,6]). These
quadrature rules have been proved to be advantageous for the class of integrands having oscillatory
nature.

In the generalized mixed interpolation theory (see [4]), any function f(x) is thought of being
approximated by a function f̂n(x), considered in the form

f̂n(x) = aU1(kx) + bU2(kx) +
n−2∑
i=0

cixi; n¿1; (1.2)

where k is a free parameter. Here U1(kx) and U2(kx) are so chosen that their wronskian is nonzero
(linearly independent) and that they satisfy a linear second-order ordinary diHerential equation
(ODE), of the type

y′′(x) + kp(kx)y′(x) + k2q(kx)y(x) = 0; (1.3)

where p(kx) and q(kx) are given functions. The mode of approximation is to interpolate f(x) at
certain (n+ 1) equidistant points of an interval [�; �]. We remark here that the two functions U1(kx)
and U2(kx) are chosen based on the well-established oscillation theory of ODEs (see [11]).

In the present paper, new quadrature rules of Newton Cotes closed type have been derived based
on a “generalized exponential type of interpolation function”, which is of the form

fn(x) = elx
[
aU1(kx) + bU2(kx) +

n−2∑
i=0

cixi
]
; n¿1; (1.4)

where l and k are two parameters, freely chosen. The procedure adopted here is that the integrand
f(x) in∫ �

�
f(x) dx (1.5)

is approximated by fn(x) and the mode of approximation is again based on the idea of interpolating
f(x) at the (n + 1) equidistant points, chosen to be x0; x0 + h; x0 + 2h; : : : ; x0 + nh; h¿ 0.

The following is the plan of the paper: In Section 2, generalized exponential-type interpolation
formula has been derived in a closed form. Various equivalent forms of the formula have also been
derived. The error involved in the approximation of f(x) by fn(x), as given by relation (1.4), has
been discussed and a closed-form expression for the error term has been derived for the class of
functions f(x) ∈ Cn+1([�; �]). In Section 3, numerical examples have been considered using the
newly derived interpolation formula for various choices of U1(kx) and U2(kx). Also the results have
been compared with the exponential-type interpolation formulae of De Meyer et al. [7]. In Section 4,
Newton Cotes closed-type quadrature rules have been derived, by way of approximating the integrand
by the interpolation function of form (1.4). The errors involved in such quadrature rules have been
proposed as conjectures in cases when n is odd and when n is even. Here n refers to the order of
the generalized mixed interpolation function. Section 5 has been reserved for the study of certain

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 67

examples, which show the applicability of the formulae derived in Section 4. The choices of the
parameters l and k have been explained, which also involve the utility of the error terms that have
been proposed as conjectures. The numerical results have been compared with those obtained by the
aid of the other known methods. The idea of generalized exponential-type interpolation has been
further generalized and extended to develop Newton Cotes closed-type quadrature rules. This has
been dealt with in Section 6. Also the corresponding errors involved in such approximation have
been analysed and an attempt has been made to derive a closed-form expression for these error
terms.

2. Derivation of a generalized exponential-type interpolation formula

We consider the problem of approximating any function f(x), by a generalized mixed interpolation
function fn(x) as given by relation (1.4). That is,

fn(x) = elx
[
aU1(kx) + bU2(kx) +

n−2∑
i=0

cixi
]
; n¿1; (2.1)

where l and k are two parameters and n(∈ N, the set of natural numbers) is called the order of the
interpolation function fn(x). Further, the error term is deKned as

En(f; x) = f(x) − fn(x): (2.2)

As in any other problem of interpolation we require that

f(xj) = fn(xj); xj = x0 + jh; j = 0; 1; : : : ; n (2.3)

which when used in relation (2.2) gives rise to the set of equations

En(f; xj) = 0; j = 0; 1; : : : ; n: (2.4)

Eq. (2.3) constitutes a system of linear equations in the (n+ 1) unknowns a; b; ci (i= 0; 1; : : : ; n−2),
whose coeLcient determinant is diHerent from zero, with some restrictions on the parameter k (to be
explained later). As in [7], relation (2.1) can be viewed as an interpolation problem of approximating
the function e−lxf(x), by a generalized mixed interpolation function of type (1.1), at the same set
of data points x0 + jh (j=0; 1; : : : ; n). Thus, fn(x) can be explicitly written in terms of the functional
values e−l(x0+jh) f(x0 + jh) (j = 0; 1; : : : ; n). From the theory of generalized mixed interpolation (see
[4]), we can immediately write down that

e−lxfn(x) =
n∑

j=0

(
s
j

)
∇j

h[e
−lxf(x)]

∣∣∣∣∣∣
x=x0+jh

− k2�̃n(x)∇n−1
h [e−l(x0+n−1h)f(x0 + n− 1h)]

− k2


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


∇n

h[e
−l(x0+nh)f(x0 + nh)]; (2.5)

where s=(x−x0)=h; �:=kh and for any function g(x), the forward diHerence ∇ j
hg(x0 + jh) is deKned

as

∇ j
hg(x)

∣∣∣∣∣∣x=x0+jh

=
j∑

p=0

(
j
p

)
(−1) j−pg(x0 + ph): (2.6)

68 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Also we have deKned

�̃n(x) =
1

k2D̃n(�)




n−1∑

p=0

(
s
p

)
∇p

�U1(kx0 + p�) − U1(kx)


∇n

�U2(kx0 + n�)

−

n−1∑

p=0

(
s
p

)
∇p

�U2(kx0 + p�) − U2(kx)


∇n

�U1(kx0 + n�)


 ; (2.7)

D̃
1;1
n (�) =∇n+1

� U2(kx0 + n + 1�)∇n−1
� U1(kx0 + n− 1�)

−∇n+1
� U1(kx0 + n + 1�)∇n−1

� U2(kx0 + n− 1�); (2.8)

D̃n(�) =∇n
�U2(kx0 + n�)∇n−1

� U1(kx0 + n− 1�)

−∇n
�U1(kx0 + n�)∇n−1

� U2(kx0 + n− 1�): (2.9)

Thus, for those values of k, for which D̃n(�) �= 0, the interpolation function (2.5) can be uniquely
determined (see [4]).

From relation (2.5) we obtain that

fn(x) = elx

 n∑

j=0

∇ j
h(e

−l(x0+jh)f(x0 + jh)) − k2�̃n(x)∇n−1
h (e−l(x0+n−1h)f(x0 + n− 1h))

− k2


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


∇n

h(e
−l(x0+nh)f(x0 + nh))


 : (2.10)

The expression on the right-hand side of Eq. (2.10) can be expressed in three diHerent but equivalent
forms, as explained below.
First form: Using relation (2.6) for g(x) = e−lxf(x), relation (2.10) can be written in the form

fn(x) = elx

 n∑

j=0

(
s
j

) j∑
p=0

(−1) j−p
(
j
p

)
e−l(x0+ph)f(x0 + ph)

−k2�̃n(x)
n−1∑
p=0

(−1)n−1−p
(
n− 1
p

)
e−l(x0+ph)f(x0 + ph)

− k2


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


 n∑

p=0

(−1)n−p
(
n
p

)
e−l(x0+ph)f(x0 + ph)


 : (2.11)

Using the identity(
s
j

)(
j
p

)
=
(
s
p

)(
s− p
j − p

)
(2.12)

and interchanging the summations in (2.11), the Krst term of (2.11) gets simpliKed to (see [7])
n∑

p=0

(
s
p

)
e−l(x0+ph)f(x0 + ph)

n−p∑
j=0

(−1) j
(
s− p
j

)
: (2.13)

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 69

After using the result
n−p∑
j=0

(−1) j
(
s− p
j

)
= (−1)n−p

(
s− p− 1
n− p

)
; (2.14)

relation (2.11) takes the form

fn(x) = es�
′


 n∑
p=0

{
(−1)n−p

(
s
p

)(
s− p− 1
n− p

)
− k2�̃n(x)(−1)n−j−1

(
n− 1
j

)

−k2


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


 (−1)n−j

(
n
j

)
 e−p�′f(x0 + ph)


 ; (2.15)

where we have denoted �′:=lh.
Second form: The inverse formula of relation (2.7) is given to be (see [1])

g(x0 + ph) =
p∑
j=0

(
p
j

)
∇ j

hg(x0 + ph): (2.16)

Using relation (2.16) for the function f(x) and substituting for f(x0 + ph) in relation (2.11), we
obtain

fn(x) = es�
′


 n∑

j=0

(
s
j

) j∑
p=0

(
j
p

)
(−1) j−pe−p�′

p∑
i=0

(
p
i

)
∇i

hf(x0 + ih) − k2�̃n(x)

×
n−1∑
p=0

(−1)n−1−p
(
n− 1
p

)
e−p�′

p∑
i=0

(
p
i

)
∇i

hf(x0 + ih)

−k2


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


 n∑

p=0

(−1)n−p
(
n
p

)
e−p�′

p∑
i=0

(
p
i

)
∇i

hf(x0 + ih)


 : (2.17)

Using identity (2.12) and interchanging the orders of the summations twice, we Knally arrive at (see
[7])

fn(x) = es�
′


 n∑

i=0



(
s
i

) n−i∑
j=0

(
s− i
j

)
(−1) j(1 − e−�′) j − k2�̃n(x)

×(−1)n−1−i
(
n− 1
i

)
(1 − e−�′)n−1−i − k2


�̃n+1(x) − D̃

1;1
n (�)

D̃n+1(�)
�̃n(x)




× (−1)n−i
(
n
i

)
(1 − e−�′)n−i

}
e−i�′∇i

hf(x0 + ih)
]
: (2.18)

The form of the interpolation function as given by relation (2.18) is suitable, whenever a diHerence
table is given.

70 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Third form: Introducing a new forward diHerence idea (see [7]) deKned by

∇ j
h(e

−lxf(x)) = e−lx+j�′U j
h f(x); ∀f(x); j¿0; (2.19)

we can rewrite relation (2.10) in terms of U j
h ’s. Also the new forward diHerence U j

h f(x) can be
recursively deKned by

U j
h f(x) = U j−1

h [Uhf(x)]; j = 1; 2; : : : ;

Uhf(x) = e−�′(f(x) − e�
′
f(x − h));

U 0
h f(x) = f(x):

(2.20)

The following important identities can be derived using relations (2.6), (2.16), (2.19) and (2.20)
(see also [7]):

∇ j
h[e

−(lx0+j�′)f(x0 + jh)] = e−lx0U j
h [f(x0 + jh)]; (R1)

∇ j
h[f(x0 + jh)] = e−lx0U j

h [elx0+j�′f(x0 + jh)]: (R2)

More generally, relation (R2) can be written in the form as

∇ j
h[f(x)] = e−lx+j�′U j

h [elxf(x)]: (R3)

Further,

U j
h g(x0 + jh) =

j∑
p=0

(
j
p

)
(−1) j−pe−p�′g(x0 + ph); (R4)

g(x0 + jh) = e−lx0

j∑
p=0

(
j
p

)
Up

h [el(x0+ph)f(x0 + ph)]: (R5)

Thus, we can express the interpolation formula (2.10), in the form as

fn(x) = es�
′


 n∑

j=0

(
s
j

)
U j

h f(x0 + jh) − k2�̃n(x)Un−1
h f(x0 + n− 1h)

− k2


�̃n+1(x) − D̃

1;1
n (�)

D̃n+1(�)
�̃n(x)


Un

h f(x0 + nh)


 ; (2.21)

wherein identity (R1) has been made use of.
Limiting Cases.

(1) It can be proved that as l → 0, relations (2.10), (2.15), (2.18) and (2.21) tend to the generalized
mixed interpolation formula of Chakrabarti and Hamsapriye [4].

(2) As the parameter k → 0, it has been proved that the generalized exponential-type interpolation
formulae (2.10),(2.15), (2.18) and (2.21) tend to the exponential-type interpolation formula of
De Meyer et al. [7], provided the functions p(kx) and q(kx) of relation (1.2) are such that
p(0) �= 0; q(0) �= 0 and in which case we see that

�̃n(x) → h2
(

s
n + 1

) PUn+1(0)
PUn(0)

as k → 0: (2.22)

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 71

(3) Finally as k → 0 and l → 0, formulae (2.10), (2.15), (2.18) and (2.21) tend to the classical
Newton’s interpolation formula.

Error analysis. We use the fact that e−lxfn(x) interpolates the function e−lxf(x), at the points
x0 + jh (j = 0; 1; 2; : : : ; n). Thus, for f(x) ∈ C(n+1)([�; �]) (here � = x0, � = x0 + nh), we have (see
[4])

e−lxEn(f; x) = hn−1�̃n(x)L̃n(e−lxf(x))||x=�; x0 ¡�(x)¡x0 + nh; (2.23)

where L̃n is the operator as deKned by

L̃n ≡
(

PUn(kx)
PUn+1(kx)

d2

dx2
− k

PU
′
n(kx)

PUn+1(kx)
d

dx
+ k2

)
dn−1

dxn−1
; (2.24)

PUn(kx) = U (n)
2 (kx)U (n−1)

1 (kx) − U (n−1)
2 (kx)U (n)

1 (kx): (2.25)

Using the result proved in [7] that

Dn
x[e

−lxf(x)] = e−lx(Dx − l)nf(x); ∀n (2.26)

we can write L̃n[e−lxf(x)] as

L̃n[e−lxf(x)] = e−lx ˜̃Ln[f(x)]; (2.27)

where ˜̃Ln stands for the operator

˜̃Ln ≡
(

PUn(kx)
PUn+1(kx)

(Dx − l)2 − k
PU
′
n(kx)

PUn+1(kx)
(Dx − l) + k2

)
(Dx − l)n−1: (2.28)

Using (2.27) in (2.23) we arrive at the relation

En(f; x) = el(x−�)hn−1�̃n(x) ˜̃Ln[f(x)]; � ∈ (x0; x0 + nh): (2.29)

It is to be noted that the operator ˜̃Ln annihilates the function as given by relation (1.4). That is
˜̃Lnfn(x) = 0 (2.30)

and therefore we have from relation (2.2)
˜̃LnEn(f; x) = ˜̃Lnf(x) (2.31)

which satisKes the boundary conditions (2.4).
It is possible to express En(f; x) without the factor e−l�, as explained below.
It is proved that (see [7])

(Dx − l)n−1 n−2(x) = h1−n; (2.32)

where n(x) is deKned to be

 n(x) =
1

�′n+1




 n∑
p=0

(−1)n−p
(
s
j

)
(1 − e−�′)p


 e�

′s − (−1)n


 : (2.33)

Thus, the function chosen to be

 ̃n(x) = elx
(
aU1(kx) + bU2(kx) +

n−2∑
i=0

cixi
)

+
1
k2
 n−2(x) (2.34)

72 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

is such that it satisKes the diHerential equation

˜̃Ln ̃n(x) = h1−n; (2.35)

where a; b; ci are (n + 1) constants, which are determined by imposing the conditions that

 ̃n(x0 + jh) = 0; j = 0; 1; : : : ; n: (2.36)

By virtue of the conditions in (2.36), relation (2.34) gives rise to the problem of interpolating the
functional values −(1=k2) n−2(x0 + jh) (j = 0; 1; : : : ; n), by an interpolation function of form (2.1).
Using the interpolation formula as given by relation (2.21), we derive ̃n(x) in the form

 ̃n(x) = es�
′


− 1

k2

n∑
p=0

(
s
p

)
Up

h n−2(x0 + ph) + �̃n(x)Un−1
h n−2(x0 + n− 1h)

+


�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


Un

h n−2(x0 + nh)


+

1
k2
 n−2(x): (2.37)

Thus the function ̃n(x), as in relation (2.37) satisKes Eq. (2.35) and conditions (2.36).
Now we deKne a new function Gt(f; x), for t �∈ {x0; : : : ; x0 + nh} by

Gt(f; x) = En(f; x) ̃n(t) − En(f; t) ̃n(x): (2.38)

Clearly, the function Gt(f; x) vanishes at the (n + 2) points (x0 + ih), for i = 0; 1; : : : ; n and t. A
slightly modiKed version of the Rolle’s theorem states that if f(x) ∈ C(1)([�; �]) and f(�)=0=f(�),
then for all l ∈ R, there exists a � ∈ (�; �), such that Dxf(�)= lf(�). This theorem can be extended
to the case of f(x) vanishing at any (n+ 2) points and we may conclude that ∀l ∈ R; ∃� ∈ (�; �)

: (Dx − l)n+1f(�) = 0. Using this generalization as well as by following the steps of the proof as
explained in [9], we conclude that for a function g(x) vanishing at any (n+ 2) distinct points, there
exists a � ∈ (�; �), such that ˜̃Lng(�) = 0. Applying this theorem to the function Gt(f; x), we derive
the expression

˜̃LnGt(f; �′) = 0 for �′ ∈ (�; �): (2.39)

This further leads to the result that

En(f; t) = hn−1 ̃n(t)
˜̃Lnf(�′) for �′ ∈ (x0; x0 + nh); (2.40)

wherein relations (2.31) and (2.32) are used. Since t is any arbitrary point, we Knally obtain that

En(f; x) = hn−1 ̃n(x) ˜̃Lnf(�) for � ∈ (x0; x0 + nh); (2.41)

where � depends on x.

3. Numerical examples

In this section, two examples are worked out which show the applicability of the various formulae
as derived in Section 2.

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 73

Table 1
Comparison of maximum errors: U1(kx) = cos(kx); U2(kx) = sin(kx) � = 0; � = 2; n = 8

f(x) k l Exponential Generalized
interpolation interpolation

e−x2
2.2 2.2 3.619 E-03 1.523 E-03
4.0 0.3 1.974 E-04 3.689 E-05
2.8 0.3 1.974 E-04 9.043 E-05
2.89 2.2 3.619 E-03 8.382 E-05

x2e−x2
2.9 2.4 1.163 E-02 3.378 E-04
4.4 2.0 1.146 E-02 3.153 E-04
4.0 0.3 6.170 E-04 1.459 E-04
4.8 1.9 1.034 E-02 3.216 E-04

For numerical experiments we have worked with the choice of pairs of functions U1(kx) and
U2(kx) as listed below:

U1(kx) = cos(kx) and U2(kx) = sin(kx); (3.1)

U1(kx) = ekxcos(kx) and U2(kx) = ekxsin(kx); (3.2)

U1(kx) = Ai(−kx − 1) and U2(kx) = Bi(−kx − 1); (3.3)

where Ai(−kx) and Bi(−kx) are the standard Airy functions and this choice enforces the limiting
case 2.

We have considered the following two functions, as examples, for numerical purposes. The formula
is more suitable to the class of functions with damped oscillations and we have considered such
examples under the applications of the quadrature formulae derived in Section 4:

f(x) = e−x2

for x ∈ [0; 2];

f(x) = x2e−x2

for x ∈ [0; 2]:

For various choices of k and l, we have tabulated the maximum errors in the exponential-type inter-
polation formula, as well the generalized exponential-type interpolation formula, by considering 50
nonnodal points in the interval [0; 2]. On comparison, we observe that the newly derived generalized
exponential-type interpolation formula gives better results.

Tables 1–3 compare the maximum errors involved in the use of the newly derived interpolation
formula with that of the exponential interpolation formula as derived in [7]. The interval [�; �] in
all the examples is Kxed to be [0; 2] and the functions f(x) are speciKed in the tables. The order of
the interpolation function is Kxed at n= 8, for all the examples and the nonnodal points are chosen
to be yi = 2

50 i, for i = 1; 50. The values of l and k are Kxed arbitrarily.

4. The quadrature

We derive in this section, the Newton Cotes closed-type quadrature rules, which are based on
the newly derived interpolation formula, presented in Section 2. We subdivide the interval [�; �]

74 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Table 2
Comparison of maximum errors: U1(kx) = ekx cos(kx); U2(kx) = ekx sin(kx) � = 0; � = 2; n = 8

f(x) k l Exponential Generalized
interpolation interpolation

e−x2
2.953 0.3 1.973 E-04 1.025 E-04
1.51 2.2 3.619 E-03 1.249 E-04
2.70 2.0 3.518 E-03 2.827 E-04
1.00 0.7 1.348 E-04 8.235 E-05

x2e−x2
2.28 2.2 1.281 E-02 5.277 E-04
3.61 2.0 1.146 E-02 6.791 E-04
1.00 2.4 1.163 E-02 4.035 E-03
1.30 2.4 1.163 E-02 6.459 E-04

Table 3
Comparison of maximum errors: U1(kx) = Ai(−kx − 1); U2(kx) = Bi(−kx − 1) � = 0; � = 2

n f(x) k l Classical Exponential Generalized
interpolation interpolation interpolation

4 e−x2 −0:1 0.2 1.38 E-02 9.99 E-03 9.42 E-03
6 0.3 −0:3 9.37 E-04 8.50 E-04 5.65 E-04
8 −0:421 −0:32 3.15 E-05 6.09 E-05 4.10 E-05
10 −0:3 −0:33 1.60 E-06 6.06 E-06 3.86 E-06

4 x2e−x2 −0:4 −0:1 2.07 E-02 2.04 E-02 1.90 E-02
6 − 5

9 −0:1 1.02 E-03 3.93 E-03 1.12 E-03
8 −0:85 −0:2 1.22 E-04 4.84 E-04 7.72 E-05
10 −0:54 −0:55 2.83 E-05 3.06 E-05 2.51 E-05
10 − 8

9 − 8
9 2.83 E-05 3.87 E-05 1.61 E-05

into n equal sub-intervals. Thus, we set � = x0; � = x0 + nh and xi = x0 + ih (i = 0; 1; : : : ; n), with
h = (b − a)=n. We approximate the integral

∫ �
� f(x) dx by integrating the function fn(x). With the

aid of the (n + 1) equidistant points x0 + jh; j = 0; 1; : : : ; we obtain fn(x) and we write

f(x) = fn(x) + En(f; x); (4.1)

where En(f; x) represents the error involved in such approximation. Thus,
∫ �

�
f(x) dx =

∫ �

�
fn(x) +

∫ �

�
En(f; x) dx (4.2)

and we take the approximate value of the integral to be
∫ �

�
f(x) dx ≈

∫ �

�
fn(x): (4.3)

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 75

Using expressions (2.21) and (2.29) and setting � = x0; � = x0 + nh we get

∫ x0+nh

x0

f(x) dx =
∫ x0+nh

x0

es�
′


 n∑

j=0

(
s
j

)
U j

h f(x0 + jh) − k2�̃n(x)Un−1
h f(x0 + n− 1h)

− k2


�̃n+1(x) − D̃

1;1
n (�)

D̃n+1(�)
�̃n(x)


Un

h f(x0 + nh)


 dx

+hn−1
∫ x0+nh

x0

el(x−�)�̃n(x) ˜̃Lnf(�) dx for x0 ¡�(x)¡x0 + nh: (4.4)

We deKne A(n)
j as in [7]. That is, by deKning (see [7])

A(n)
j :=

∫ x0+nh

x0

es�
′
(
s
j

)
dx = nh

∫ n

0
es�

′
(
s
j

)
ds; (4.5)

one can prove that
n∑

j=0

A(n)
j U j

h f(x0 + jh) = nh
n∑

j=0

u(n)
j (�′)f(x0 + jh): (4.6)

Using the result in (R2), we can write immediately that
n∑

j=0

A(n)
j ∇ j

hf(x0 + jh) = nh
n∑

j=0

u(n)
j (�′) e j�′f(x0 + jh): (4.7)

Thus the terms
∫ x0+nh
x0

es�
′
�̃n(x) dx and

∫ x0+nh
x0

es�
′
�̃n+1(x) dx can be simpliKed to the forms which are

proved to be more suitable for computational purposes:

�̃
(n)

1 :=
∫ x0+nh

x0

es�
′
�̃n(x) dx =

1
k2D̃n(�)




nh n∑

j=0

u(n)
j (�′) e j�′U1(kx0 + j�′)

−
∫ x0+nh

x0

es�
′
U1(kx) dx

)
∇n

�U2(kx0 + n�) −

nh n∑

j=0

u(n)
j (�′) e j�′U2(kx0 + j�′)

−
∫ x0+nh

x0

es�
′
U2(kx) dx

)
∇n

�U1(kx0 + n�)

]
(4.8)

and

�̃
(n)

2 :=
∫ x0+nh

x0

es�
′
�̃n+1(x) dx =

1
k2D̃n+1(�)




nh n∑

j=0

u(n)
j (�′)e j�

′
U1(kx0 + j�′)

−
∫ x0+nh

x0

es�
′
U1(kx) dx

)
∇n+1

� U2(kx0 + n + 1�) −

nh n∑

j=0

u(n)
j (�′)e j�

′
U2(kx0 + j�′)

−
∫ x0+nh

x0

es�
′
U2(kx) dx

)
∇n+1

� U1(kx0 + n + 1�)

]
: (4.9)

76 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Using relations (4.8) and (4.9), we can write the extended Newton Cotes quadrature rules (4.4) in
the form (which is more suitable for the computational purposes)∫ x0+nh

x0

fn(x) dx≈ nh
n∑

j=0

u(n)
j (�′)f(x0 + jh) − k2�̃

(n)

1 Un−1
h f(x0 + n− 1h)

−k2


�̃(n)

2 − D̃
1;1
n (�)

D̃n+1(�)
�̃

(n)

1


Un

h f(x0 + nh)

+ hn−1
∫ x0+nh

x0

el(x−�)�̃n(x) ˜̃Lnf(�) dx; x0 ¡�(x)¡x0 + nh: (4.10)

By putting n = 1; 2; 3; : : : ; we obtain the modiKed trapezium rule, modiKed Simpson’s 1
3 rd rule,

modiKed Simpson’s 3
8 th rule, etc.

Below, we have given the expressions for u(n)
j (�′), for j = 0; 1; : : : ; n and for n= 1; 2; 3, which are

helpful for computational purposes (also see [7]):

u(1)
0 (�′) =

(
e�

′

�′2
− 1

�′
− 1

�′2

)
;

u(1)
1 (�′) =

(
e−�′

�′2
+

1
�′

− 1
�′2

)
;

u(2)
0 (�′) =

(
− 1

4�′2
+

1
2�′3

)
e2�′ − 1

2�′
− 3

4�′2
− 1

2�′3
;

u(2)
1 (�′) =

(
1
�′2

− 1
�′3

)
e�

′
+
(

1
�′2

+
1
�′3

)
e−�′ ;

u(2)
2 (�′) =

(
− 1

4�′2
− 1

2�′3

)
e−2�′ +

1
2�′

− 3
4�′2

+
1

2�′3
:

u(3)
0 (�′) =

(
1

9�′2
+

1
3�′4

− 1
3�′3

)
e3�′ − 1

3�′
− 11

18�′2
− 2

3�′3
− 1

3�′4
;

u(3)
1 (�′) =

(
− 1

2�′2
− 4

3�′3
− 1

�′4

)
e−2�′ +

(
1
�′2

− 5
3�′3

+
1
�′4

)
e�

′
;

u(3)
2 (�′) =

(
− 1

2�′2
+

4
3�′3

− 1
�′4

)
e2�′ +

(
1
�′2

+
5

3�′3
+

1
�′4

)
e−�′ ;

u(3)
3 (�′) =

(
1

9�′2
+

1
3�′4

+
1

3�′3

)
e−3�′ +

1
3�′

− 11
18�′2

+
2

3�′3
− 1

3�′4
:

It is clear that u(n)
j (�′) = u(n)

n−j(−�′), see also [7].
It is to be remarked that the Newton Cotes quadrature rules of open type can be derived along

similar lines, as also derived in [7].

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 77

Error analysis. From relation (4.3), we have

EQ
n = hn−1

∫ x0+nh

x0

el(x−�)�̃n(x) ˜̃Lnf(�) dx (4.11)

which on using relation (2.27), gives rise to the relation

EQ
n = hn−1

∫ x0+nh

x0

elx�̃n(x)L̃n[e−l�f(�)] dx: (4.12)

Applying the proposed conjecture of [4], we arrive at the relations

EQ
n = hn−1L̃n[e−l'f(')]

∫ x0+nh

x0

�̃n(x) elx dx; for n-odd (4.13)

=
hn−1

n + 2
d
d'

[L̃n(e−l'f(')]
∫ x0+nh

x0

(
x − x0 +

nh
2

)
�̃n(x) elx dx; for n-even (4.14)

for some ' ∈ (x0; x0 + nh).
We can rewrite relations (4.13) and (4.14), back in terms of ˜̃Ln as

EQ
n = hn−1e−l' ˜̃Lnf(')

∫ x0+nh

x0

elx�̃n(x) dx; for n-odd (4.15)

=
hn−1

n + 2
e−l' d

d'
[˜̃Lnf(')]

∫ x0+nh

x0

(
x − x0 +

nh
2

)
�̃n(x)elx dx for n-even (4.16)

for some ' ∈ (x0; x0 + nh).
In fact, the numerical results show that the above conjectures proposed in relations (4.15) and

(4.16) are valid for the choice of the pairs of functions U1(kx) and U2(kx) made in Section 3.
Also, it is clearly seen that relations (4.15) and (4.16) tend to the corresponding error terms of

the generalized mixed interpolation formula, as l → 0. Further as k → 0, we retrieve the error terms
of the exponential-type quadrature rules, if the stipulated condition stated earlier holds good. Finally,
as l → 0 and k → 0, we obtain the error expressions of the classical Newton Cotes quadrature rules,
under the same stipulated condition.

The above-proposed conjectures are valid for those choices of U1(kx) and U2(kx), which form the
fundamental set for a linear second-order, ordinary diHerential equations, with constant coeLcients
(see [10]).

5. Numerical experiments

In this section, we discuss the utility of the error expressions, given by relations (4.15) and (4.16),
in Kxing numerical values of l and k. For computational purposes few examples are studied and the
tables show the applicability of the quadrature rule (4.10). These tables compare the absolute errors
between the present and the earlier methods.

Firstly, we explain brieQy the choice of k and l, which are free parameters, independent of each
other. If we look back at the derivation of the generalized mixed interpolation formula fn(x) of
Section 2 (see [4]), based on which the present quadrature rules are derived, we Knd that there is

78 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

a possibility for the parameter k to have a complex value, as long as the quantity D̃n(�), given by
relation (2.9) does not vanish.

With this in the background, the choice of k and l can be made as explained below. For n odd,
we can choose k and l, such that the function

x → ˜̃Lnf(x) (5.1)

vanishes at certain intermediate point, of the interval of interest. For n even, we can choose k and
l, such that the function

x → (Dx − l) ˜̃Lnf(x) (5.2)

vanishes at certain intermediate point, of the interval of interest.
Now since (5.1) or (5.2) gives a single equation for a Kxed x, to be solved for the two parameters

k and l, there are two possibilities. One is that by Kxing l (or k), we can solve the resulting equation
for k (or l). The second possibility is to set l = k and then solve the resulting equation for one
parameter k. From the numerical results we infer that the second possibility is more fruitful. Also,
for all numerical purposes, we have Kxed the intermediate point x to be the middle point of the
interval concerned (see [7]). It has been veriKed numerically, that choices of the intermediate points
other than the mid-point, do not change the error signiKcantly.

Secondly, we have worked with the pair of functions given by relations (3.1)–(3.3), which also
meet the condition stated in relation (2.22). The pair of functions in (3.1)–(3.3) are the linearly
independent solutions of the following ODEs:

y′′(x) + k2y(x) = 0; (5.3)

y′′(x) − 2ky′(x) + 2k2y(x) = 0; (5.4)

y′′(x) + k2(kx + 1)y(x) = 0; (5.5)

respectively. Further, the operators ˜̃Ln for the pair of functions (3.1) and (3.2) are given to be

˜̃Ln ≡ [(Dx − l)2 + k2](Dx − l)n−1; n¿1; (5.6)

˜̃Ln ≡ [(Dx − l)2 − 2k(Dx − l) + 2k2](Dx − l)n−1; n¿1: (5.7)

For the pair of functions in (3.3), ˜̃Ln for n = 1 is derived to be

˜̃L1 ≡ (Dx − l)2 + k2(kx + 1): (5.8)

It is to be noted that, for the choice of functions U1(kx) and U2(kx) as given by relations (3.1) and
(3.2), for a Kxed x and l, we always obtain a quadratic equation in k, for any n. But, by setting
l = k and for a Kxed x, we obtain a polynomial equation, whose degree varies with n.

Thirdly, the computation of the numerical values of k, via relations (5.1) and (5.2) is easy, when
the derivatives of the function f(x) can be obtained in a closed analytic form. Otherwise, as stated in
[7], a computational scheme has to be adopted to approximate these derivatives numerically and it is
preferred that the scheme involves the given functional values only. This is an additional requirement
for solving linear integral equations.

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 79

Lastly, for all practical purposes, we divide the interval of integration into N sub-intervals of
equal lengths. On each of these sub-intervals the same quadrature rule of form (4.10) is applied for
some Kxed n. Also at each stage, the lower limit has to be carefully relocated. In all the examples
discussed, we have Kxed n = 1; 2 and 3, for the choice of pairs of functions (3.1) and (3.2) and
for the pair of functions as in (3.3), we have worked with n = 1, for simplicity. Further, we have
worked with both the possibilities of choosing the values of l and k. The details are given below.

(I) For the choice of U1(kx)=cos(kx) and U2(kx)=sin(kx). For a Kxed l, we obtain the following
values of k, for n = 1; 2; 3:

˜̃L1f(') = 0 ⇒ k =

(
−f′′(') − 2lf′(') + l2f(')

f(')

)1=2

; (5.9)

(Dx − l) ˜̃L2f(') = 0 ⇒ k =

(
−fiv(') − 4lf′′′(') + 6l2f′′(') − 4l3f′(') + l4f(')

f′′(') − 2lf′(') + l2f(')

)1=2

(5.10)

˜̃L3f(') = 0 ⇒ k =

(
−fiv(') − 4lf′′′(') + 6l2f′′(') − 4l3f′(') + l4f(')

f′′(') − 2lf′(') + l2f(')

)1=2

: (5.11)

For l = k, we obtain the following relations for n = 1; 2 and 3:

˜̃L1f(') = 0 ⇒ f′′(') − 2kf′(') + 2k2f(') = 0; (5.12)

(Dx − k) ˜̃L2f(') = 0 ⇒ fiv(') − 4kf′′′(') + 7k2f′′(') − 6k3f′(') + 2k4f(') = 0; (5.13)

˜̃L3f(') = 0 ⇒ fiv(') − 4kf′′′(') + 7k2f′′(') − 6k3f′(') + 2k4f(') = 0: (5.14)

(II) For the choice of U1(kx) = ekx cos(kx) and U2(kx) = ekx sin(kx). For a Kxed l, we obtain the
following relations, for n = 1; 2 and 3:

˜̃L1f(') = 0 ⇒ (f′′(') − 2lf′(') + 2l2f(')) − 2k(f′(') − lf(')) + 2k2f(') = 0; (5.15)

(Dx − l) ˜̃L2f(') = 0 ⇒ (fiv(') − 4lf′′′(') + 6l2f′′(') − 4l3f′(') + l4f('))

− 2k(f′′′(') − 3lf′′(') + 3l2f′(') − l3f(')) + 2k2(f′′(')

− 2lf′(') + l2f(')) = 0; (5.16)

˜̃L3f(') = 0 ⇒ (fiv(') − 4lf′′′(') + 6l2f′′(') − 4l3f′(') + l4f('))

− 2k(f′′′(') − 3lf′′(') + 3l2f′(') − l3f('))

+ 2k2(f′′(') − 2lf′(') + l2f(')) = 0: (5.17)

80 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Table 4
Trapezium rule: U1(kx) = cos(kx), U2(kx) = sin(kx), k as chosen by relation (5.9), for the values
of l as displayed in the table, for varying values of a and h = 0:01

a l n Classical Exponential Generalized
trapezium trapezium exponential
rule rule trapezium

0.25 0.9 25 3.91 E−06 1.84 E−11 2.87 E−13
0.50 0.8 50 6.49 E−06 4.32 E−11 2.90 E−11
0.75 0.8 75 7.12 E−06 1.14 E−10 1.03 E−10
1.00 0.7 100 6.13 E−06 1.37 E−10 1.65 E−10
1.25 0.2 125 4.36 E−06 1.53 E−10 9.65 E−11
1.50 0.01 150 2.63 E−06 1.64 E−10 9.25 E−11
1.75 −0:5 175 1.36 E−06 1.69 E−10 1.03 E−11
2.00 −0:5 200 6.11 E−07 1.72 E−10 2.26 E−11
2.25 −0:02 225 2.37 E−07 1.73 E−10 3.63 E−11
2.50 −1:4 250 8.04 E−08 1.73 E−10 6.59 E−11
2.75 −1:5 275 2.38 E−08 1.74 E−10 2.04 E−11
3.00 −2:1 300 6.17 E−09 1.74 E−10 2.09 E−11

For l = k, we obtain the following three relations for n = 1; 2 and 3, respectively:

˜̃L1f(') = 0 ⇒ f′′(') − 4kf′(') + 5k2f(') = 0; (5.18)

(Dx − k) ˜̃L2f(') = 0 ⇒ fiv(') − 6kf′′′(') + 14k2f′′(') − 14k3f′(') + 5k4f(') = 0; (5.19)

˜̃L3f(') = 0 ⇒ fiv(') − 6kf′′′(') + 14k2f′′(') − 14k3f′(') + 5k4f(') = 0: (5.20)

(III) For the choice of U1(kx) = Ai(−kx − 1) and U2(kx) = Bi(−kx − 1). For l = k, we obtain,
when n = 1 the following relation:

˜̃L1f(') = 0 ⇒ f′′(') − 2kf′(') + 2k2f(') + k3'f(') = 0: (5.21)

Example 1. As a Krst example we have considered the example, as also has been considered in [7].
That is,∫ a

0
e−x2

dx =
√
�

2
Er f(a) (5.22)

Tables 4–6 compare the maximum errors involved in the use of the classical Newton-Cotes quadra-
ture rules, the extended quadrature rules of De Meyer et al. [7] and the modiKed quadrature rules as
presented in Section 4. The parameter l in the exponential-type interpolation formula of De Meyer et
al. [7], is chosen by solving strategy (4.1) of De Meyer et al. [7]. This yields a polynomial equation
of degree 1; 2; 3, respectively, in the case of extended trapezium, Simpson’s 1

3 rd, Simpson’s 3
8 th rule.

It is remarked here that while evaluating the deKnite integrals, the free parameter l and k appearing
in the formula presently derived, are chosen by solving polynomial equations of certain degree,
depending upon n. We have chosen those values of l and k, which are neither too very small nor
too very large. Depending upon the nature of f(x), we can Kx the values of l and k. For instance, if

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 81

Table 5
Simpson’s 1

3 rd rule: U1(kx) = cos(kx), U2(kx) = sin(kx), k as chosen by relation (5.10), for the
values of l as displayed in the table, for varying values of a and h = 0:01

a l n Exponential Generalized
rule exponential

rule

0.50 0.9 50 1.273 E−07 9.06 E−11
1.00 0.5 100 1.275 E−07 4.37 E−10
1.50 −0:1 150 1.276 E−07 1.63 E−10
2.00 0.8 200 1.277 E−07 3.26 E−09
2.50 0.9 250 1.277 E−07 1.32 E−11
3.00 −1:2 300 1.277 E−07 2.77 E−09
3.50 −1:2 350 1.277 E−07 2.47 E−08
4.00 −10:0 400 1.277 E−07 7.16 E−08

Table 6
Simpson’s 3

8 th rule: U1(kx) = cos(kx), U2(kx) = sin(kx), k as chosen by relation (5.11), for the
values of l as displayed in the table, for varying values of a and h = 0:01

a l n Classical rule Exponential rule Generalized rule

0.3 4.1 30 3.86 E−10 4.85 E−12 9.82 E−15
0.6 5.1 60 4.77 E−10 5.78 E−12 5.31 E−13
0.9 5.1 90 2.76 E−10 8.65 E−11 2.91 E−13
1.2 4.1 120 1.70 E−11 4.11 E−10 8.22 E−12
1.5 −6:0 150 1.18 E−10 6.29 E−09 1.00 E−11
1.8 −6:0 180 1.22 E−10 1.07 E−04 9.63 E−12
2.1 −10:1 210 7.42 E−11 1.07 E−04 6.17 E−12
2.4 −7:0 240 3.22 E−11 1.07 E−04 9.45 E−12
2.7 −7:0 270 1.06 E−11 1.07 E−04 9.46 E−12
3.0 −10:1 300 2.77 E−12 1.07 E−04 8.14 E−12

f(x) is nonoscillatory and we wish to apply the exponential-type quadrature rule, obviously l cannot
be chosen to be a very large negative or positive number. Accordingly, the choice of l has been
made, and in Tables 7 and 8, we have displayed a column, which gives the range of l so chosen.
In other words, it shows the interval in which the parameter l assumes its values, by solving Eq.
(4.1) of De Meyer et al. [7]. Similarly, for oscillatory integrands, if we wish to use the generalized
exponential quadrature rule, then the parameter l=k, has to be chosen so that the mixed interpolation
function itself is an oscillatory one. Again if f(x) is nonoscillatory, then the parameter l = k has
to be chosen in such a way that the mixed interpolation function shows a nonoscillatory behaviour.
Accordingly, we have made the choice of k. For more details see [5].

Further, in Tables 7–12 we have set a column specifying the range of the chosen k, which is
obtained by solving the polynomial equations mentioned earlier and which is expected to minimize
the error involved in the use of that particular quadrature rule. In other words, the column shows
that which particular root of the polynomial equation is used in the quadrature rule applied in all the
sub-intervals and this has been speciKed by specifying their ranges, for various choices of U1(kx)

82 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Table 7
Trapezium, Simpson’s 1

3 rd and 3
8 th rules: U1(kx) = cos(kx), U2(kx) = sin(kx), l = k as chosen by relation (5.12)–(5.14),

for varying values of a and h = 0:01

Classical Exponential Range Generalized Range
n a rule rule for l rule for k

1 0.3 4.57 E−06 2.29 E−11 −2:00 ¡ l ¡ −1:42 1.21 E−12 0:66¡k¡ 0:99
2 1.71 E−10 3.14 E−09 2.72 ¡ l ¡ 3.28 2.65 E−10 −1:49¡k¡− 1:01
3 3.86 E−10 5.48 E−11 2.73 ¡ l ¡ 3.27 2.28 E−11 −2:79¡k¡− 2:46
1 0.6 6.97 E−06 5.32 E−11 −2:60 ¡ l ¡ −1:42 2.25 E−11 0:20¡k¡ 0:99
2 2.12 E−10 5.26 E−09 2.12 ¡ l ¡ 3.28 4.44 E−10 −1:94¡k¡− 1:01
3 4.77 E−10 7.70 E−11 2.13 ¡ l ¡ 3.27 2.92 E−11 −3:16¡k¡− 2:46
1 0.9 6.67 E−06 1.27 E−10 −3:20 ¡ l ¡ −1:42 5.29 E−11 −0:44¡k¡ 0:99
2 1.22 E−10 6.38 E−09 −1:52 ¡ l ¡ 3.28 5.01 E−10 −2:27¡k¡− 1:01
3 2.76 E−10 8.97 E−11 1.53 ¡ l ¡ 3.27 3.35 E−11 −3:58¡k¡− 2:46
1 1.2 4.73 E−06 1.49 E−10 −3:80 ¡ l ¡-1.42 6.32 E−11 −1:19¡Re(k)¡ 0:99
2 7.57 E−12 6.83 E−09 0.92 ¡ l ¡ 3.28 5.06 E−10 −2:44¡k¡− 1:01
3 1.70 E−11 3.66 E−10 0.93 ¡ l ¡ 3.27 3.47 E−11 −4:06¡k¡− 2:46
1 1.5 2.63 E−06 1.62 E−10 −4:40 ¡ l ¡ −1:42 7.02 E−11 −1:49¡Re(k)¡ 0:99
2 5.27 E−11 6.95 E−09 0.32, ¡ l ¡ 3.28 5.04 E−10 −2:45¡Re(k)¡− 1:01
3 1.18 E−10 1.87 E−09 0.33 ¡ l ¡ 3.27 3.45 E−11 −4:57¡k¡− 2:46
1 1.8 1.17 E−06 1.69 E−10 −5:50 ¡ l ¡ −1:42 7.51 E−11 −1:79¡Re(k)¡ 0:99
2 5.45 E−11 8.21 E−05 −0:27, ¡ l ¡ 3.28 8.34 E−10 −2:59¡Re(k)¡− 0:20
3 1.22 E−10 7.58 E−05 −0:26 ¡ l ¡ 3.27 3.44 E−11 −5:12¡k¡− 2:46

Table 8
Trapezium, Simpson’s 1

3 rd and 3
8 th rules: U1(kx) = ekxcos(kx), U2(kx) = ekxsin(kx), l = k as chosen by relation (5.18)–

(5.20), for varying values of a and h = 0:01

Classical Exponential Range Generalized Range
n a rule rule for l rule for k

1 0.3 4.56 E−06 2.29 E−11 −2:00 ¡ l ¡ −1:42 7.63 E−12 −0:85¡k¡− 0:63
2 1.71 E−10 3.14 E−09 2.72 ¡ l ¡ 3.28 4.61 E−10 −1:04¡k¡− 0:69
3 3.86 E−10 5.48 E−11 2.73 ¡ l ¡ 3.27 4.36 E−11 −2:71¡k¡− 2:28
1 0.6 6.97 E−06 5.32 E−11 −2:60 ¡ l ¡ −1:42 3.14 E−11 −1:06¡k¡− 0:63
2 2.12 E−10 5.26 E−09 2.12 ¡ l ¡ 3.28 1.02 E−09 −1:40¡k¡− 0:69
3 4.77 E−10 7.70 E−11 2.13 ¡ l ¡ 3.27 3.80 E−11 −3:21¡k¡− 2:28
1 0.9 6.67 E−06 1.27 E−10 −3:20 ¡ l ¡ −1:42 5.85 E−11 −1:23¡k¡− 0:63
2 1.22 E−10 6.38 E−09 −1:52 ¡ l ¡ 3.28 1.60 E−09 −1:76¡k¡− 0:69
3 2.76 E−10 8.97 E−11 1.53 ¡ l ¡ 3.27 3.09 E−11 −3:72¡k¡− 2:28
1 1.2 4.73 E−06 1.49 E−10 −3:80 ¡ l ¡− 1:42 7.80 E−11 −1:37¡k¡− 0:63
2 7.57 E−12 6.83 E−09 0.92 ¡ l ¡ 3.28 2.11 E−09 −2:12¡k¡− 0:69
3 1.70 E−11 3.66 E−10 0.93 ¡ l ¡ 3.27 2.58 E−11 −4:26¡k¡− 2:28
1 1.5 2.63 E−06 1.62 E−10 −4:40 ¡ l ¡ −1:42 8.70 E−11 −1:40¡k¡− 0:63
2 5.27 E−11 6.95 E−09 0.32, ¡ l ¡ 3.28 2.51 E−09 −2:52¡k¡− 0:69
3 1.18 E−10 1.87 E−09 0.33 ¡ l ¡ 3.27 2.76 E−11 −4:80¡k¡− 2:28

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 83

Table 9
Trapezium rule: U1(kx) = Ai(−kx− 1), U2(kx) = Bi(−kx− 1), l= k as chosen by relation (5.21)
for varying values of a and h = 0:01

Classical Exponential Range Generalized Range
a rule rule for l rule for k

0.1 1.65 E−06 6.31 E−12 1.22 ¡ l ¡ 1.40 1.59 E−12 0:88¡k¡ 0:99
0.2 3.20 E−06 1.40 E−11 1.02 ¡ l ¡ 1.40 6.07 E−13 0:76¡k¡ 0:99
0.3 4.56 E−06 2.29 E−11 0.82 ¡ l ¡ 1.40 3.05 E−12 0:64¡k¡ 0:99
0.4 5.68 E−06 3.27 E−11 0.62 ¡ l ¡ 1.40 9.23 E−12 0:54¡k¡ 0:99
0.5 6.49 E−06 4.32 E−11 0.42 ¡ l ¡ 1.40 1.74 E−11 0:36¡k¡ 0:99

Table 10
Trapezium rule: U1(kx)=cos(kx), U2(kx)=sin(kx), l=k as chosen by relation (5.12) for varying
values of a and h = 0:01

Classical Exponential Range Generalized Range
a rule rule for l rule for k

0.25 1.88 E−05 7.51 E−10 1.08 ¡ l ¡ 3.26 3.86 E−10 0:97¡k¡ 2:31
0.50 1.98 E−05 1.02 E−09 −0:83 ¡ l ¡ 3.26 6.40 E−10 −0:84¡k¡ 2:31
0.75 6.60 E−06 1.07 E−09 −2:72 ¡ l ¡ 3.26 7.38 E−10 −2:21¡k¡ 2:31
1.00 4.77 E−06 9.80 E−10 −4:80 ¡ l ¡ 3.26 8.73 E−10 −3:00¡k¡ 2:31
1.25 6.57 E−06 5.63 E−10 −8:39 ¡ l ¡ 3.26 9.95 E−10 −3:82¡k¡ 2:31

Table 11
Trapezium rule: Simpson’s 1

3 rd and 3
8 th rules: U1(kx) = cos(kx), U2(kx) = sin(kx), l = k as chosen by relation (5.18) for

varying values of a and h = 0:01

Classical Exponential Range Generalized Range
n a rule rule for l rule for k

1 0.3 2.07 E−05 8.29 E−10 0.68 ¡ l ¡ 3.26 6.93 E−10 0:33¡k¡ 1:46
2 2.27 E−09 3.23 E−09 0.20 ¡ l ¡ 1.73 1.76 E−08 −2:78¡k¡− 1:70
3 5.13 E−09 2.70 E−10 −17:5 ¡ l ¡ −8:17 2.85 E−09 −2:21¡k¡− 1:22
1 0.6 1.54 E−05 1.03 E−09 −1:58 ¡ l ¡ 3.26 9.15 E−10 −0:78¡k¡ 1:46
2 8.75 E−10 5.67 E−07 −0:97 ¡ l ¡ 2.78 4.95 E−08 −3:74¡k¡− 1:08
3 1.97 E−09 7.72 E−06 −140:87 ¡ l ¡ −4:92 1.45 E−07 −3:10¡k¡− 0:69
1 0.9 1.27 E−06 1.03 E−09 −3:94 ¡ l ¡ 3.26 9.56 E−10 −1:74¡k¡ 1:46
2 1.02 E−09 5.63 E−07 −0:97 ¡ l ¡ 2.78 4.67 E−08 −3:74¡k¡− 1:08
3 2.31 E−09 7.72 E−06 −140:87 ¡ l ¡ −4:92 1.38 E−07 −3:10¡k¡− 0:69
1 1.2 6.87 E−06 7.04 E−10 −7:42 ¡ l ¡ 3.26 8.98 E−10 −2:94¡k¡ 1:46
2 7.31 E−10 3.40 E−07 −1:09 ¡ l ¡ 2.78 4.08 E−08 −3:74¡k¡− 1:08
3 1.64 E−09 7.72 E−06 −140:87 ¡ l ¡ −4:92 1.38 E−07 −3:10¡k¡− 0:69

and U2(kx). To illustrate this, we take the example of the function f(x) = e−x2
and N = 30. The

polynomial equation (5.12) gives a set of two values for k, say k1 and k2, by Kxing ' as the
mid-point of each of the 30 sub-intervals. Suppose that we work with k1 (or k2), then this column
gives the minimum and the maximum of these 30 values of k1 (or k2).

84 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

Table 12
Trapezium rule: U1(kx) = Ai(−kx− 1), U2(kx) = Bi(−kx− 1), l= k as chosen by relation (5.21)
for varying values of a and h = 0:01

Classical Exponential Range Generalized Range
a rule rule for l rule for k

0.1 8.89 E−06 3.99 E−10 2.36 ¡ l ¡ 3.26 2.15 E−10 1:77¡k¡ 2:31
0.2 1.62 E−05 6.57 E−10 1.48 ¡ l ¡ 3.26 3.86 E−10 1:23¡k¡ 2:31
0.3 2.07 E−05 8.29 E−10 0.68 ¡ l ¡ 3.26 5.32 E−10 0:63¡k¡ 2:31
0.4 2.19 E−05 9.47 E−10 −0:07 ¡ l ¡ 3.26 6.46 E−10 −0:07¡k¡ 2:31
0.5 1.98 E−05 1.02 E−09 −0:83 ¡ l ¡ 3.26 7.17 E−10 −0:83¡k¡ 2:31

It is to be mentioned here that whenever we have chosen a complex value of k, then we have
taken the real part of the end result. Added to this, we have taken much care that, with the above
choices of k, the function D̃n(�), remains nonzero.

Example 2. As a second example we have considered the integral∫ a

0
e−x2

cos(3x) dx: (5.23)

See Tables 10–12.

Example 3. We consider the integral∫ 3:1

0:1
e2x sin(x) dx = e1=5

(
cos
(

1
10

)
− 2 sin

(
1
10

)
− e6 cos

(
31
10

)
+ 2e6 sin

(
31
10

))
: (5.24)

In this example, the two parameters l=k, appearing in the modiKed exponential quadrature formula,
are chosen to be the smallest of the two roots obtained by solving relation (5.21), for various values
of n. The parameter l of the exponential-type quadrature rule is chosen according to strategy (4.1)
of De Meyer et al. [7] and again we have chosen the smallest of the two roots so obtained (see
Table 13).

Example 4. We consider∫ 4

0
ex

2

dx = −i
√
*

2
Erf (i4): (5.25)

In this example, we get two complex conjugate roots for the parameters and both the values give
the same accuracy (see Table 14).

Example 5. We consider (see Table 15)∫ 3

0
Ai(−3x − 1) dx = 0:1000081398890482: (5.26)

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 85

Table 13
Trapezium rule: U1(kx) = cos(kx), U2(kx) = sin(kx)

Classical Exponential Generalized
n quadrature rule quadrature rule quadrature rule

50 1.35 E−01 3.00 E−02 1.07 E−02
100 3.39 E−02 2.26 E−03 7.72 E−04
150 1.51 E−02 4.68 E−04 1.58 E−04
200 8.49 E−03 1.51 E−04 5.06 E−05
250 5.43 E−03 6.23 E−05 2.08 E−05
300 3.77 E−03 3.02 E−05 1.01 E−05
350 2.77 E−03 1.64 E−05 5.46 E−06
400 2.12 E−03 9.61 E−06 3.20 E−06
450 1.68 E−03 6.06 E−06 2.00 E−06
500 1.36 E−03 3.96 E−06 1.31 E−06

Table 14
Trapezium rule: U1(kx) = ekxcos(kx), U2(kx) = ekxsin(kx)

Exponential Generalized
n quadrature rule quadrature rule

100 1.79 E−01 4.10 E−02
150 3.54 E−02 8.25 E−03
200 1.12 E−02 2.62 E−03
250 4.59 E−03 1.08 E−03
300 2.21 E−03 5.23 E−04
350 1.19 E−03 2.71 E−04
400 7.01 E−04 1.59 E−04
450 4.37 E−04 1.11 E−04
500 2.87 E−04 7.26 E−05

Table 15
Trapezium rule: U1(kx) = Ai(−kx − 1), U2(kx) = Bi(−kx − 1). k = l = 1:9

Exponential Generalized
n quadrature rule quadrature rule

50 9.11 E−04 2.83 E−05
100 2.26 E−04 8.72 E−06
150 1.01 E−04 4.01 E−06
200 5.66 E−05 2.28 E−06
250 3.62 E−05 1.47 E−06
300 2.51 E−05 1.02 E−06
350 1.85 E−05 7.51 E−07
400 1.41 E−05 5.76 E−07

86 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

6. Further generalization of exponential-type interpolation and extension to quadrature rules

The idea of exponential-type interpolation can be further generalized by way of approximating
any function f(x) by f̃n(x) as given by

f̃n(x) = ew(lx)

[
aU1(kx) + bU2(kx) +

n−2∑
i=0

cixi
]
; (6.1)

where w(lx) is a known function, k and l are free parameters. By following the ideas and steps of
Section 2, we can obtain a closed-form expression for (6.1), which interpolates the function f(x)
at the same (n + 1) equidistant points x0 + jh; j = 0; 1; : : : ; n. Without repeating the details of the
derivation we give below the interpolation formula, corresponding to relation (2.21):

f̃n(x) = ew(lx)


 n∑

j=0

(
s
j

)
e−w(lx0+j�′)+w(j�′)Ũ

j
hf(x0 + jh)

− k2�̃n(x)e−w(lx0+n−1�′)+w(n−1�′)Ũ
n−1
h f(x0 + n− 1h)

−

�̃n+1(x) − �̃n(x)

D̃
1;1
n (�)

D̃n+1(�)


 e−w(lx0+n�′)+w(n�′)Ũ

n
hf(x0 + nh)


 ; (6.2)

where we have deKned recursively that

Ũ ff(x) = ew(lx−�′)[e−w(lx)f(x) − e−w(lx−�′)f(x − h)]; ∀f(x); (6.3)

Ũ
j
hf(x)ew(lx−j�′) = ∇ j

h[e
−w(lx)f(x)];

Ũ
(0)
h f(x) = f(x) (6.4)

The counterpart of relation (R3) would be

∇ j
h[f(x)] = e−w(lx−j�′)Ũ

j
h[e

w(lx)f(x)]: (6.5)

It can be veriKed that

Ũ
j
he

w(lx) ≡ 0 for j = 1; 2; : : : : (6.6)

Further, the error involved in such an approximation can be derived to be

Ẽn(f; x) = ew(lx)hn−1�̃n(x)L̃n(e−w(lx)f(x))x=�; x0 ¡�(x)¡xn; (6.7)

where L̃n is as given by relation (2.24).
Now by setting W (x) = e−w(x), and using Leibnitz diHerentiation rule, we can write

Dn
x(W (x)f(x)) = (W (x) + f(x))(n): (6.8)

Thus relation (6.7) can be expressed in the form

Ẽn(f; x) = hn−1ew(lx)�̃n(x) ˜̃Lnf(�); x0 ¡�(x)¡x0 + nh; (6.9)

Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88 87

where ˜̃Ln denotes the diHerential operator

˜̃Ln ≡
PUn(kx)

PUn+1(kx)
(W (x) + f(x))(n+1) − k

PU
′
n(kx)

PUn+1(kx)
(W (x) + f(x))(n)

+ k2(W (x) + f(x))(n−1): (6.10)

The quadrature: As in Section 4, we can obtain the Newton Cotes closed-type quadrature rules
in the form∫ x0+nh

x0

f(x) dx =


 n∑

j=0

Ã
(n)
j e−w(lx0+j�′)+w(j�′)Ũ

j
hf(x0 + jh)

− k2e−w(lx0+n−1�′)+w(n−1�′)Ũ
n−1
h f(x0 + n− 1h)

∫ x0+nh

x0

ew(lx)�̃n(x) dx

− k2e−w(lx0+n�′)+w(n�′)Ũ
n
hf(x0 + nh)

{∫ x0+nh

x0

ew(lx)�̃n+1(x) dx

− D̃
1;1
n (�)

D̃n+1(�)

∫ x0+nh

x0

ew(lx)�̃n(x) dx




 ; (6.11)

where Ã
(n)
j ’s are deKned by

Ã
(n)
j =

∫ x0+nh

x0

ew(lx)
(
s
j

)
dx: (6.12)

The error in the quadrature rule is then proposed as conjectures, as stated below:

Ẽ
Q
n = hn−1L̃n(e−w(l')f('))

∫ x0+nh

x0

ew(lx)�̃n(x) dx for n-odd; (6.13)

Ẽ
Q
n =

hn−1

n + 2
d
d'

L̃n(e−w(l')f('))
∫ x0+nh

x0

(
x −

(
x0 +

nh
2

))
�̃n(x)ew(lx) dx for n-even (6.14)

for some x0 ¡'¡x0 + nh.
For the sake of completeness, we have included this idea of a ‘more general’ exponential-type

interpolation formula and the quadrature rules based on it. This further generalization of the idea
of interpolation and quadrature, are expected to give accurate results for a more general class of
functions, than what has been derived and discussed in the previous sections (Sections 2 and 4). In
fact, a deeper study is yet to be done on the choice of the function w(lx), for any given function
f(x). It is intended to take up such studies in future, with the support of few numerical examples.

7. Conclusions

A new interpolation formula of exponential-type based on the generalized mixed interpolation
formula has been derived. The newly derived ‘generalized exponential-type interpolation’ formula
has been expressed in three diHerent forms. The error involved in such generalized exponential-type

88 Hamsapriye / Journal of Computational and Applied Mathematics 131 (2001) 65–88

interpolation formula has been discussed and a closed-form expression has been derived for the
error term. Several numerical experiments have been performed, which show the applicability of the
newly derived interpolation formula. In fact, a more general exponential-type interpolation formula
has been derived in a closed-form and the error involved has also been discussed. An attempt has
been made to derive a closed-form expression for the error term involved in approximating any
function f(x) by this further generalized exponential-type interpolation function fn(x).

The classical Newton Cotes quadrature rules, of the closed type, have been extended based on the
newly derived generalized exponential-type interpolation formula, in a form that is more suitable for
numerical computational purposes. The error involved in the ‘generalized Newton Cotes quadrature
rules’ has been proposed as conjectures in the two cases when n is odd and when n is even. Several
numerical examples have been taken up for study and the newly derived quadrature rules show the
eLciency over the classical Newton Cotes quadrature rules. Also the idea of extending the classical
Newton Cotes rules, via the exponential-type interpolation, has been further generalized as in Section
6 and the error involved has been proposed as conjectures, in the two cases when n is odd and
when n is even, only to a certain extent.

Acknowledgements

I wish to thank Professor A. Chakrabarti for his constant encouragement and for providing me
the computational facilities.

References

[1] K.E. Atkinson, Introduction to Numerical Analysis, Wiley, New York, 1997.
[2] P. Bocher, H. De Meyer, G. Vanden Berghe, On Gregory and modiKed Gregory-type corrections to Newton–Cotes

quadrature, J. Comput. Appl. Math. 50 (1994) 145–158.
[3] P. Bocher, H. De Meyer, G. Vanden Berghe, ModiKed Gregory formulae based on mixed interpolation, Internat.

J. Comput. Math. 52 (1994) 109–122.
[4] A. Chakrabarti, Hamsapriye, Derivation of a generalized mixed interpolation formula, J. Comput. Appl. Math. 70

(1996) 161–172.
[5] A. Chakrabarti, Hamsapriye, ModiKed quadrature rules based on a generalized mixed interpolation formula,

J. Comput. Appl. Math. 76 (1996) 239–254.
[6] A. Chakrabarti, Hamsapriye, On modiKed Gregory rules based on a generalized mixed interpolation formula,

J. Comput. Appl. Math. 78 (1997) 103–124.
[7] H. De Meyer, G. Vanden Berghe, J. Vanthournout, Numerical quadrature based on an exponential-type of

interpolation, Internat. J. Comput. Math. 38 (1990) 193–209.
[8] H. De Meyer, J. Vanthournout, G. Vanden Berghe, On a new type of mixed interpolation, J. Comput. Appl. Math.

30 (1) (1990) 55–69.
[9] H. De Meyer, J. Vanthournout, G. Vanden Berghe, A. Vanderbauwhede, On the error estimation for a new type

of mixed interpolation, J. Comput. Appl. Math. 32 (1990) 407–415.
[10] P. KVohler, On the error of the parameter-dependent compound quadrature formulas, Internal Report, University of

Braunsweig, Germany, 1996.
[11] G.F. Simmons, DiHerential Equations with Applications and Historical Notes, Tata McGraw Hill, New Delhi, India,

1994, pp. 118–122.
[12] G. Vanden Berghe, H. De Meyer, J. Vanthournout, On a class of modiKed Newton-Cotes quadrature formulae

based upon mixed-type of interpolation, J. Comput. Appl. Math. 31 (1990) 331–349.

