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Abstract

The effect of time-periodic temperature/gravity modulation at the onset of magneto-convection in weak electrically
conducting fluids with internal angular momentum is investigated by making a linear stability analysis. The Venezian
approach is adopted in arriving at the critical Rayleigh and wave numbers for small amplitude temperature/gravity
modulation. The temperature modulation is shown to give rise to sub-critical motion and gravity modulation leads to
delayed convection. An asymptotic analysis is also presented for small and large frequencies. © 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Magneto-convection is concerned with the effect of a transverse magnetic field at the onset of convection in
an electrically conducting fluid with suspended particles. In these fluids with suspended particles we have to
consider the conservation of angular momentum in addition to the conservation of linear momentum.

Effective control of magneto-convection in fluids with internal angular momentum is important and this
can be achieved by maintaining a non-uniform temperature gradient (see Refs. [1,2]). Such a temperature
gradient may be generated by

(i) an appropriate type of heating or cooling at the boundaries,

(i) injection/suction of fluid at the boundaries,

(iii) an appropriate distribution of the heat source, and

(iv) radiative heat transfer.
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These methods of controlling convection are mainly concerned with space-dependent temperature gradi-
ents. However, in practice, the non-uniform temperature gradient finds its origin in transient heating or
cooling at the boundaries. Hence the basic temperature profile depends explicitly on position and time. This
problem, called the thermal modulation problem, involves the solution of the energy equation under suitable
time-dependent boundary conditions.

The effect of modulation on the stability of the flow of clean fluids between rotating cylinders was
investigated experimentally [3]. In this experiment, the Newtonian fluid was confined to the narrow gap
between two cylinders, with the outer cylinder held fixed while the inner cylinder was given an angular speed
Q + AQ cos wt. Donnelly [3] found that the onset of instability was delayed by the modulation of the
angular speed of the inner cylinder. He [ 3] interpreted his results as being due to a viscous wave penetrating
the fluid and thereby altering the profile from an unstable one to a stable one. Since the problems of Taylor
stability and Benard stability are very similar, Venezian [4] investigated the stability of a horizontal, viscous
clean Newtonian fluid layer by considering thermally modulated boundaries. The paper by Rosenblat [5] is
yet another effort in this direction for not so very small amplitudes. This is different from the approach of
Venezian [4].

Another important class of natural convection problems is concerned with the difficulty in avoiding
convection in the earth’s gravitational field even when the basic temperature gradient is uniform and
interfacial instabilities can be ignored. It is common knowledge that many extra-terrestrial experiments
under microgravity conditions have been conducted to eliminate convection. Terrestrially simulated micro-
gravity environment has also been considered by Ostrach [6], Knabe and Eilers [7], Alexander and
Laudquist [8] and Alexander [9] in situations involving clean Newtonian fluids.

In the case of natural and simulated microgravity studies, time-dependent acceleration of sufficient
amplitude due to manoeuvers and inherent mechanical vibrations lead to convection. This is called the
g-jitter effect. Some of the important papers in this direction for clean Newtonian fluids are [10-13].

The unmodulated Rayleigh—Benard situation in fluids with internal angular momentum [14-197 has been
investigated by many authors [1,2,20-29]. Inspite of immense possibility for practical applications, temper-
ature/gravity modulation of convection in these fluids has not been considered. This is also true of the
magneto-convection problem. In view of the mathematically challenging nature of this magneto-convection
problem with modulation and also due to the numerous applications, we study the effect of temper-
ature/gravity modulation at the onset of magneto-convection in a weak electrically conducting fluid with
internal angular momentum. It appears that experimental work relating to the present paper has not been
performed.

2. Mathematical formulation

Consider a layer of a Boussinesquian weak-electrically conducting fluid with internal angular momentum
confined between two infinite horizontal walls distant ‘L’ apart (see Fig. 1). The uniform magnetic field is
directed along the Z-axis. A cartesian coordinate system is taken with origin in the lower boundary and
Z-axis vertically upwards. The basic governing equations are:

Continuity equation

Vg=0, (1)

Conservation of linear momentum

0 ~
PR [a—‘f +(q'V)qJ = —Vp—pgk + 2L +n)V?q + (Vxo + JxB, 2
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Fig. 1. Physical configuration.
Conservation of angular momentum
dw
pRI[a + (q~V)w:| = +NV(V-0)+ Vo + {(Vxq—2v), (3)
Conservation of energy
oT
—+ @ VT = P (Vxo)-VT + yV*T, 4)
ot pRCU
Equation of state
p=pr[l —oT — Tg)], )
Constitutive equations
J =oa(q X B), (6)
B = puH, (7

where ¢ is the velocity, o is the spin, T is the temperature, H is the magnetic field, J is the current density, B is
the magnetic induction vector, p is the pressure, p is the density, pg is the density of the fluid at reference
temperature T = Ty, g is the acceleration due to gravity, { is the coupling viscosity coefficient or vortex
viscosity, # is the shear kinematic viscosity coefficients, I is the moment of inertia, 2’ and 5" are the bulk and
shear spin velocity coefficients, /3 is the micropolar heat conduction coefficient, C, is the specific heat, y is the
thermal conductivity, « is the coefficient of thermal expansion, ¢ is the electrical conductivity and u is the
magnetic permeability.

For a weakly electrically conducting fluid the Lorentz force J x B, on using the constitutive Egs. (6) and (7),
can be written as

JxB = — p*cHiq. ®)

where H,, is the applied transverse magnetic field.

The no-spin condition is assumed for microrotation at the stress free isothermal boundary. Due to the
Hartmann formulation, the magnetic field boundary conditions do not have any influence on the convection.
The lower and upper walls are subjected to the temperatures

T(0,t) = Tx +3AT [1 + & cos yt] 9)
and

T(L,t) = Tg — AT [1 — g cos(yt + )], (10)
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respectively, where ¢ is the small amplitude, y is the frequency and ¢ is the phase angle. Temperature
modulation comes into picture in the present problem through these boundary conditions (9) and (10).

2.1. Basic state

The basic state of the fluid is quiescent and is described by
qu = 0’ Oy = 05 T = TH(Z9 t): p= pH(Z)s p= pH(Z7 t)

The temperature Ty, pressure py, and density py satisfy

0Ty 0°Ty
o * oz
_Opu _

oz Pudg

and

pu = poll — Ty — Tyr)].

The solution of Eq. (11) that satisfies the thermal boundary conditions (9) and (10) is

AT )
Ty=Tg + U1 (L —2Z) + ¢ Re{[a(2)e**'" + a(—A)e”**]e™ "},

AT[e ¥ —e™*
) :7[—}

and Re stands for the real part.

2.2. Linear stability analysis

Let the basic state be disturbed by an infinitesimal thermal perturbation. We now have

g=qu+4q,

0=owy+ o,

p = pu(2) + p',
p =pu(2) + P,

The prime indicates that the quantities are infinitesimal perturbations.

(11)

(12)

(13)

(14)

(15)

(16)
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Substituting Eq. (16) into Egs. (1)«5), using Eq. (8) in Eq. (2), and using the basic state solution, we get
linearized equations governing the infinitesimal perturbations in the form

V-q =0, (17)
0 R

pk[a_ﬂ = —Vp' — p'gk + 2L + )V’ + [V x o' — j’cHiq), (18)
aw’ ’ ’ ’ N72 ./ ’ /

prl| 5 | = (2 +MV(V-0) +1/V2e + [V x g —20), (19)

60 aTH ﬁQz 2

— == —-w V30 20

o <az>|:pRCv }”‘ ’ 20

and
p = — apgl. (21)

The perturbation Egs. (17)21) are non-dimensionalized using the following definitions:

oy = (SLE) e oyl W
> b L’L’L, L27 X/L,
) [Vxo]z 0
= = = 9*:—. 22
o= I AT (22)

Operating curl twice on Eq. (18) and using Eq. (21), operating curl once on Eq. (19) and non-dimensionaliz-
ing the two resulting equations and Eq. (20), using Eq. (22), we get

10
pra; (VW)= RVI0 + (1 + NJVW + N,V2Q. — M?V2W, (23)

N, 0Q,
Pr ot
00
or

= N3VZQZ - N1V2W - 2N192, (24)

<%> [NsQ. — W]+ V30, (25)

where the asterisks have been dropped for simplicity and

ATpgL?
390" P (Rayleigh number), Pr = € +n) (Prandtl number),

€+ mny PRY

2 H2L2
I el (Hartmann number), N; = (Coupling parameter),
C+n) C+n

!

I .
N, = 2 (Inertia parameter), Nz = _T (Couple stress parameter),

(¢ +nL?

-k
pOCUL2
In Eq. (26), (0T (/0z) is the non-dimensional form of (07T'y/0z), where

% = —1+¢ Re{[A(,{)elz + A( — i)e_’lz]e‘i"ﬂ} -

N (Micropolar heat conduction parameter).
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and

Egs. (24)+26) are solved subject to the conditions

62
W:a—Vf=Qz:0=o atz =0, 1. 27)
Z

Eliminating 2, and 0 from Egs. (23)+25), we get an equation for W in the form

0 2 2 NZa 2 10 2 2 2v72
<a[ V)V [(Prat N;3V- + 2N, Pr o 1I+N)V-+ M)+ NV | W

oT N, d
— RV? <a—z°> [ — NsN,V2 — P_r2 T N3V? — 2N1} w. (28)

In dimensionless form, the velocity boundary conditions for solving Eq. (28) are obtainable from Egs.
(23)+25) and Eq. (27) in the form
o*w _ o*w oW

0z> ot - 0z°

W =

=0 atz=0,1 (29)

3. Stability analysis

We now seek the eigenfunction W and eigenvalues R of Eq. (28) for the basic temperature distribution (26)
that departs from the linear profile (07T,/0z) = —1 by quantities of order &. Thus, the eigenvalues of the
present problem differ from those of the ordinary Benard convection by quantities of order &. We seek the
solution of Eq. (28) in the form:

(R, W)= (Ro, Wo) + &Ry, W,) + &*(Rp, W3) + - - - - (30)

The expansion (30) is substituted into Eq. (28) and the powers of ¢ are separated. Following Venezian [4],
we can obtain Ry, R; and R, in the form:

_ (I + NyN;K} + N,(2 + N)K§ + M?[N;K? + 2N, JK?}

Ro @[(N5 — NsN,) K2 + 2N,] ’ o
R —0 (32)
and
e Ry Z| A |B,,(zg|2 [Ll(y, n) + Li(7, n)} (33)
2 [L1(p, n)| 2
where

N
Ay = NsN,K2 + iy P_r2 — N3K2 —2N,,

. . — o2l et —e A 4 (— 1) (e~ ATie — gt i
B = Agu®)+ A= =) = Zﬁ)[[eﬂ o 1()2112]) [(zz +(n _61)2#)% ’
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2 2
P°N Roa"N
Li(y,n) = {Xs( - Kle - “/ZK&XZ - R002X3) - Pr2 <K3X1 - Ksz - OPr 2)}

. R, 2N N
+ipd X5 K2X, — KiX, — 2L 22) 4 22 (KX, 32K2X, — Roa®Xs) b,
Pr Pr
VzNz

Xy = (N3K; + 2N4)(1 + N)K + M?) — — NiK3,

Pr?
1

X3 =NsN,K? — N3;K?—2N,, K?=n’n*+d*

and Li(y, n) are the conjugates of L,(y, n), respectively.

4. Minimum Rayleigh number for convection

The value of R obtained by this procedure is the eigenvalue corresponding to the eigenfunction W which,
though oscillating, remains bounded in time. Since R is a function of the horizontal wave number a and the
amplitude of perturbation ¢, we have

R(a, &) = Ro(a) + ¢*Ry(a) + - - - - (34)

It was shown by Alexander and Lundquist [8] that the critical value is determined to O(g?) by evaluating
Ry and R, at a = a,. It is only when one wishes to evaluate R, that a, must be taken into account where
a = a, minimizes R,. To evaluate the critical value of R, (denoted by R,.) one has to substitute a = a, in R,,
where qa, is the value at which R, given by Eq. (31) is minimum.

We now evaluate R, for three cases:

(a) When the oscillating field is symmetric so that wall temperatures are modulated in phase with ¢ = 0. In
this case,

B,(1) = b, or 0 accordingly as n is even or odd.

(b) When the wall temperature field is antisymmetric corresponding to out-of-phase modulation with
¢ = m. In this case,

B,(1) = 0 or b, accordingly as n is even or odd.
(c) When only the temperature of the bottom wall is modulated, the upper plate being held at constant
temperature with ¢ = — i c0. In this case,

b, )
B,(1) = > for integer values of n.

The b,’s are given by
b — 4nn?i?
"4 (n+ D[4 + (n — 1)*n?]

The variable A defined in Eq. (15), in terms of the dimensionless frequency reduces to

i=(1—1)<§>1/2

(35)
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and thus

l6n*m*y?
b,|* = . 36
o e I - ) .

Hence from Eq. (34) and using the above expression of B,(4), we obtain the following expression for R,.:

 R3ag | AP |BAAPTLAG, 1) + Li(y, n)]

Ree= =72 2Ly 1)

(37
In Eq. (37) the summation extends over even values of n for case (a), odd values of n for case (b) and for all

integer values of n for case (c). The infinite series (37) converges rapidly.

5. Limiting cases

The physical significance of R, as a function of y can be well understood by examining the limiting cases
for very small and very large values of 7.

Case (i): Very small frequency (y < 1):
For y < 1, the expression for R, (writing the summation for n = 1 and n > 1) reduces to

8Rj.a*n* X
Rac = Rec = o yia 142G (38)
where
R3.a; .,
Ry, = — 02 15
where

(N,/Pr) [K%Yl - K?Xz - (RoazNz/Pr)]
[K%Y1 - KTXz - (ROaZNz/Pr)] ’

C’i = —(N1N5K% —N3K% - 2N1)K%X2 -

1
(N\NsK3 — N3Ki — 2N,) [ K'Y, — Roa* (N NsK;; — N3Ki — 2N4)]

C: = n>1)

and
Y, = (N3K? + 2N)(1 + N,)KZ + M?) — NiK:.

In the case of symmetric modulation, the sum extends over only even values of n so that the expression for
R,. reduces to

8R3.a*n?

Rye= — 50
2¢ (n2 — 1)41'54

|4,1°Cry?, (39)
which is independent of Pr. The effect thus appears only for large values of y.

In the case of antisymmetric and also for the case in which only lower wall temperature is modulated, R, is
given by Eq. (38) with the convention that in the former case the sum extends over only odd values of n and in
the latter case for all values of n.
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Case (ii): Very large frequency (y — o0):
As y — o0, R, tends to zero, so that the effect of modulation disappears altogether.

6. Subcritical instability

The critical value of Rayleigh number R, is determined to order of &2, by evaluating R, and R,, and is of
the form
Rc = ROc + 82R20a (40)
where Ry, and R,. can be obtained from Egs. (31) and (33), respectively.
If R,. is positive, supercritical instability exists and R, has a minimum at ¢ = 0. When R, is negative,
subcritical instabilities are possible. In this case, we have from Eq. (40)

2 <=2, (41)

Now we can calculate the maximum range of ¢, by assigning values to the physical parameters involved in
the above condition. Thus, the range of the amplitude of modulation, which causes subcritical instabilities in
different physical situations, can be explained.

We have thus far investigated the effect of thermal modulation on the onset of convection. Reiterating
what was mentioned in the introduction to the paper, we now address ourselves to the important problem of
gravity modulation in the next section using the analysis of the previous sections.

7. Gravity modulation

Under the influence of a periodically varying vertical gravity field
g =go(l + 0 cos 1), (42)
where g, is the mean gravity, J is the small amplitude of gravity modulation, y, is the frequency and ¢ is the
time. The time fluctuating gravity is referred to as g-jitter.
The governing equations for the Boussinesquian, weak electrically conducting fluid with internal angular
momentum are essentially the same Egs. (1)+(8) but with ‘g’ given by Eq. (42).
The basic state of the fluid is quiescent and is described by
qu = 09 Wy = 07 p= pH(Z)’ T = TH(Z)’ p= PH(Z) (43)
This clearly differs from the one in the thermally modulated case. Pressure py and the density py satisfy Egs.
(12) and (13) whereas Ty satisfies
d’Ty _
dz?2
Following the analysis in the previous section, the linearized perturbation equations, on using Eq. (42) and
non-dimensionalization, yield

10

0. (44)

Prar (V2W) = R(1 + 8 cos 7,1)V30 + (1 + NV*W + N,V2Q, — M>V>W, (45)
N, 0Q

P—rz azz = N,V2Q. — N,\V’W — 2N,Q,, (46)
00

— =W — NsQ, + V20, (47)

ot



168 P.G. Siddheshwar, S. Pranesh | Journal of Magnetism and Magnetic Materials 192 (1999) 159-176

where the parameters N, N,, N3, Ns, R, Pr and M? are as in the earlier sections. Eq. (47) is essentially
Eq. (25).

Following the analysis of Venezian [8] for the velocity boundary conditions (29) we obtain R, and R, in
the form,

_ (I + NyN;K§ + N,(2 + N)K§ + M?[N3K? + 2N, JK?}

R 48
° @’[(N> — NsNDK3 + 2N,] (48)
and
Rja* |4, |:L1("/1: n) + Li(ys, n):|
R, = Re , (49)
22 ILi(y, ) 2
where

mzN R aZN
LGy, m) = { — X3(— KX, — 2K2X, — Roa’X3) + Pr2<K,%X1 — KX, — = 2>}

. Roa*N N
+iy {—X3<K,%X1 KX, - 2> e

Pr E (— Kle - VzKr%Xz - Roazxs)} .

In Eq. (49), Li(y, n) are the conjugates of L,(y, n), respectively.

8. Discussion and conclusion

In the paper we make an analytical study of the effects of temperature/gravity modulation and transverse
magnetic field at the onset of convection in weak electrically conducting fluids with suspended particles. We
first discuss the results in respect of temperature modulation.

In the case of thermal modulation the amplitude is small compared with the imposed steady temperature
difference. The validity of the results obtained here depends on the value of the modulating frequency y.
When y < 1, the period of modulation is large and hence the disturbance grows to such an extent as to make
finite amplitude effects important. When y — oo, R,. — 0, thus the effect of modulation becomes small. In
view of this, we choose only moderate values of y in our present study. Before we embark on the discussion of
results depicted by the graphs, we must note that the presence of suspended particles in the otherwise clean
fluid is to increase its viscosity. This follows from the well-known Einstein relation for suspended particles

p= po(l + 2.500),

where p and puo are the viscosities of suspension (i.e. clean fluid + suspended particles) and clean fluid,
respectively, o is the shape factor and ¢ is the volume fraction of the suspended particles. In view of this we
consider values of Prandtl number of unclean fluids higher than those of clean fluids. We now discuss the
results arrived at in the paper.

Fig. 2 is the plot of R, versus y for different values of Prandtl number Pr and fixed value of Hartmann
number M?, in respect of modulation in-phase. We observe that as Pr increases, R, becomes more and more
negative. We can infer from this that the effect of increasing the concentration of the suspended particles is to
destabilize the system. This means that fluids with suspended particles are more vulnerable than clean fluids
to destabilization by modulation. It is appropriate to note here that Pr does not affect the Ry-part of R (see
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Fig. 2. Plot of R, versus frequency of modulation y for different values of Prandtl number Pr.
Table 1
Variation of Ro, R, for M? = 5.0 (In-phase modulation)
]\[1 ]\[2 ]\[3 ]\[5 ROc Pr=1,7=15 Pr=5,y=20
R,. R,
0.1 0.01 2.0 1.0 991.21 —9.7195 — 11.7070
0.5 1585.10 — 15.3590 —17.6107
1.0 2855.07 — 25.9921 —28.9214
1.5 5712.08 —43.3225 —47.4542
0.1 0.01 2.0 1.0 991.21 —9.7195 — 11.7070
0.1 991.21 —9.5039 — 11.6549
0.5 991.21 — 8.4460 — 11.4052
1.0 991.21 —6.9337 —11.0729
0.1 0.01 2.0 1.0 991.21 —9.7195 — 11.7070
4.0 966.15 —9.4878 — 11.4187
6.0 958.04 —9.4124 — 11.3244
8.0 954.03 —9.3751 — 11.2778
10.0 951.64 —9.3529 — 11.2499
0.1 0.01 20 0.5 965.96 —9.4733 — 114121
1.0 991.21 —9.7195 — 11.7070
1.5 1071.81 —9.9789 — 12.0210
2.0 1045.88 —10.2524 — 12.3515

Egs. (30)—~(33)). It affects only R,. R, is the Rayleigh number of the unmodulated system. It is also observed
that for low concentration of the suspended particles supercritical motion is possible and for high concentra-
tion only subcritical motion is possible. Thus, in the case of fluids with suspended particles subcritical

motions are more probable than supercritical motion. Table 1 also bears out this fact.
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175~

In-phase temperature
150 modulation
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25|
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Fig. 3. Plot of R, versus 7 for different values of coupling parameter N, Prandtl number Pr and Hartmann number M2

Fig. 3 is the plot of R, versus y for different values of coupling parameter N, Pr and M?, in the case of
in-phase modulation. Increase in N, implies increase in the concentration of suspended particles. In the case
of fluids with suspended particles part of the energy is consumed by these particles in forming the gyrational
velocity. Hence in the figure we observe that as N increases R,, becomes more and more negative. This
essentially reiterates the conclusion in the context of Fig. 2. It is interesting to note that for a given value
of Ny, R, decreases for small values of y and increases for moderate values of y. Thus small values of
7 destabilize and moderate values of y stabilize the system. This is due to the fact that when the frequency of
modulation is low, the effect of modulation on the temperature field is felt throughout the fluid layer. If the
plates are modulated in-phase, the temperature profile consists of the steady straight line section plus
a parabolic profile which oscillates in time. As the amplitude of the modulation increases, the parabolic part
of the profile becomes more and more significant. It is known that a parabolic profile is subject to finite
amplitude instabilities so that convection occurs at lower Rayleigh numbers than those predicted by the
linear theory. Fig. 3 also gives the effect of Hartmann number on modulation. Hartmann number is the ratio
of Lorentz force to viscous force and is thus a measure of the relative importance of the two forces (see Ref.
[30]). We observe from the figure that increase in M? is to make R,. more and more negative. In making
conclusions from the figure, we should also recollect that N; and M?, unlike Pr, influence R,.. We find that
R,. increases with increases in N; and M?. This important result is documented in Table 1. From the table it
is clear that the increase in Ry, with N, is more marked than that of |R, | with N.

Fig. 4 is the plot of R,. versus 7 for different values of inertia parameter N,, Pr and M?, in the case of
in-phase modulation. Increase in N, is representative of the increase in inertia of the fluid due to the
suspended particles. Thus, as is to be expected, we find that as N, increases R ,. becomes less and less negative
thereby stabilizing the system. Since N, essentially arises with the acceleration term, it does not have any
influence on Ry.. It influences only R,..

Fig. 5 is the plot of R, versus y for different values of couple stress parameter N3, Pr and M?, in the case of
in-phase modulation. The role played by the shear stress in the conservation of linear momentum is played
by couple stress in the conservation of angular momentum equation. Increase in Nj signifies decrease in
gyrational velocities. Hence, as N3 increases, we observe that R,. becomes less and less negative. Table
1 gives the effect of N3 on R,.. Clearly R, changes more markedly than R, with Ns.

Fig. 6 is the plot of R, versus y for different values of micropolar heat conduction parameter Ns, Pr and
M?, in case of in-phase modulation. An increase in N5 implies that the heat induced into the system also
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Fig. 5. Plot of R, versus y for different values of couple stress parameter N5, Pr and M2,

increases resulting in reduced heat transfer from bottom to top. As a result, we find from the figure that as
N5 increases R,, becomes more and more negative. Further, Table 1 shows a more marked influence of
N5 on Ry, than on R,..

Fig. 7 is a plot of R, versus y for different values of Pr and fixed value of other parameters in respect of
out-of-phase modulation. We find that even though R,. decreases with increase in Pr it does not become
negative. Thus subcritical motion is ruled out in the case of out-of-phase modulation. Why this is so is
explained in one of the succeeding paragraphs.

We now discuss the results pertaining to out-of-phase modulation. Comparing Figs. 3 and 8, Figs. 5 and
10, and Figs. 6 and 11, respectively we can conclude that R, is positive for out-of-phase whereas for in-phase
it is negative. Thus Ny, N3 and N5 have opposing influences in in-phase and out-of-phase modulations.
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Fig. 6. Plot of R, versus y for different values of micropolar heat conduction parameter Ns, Pr and M2
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Fig. 7. Plot of R, versus y for different values of Pr.

However, N, has identical influence on R, in both in-phase and out-of-phase modulations and these can be
seen in Figs. 4 and 9. The above results are due to the fact that in the case of out-of-phase modulation the
temperature field has essentially a linear gradient varying in time, so that the instantaneous Rayleigh number
is supercritical for half a cycle and subcritical during the other half cycle (see Ref. [4]).

The above results on the effect of various parameters on R,. for out-of-phase modulation do not
qualitatively change for the case of temperature modulation of just the lower boundary. This is illustrated
with the help of Fig. 12. The physical explanation is the same as in out-of-phase modulation (see Ref. [4]).

We find the following limiting cases in respect of temperature modulation:

1. lim  [Results of the present study] — [Results of Ref. [31]

N,—0

2. lim  [Results of the present study] — [Results of Ref. [4].

Ni—0
M?*-0
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In the first limiting case M? is to be identified with 1/P[ (porous parameter) of Ref. [31]. This clearly shows

the analogy between magnetoconvection and convection in porous media involving clean fluids.

We have so far discussed results on temperature modulation. We now discuss results of gravity modula-
tion. Unlike temperature modulation which is at the boundaries, gravity modulation affects the entire bulk of
the fluid between the bounding plates. Fig. 13 shows that the effect of various parameters on R, is
qualitatively similar to that of out-of-phase temperature modulation. One interesting result of gravity
modulation in contrast to temperature modulation is that at large Prandtl numbers R,. can become

negative. This is due to the opposing influences of viscosity and buoyancy force on convection.
The following limiting case applies in respect of gravity modulation:

lim [Results of the present study] — [Results of Ref. [32]].

N—0

In this limiting case M? is to be identified with ¢* (porous parameter) of Ref. [32].
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Fig. 12. Plot of R, versus y for different values of N, Pr and M>.

The results of the study throw light on an external means of controlling magnetoconvection, either
advancing or delaying convection by temperature modulation, in a weak electrically conducting fluid with
internal angular momentum. The results of gravity modulation, in general, indicate that g-jitter or gravity
modulation leads to delay of convection only. It is also observed that for large frequencies, the effects of
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Fig. 13. Plot of R, versus vy for different values of Pr.

175

temperature and gravity modulation disappear. From the study we may also conclude that suspended

particles scale down the effect of temperature/gravity modulation.
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