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Abstract 

This paper is concerned with explicit integration formulas and algorithms for computing integrals of trivariate polynomials over an 

arbitrary linear tetrahedron in Euclidean. three-dimensional space. This basic three-dimensional integral governing the problem 1s 

transformed to surface integrals by use of the divergence theorem. The resulting two-dimensional integrals are then transformed into 

convenient and computationally efficient line integrals. These algorithms and explicit finite integration formulas are followed by an 

application--example for which we have explained the detailed computational scheme. The numerical result thus found is in complete 

agreement with previous works. Further. It 1s shown that the present algorithms are much simpler and more economical as well. in terms of 

arithmetic operations. The symbolic finite integration formulas presented in this paper may lead to an easy incorporation of geometric 

properties of solid objects, for example, the centre of mass, moment of inertia, etc. required in the engineering design process as well as 

several applications of numerical analysis where integration is required, for example in the finite element and boundary integral equation 

methods. 

0. Nomenclature 

x”yP(h + Ix + my)‘+’ dx dy 

= surface integration over a plane polygon in the XY-plane 

zz;:, zz;f’ have a similar meaning ..< 

h, 1, m 
h’, I’, m’ arbitrary constants 
h”, I”, m” 

a, fi, y Positive integers (including zero) 

p? = 
T ‘\ 

111 
XaYp(h + lx + my)y+' & dy 

T$ = a triangle in the xy-plane with vertices at CC,, y,), (x,, Y,) and (x,, yk) 
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u;g. ZI$ have similar meanings 

d,; = area of the triangle with vertices (x,, vi), (x,, vi) and (x,, yk) 

d:i, a:;. have similar meanings 

= surface integral over Tijk 

T,+ = a linear triangle in Euclidean three-dimensional space with vertices (xi, yi, z,), (,Y,, yi, z,,) and 

(.Tk. .va, Zk) 
k = unit normal vector along z-axis 

(n,, i = 1. 2, 3,4)+utward unit normal to triangles T,,,, Tbj2, T4,3 and Td7,, respectively. 
Q,k is either 1.0, - 1 and it depends on the normal of linear T,,, 

III”py - L’ - 111 
xayP?’ dV 

= volume integral of trivariate monomial x”upzy over a linear three polyhedron in Euclidean 

three-dimensional space 

xyz a ’ ‘+I,$. ii ds = surface integral over the projected area s in the v-plane, 

S = is a surface of R3 decomposable in a set T of triangles such that any pair of triangles Tijk and Tirjrkf do 

not intersect. 

1. Introduction 

Volume, centre of mass, moment of inertia and other geometrical properties of rigid homogenous solids 

frequently arise in a large number of engineering applications, in CAD/CAE/CAM applications in geometric 
modelling as well as in robotics. Integration formulas for multiple integrals have always been of great interest in 

computer applications [l]. Computation of mass properties of both plane and space objects is discussed by 
Wesley [2] and Mortenson [3]. A good description of integration methods in solid modelling is given by Lee and 
Requicha [4] in their survey article. Lee and Reqquicha [4] observe that most computational studies in multiple 
integration deal with problems where the integration domain is a very simple solid, such as a cube or a sphere 

and the integrating function is very complicated, conversely, in most engineering applications the opposite is the 
usual problem. In such problems the integration domain may have a nonconvex shape and the function inside 
the integral sign is a trivariate polynomial. Timmer and Stern [5] discussed a theoretical approach to the 

evaluation of volume integrals by transforming the volume integral to a surface integral over the boundary of the 

integration domain. Lien and Kajaya [6] presented an outline of a closed form formula for volume integration 
for a linear tetrahedron and suggested that volume integration over a linear polyhedron can be obtained by 
simple means of disjoint decomposition technique. Cattani and Paoluzzi [7,8] have obtained finite integration 
over plane polygons and space polyhedra via surface and volume integration methods based on Green’s and 
Gauss’s Divergence theorems. In a recent paper, Bernardini [9] has presented explicit formulas and algorithms 
over a n-dimensional solid by using decomposition representation and boundary representation. In recent works, 
Rathod and Govinda Rao [ 10,l l] addressed these problems, with an aim of giving more efficient and explicit 
algorithms than the previous works of Cattani and Paoluzzi [7,8] which made reference to combined use of 
well-known Taylor series expansion and Leibniz’s theorem on differentation to obtain finite integration formulas 
for the integration of monomials over plane polygons and space polyhedra. Integration of a triple product, viz. 
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.x”‘Jqh + 1.x + k_v)” + ’ , (m. n, p-positive integers and zero, h. 1, k arbitrary constants), an expression in bivariates 

x. y plays a very important role [ 10.1 l] in the computation of volume integrals of a trivariate monomial viz. 
x”‘v”z” over the domain of a linear polyhedron. The integral evaluation of this bivariate expression over a plane 

polygon is computed by application of Green’s theorem which reduces the area integral to a line integral. 
Because of the presence of (h + lx + ky)‘+ ’ the integration of the expression x”‘y”(h + lx + ky)“+’ has to be 

expressed as a sum of p( p + 1)/2 line integrals, for each line segment of the plane-polygon. In this paper we 
have found a means of overcoming this complication and now the same computation can be done only once for 

each line segment of the plane polygon. We have further applied this technique (which is discussed in Lemmas 
1, 2 and 3 of this paper) to evaluate the volume integral of monomials over a linear tetrahedron (which is 

discussed in Theorems 1, 2 and 3). With help of an application example, we have shown that the present 

computational scheme is superior to earlier works [lO,l I]. We have further proposed three more theorems 

(Theorems 4, 5 and 6) which express the volume integral over a linear tetrahedron in terms of six line integrals 
over the boundary edges. In Lemma 4, we have proposed an efficient means of computing each of these line 

integrals which is again an improvement over the earlier works ]lO,l 11. 

2. Surface integration 

In this section we first establish a preliminary result giving closed analytical formulas for surface integration 
over a plane polygon either in the xy-plane, yz-plane or zx-plane. Then, we wish to use these formulas to derive 

a closed formula for surface integration over a linear tetrahedral surface in R3. 

2.1. Let rYTT,, be a simple polygon in the xy-plane: we want to evaluate the following structure product: 

Ip3.Y + I *y _ 
‘1, \ J-l xayp(h + lx + my)‘+’ dx dy 

=t\ 
(1) 

where I, m. h are arbitrary constants and (Y, j3, y are positive integers: including zero. 

LEMMA 1. The structure product ll~p’y over a simple polygon with N-oriented edges I(,, (i = 1, 2, 3. . , N) 

each with end points at (x,, y,) and (xl: yL), (k = i + 1) and (x,, xN) = (.x,. y, ) in the xy-plane is expressible as 

where 

or+p+y+1 

A :<L ,Z” ,, +,,;,, _,,F(ru-n,,n,)G(P-~z~.nz)H(r+l-n,.n~) I 2 ? 1 (la) 
F(a -n,,n,)= ny c > xy’x); 

G( 0 - n2, n,) = Y2f 

H(y+l- n3, n,> = I[ -Y+1 ( > Y+l y+* 

c 
zo 

P 
P=nj (LY +; +p+2) n3 zEY”’ 0 1 ‘if 

(0 SaSn,, OS/?Sn,,OSr+ l<n,) 

z,=h=O 

(lb) 

2A;;r, 

A-;ik = ((y + p + y + 3) ’ lf h = ” = ’ 

2 A;zk if h = z, # 0 

2A;& = Xk)), - x;_\‘x 
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PROOF. Let us consider the integral of Eq. (1): 

x”yP(h + lx + my)‘+’ dx dy 

II @(X9 y) = 
ax CLX dy 

T,, 

where 

0(x, y) = I xayqt + lx + myy + ’ dx 

= I’ Rx, y> dy , on 
d?r .t\ 

= @z(x, Y) dy 

using Green’s theorem. 

(2) 

(where an-xv refers to boundary of n;,). 
We shall now show that 

x”yP(h + lx + n~y)~+’ dx dy (3) 

where Tyzk refers to a triangle in the xy plane with vertices at (xi, y;), (0,O) and (x,, ya). 
We can think of 7~;., as a region in R2 decomposable in a set T of triangles such that any pair of members T;:‘k 

(a triangle in the xy plane with vertices at (xi, yi), (xj. yj)), and T:‘:,..,, do not intersect. 

r* 

4 

67 

_-- 
-- 

I 3a 
2 

J Y 

t 
x 

h I (Xi .Yi) / / / / / / 
/ / /’ 0 / 3 =O 

,/,’ /’ 
/ ,/// 

/‘,5’ ’ 

,’ ),,. (x2*Y2) 

,‘_/ ’ 

/G.+; 
/ // 

, ,, ,‘,;=-: 
/se- /.‘,,-‘- 

Fig. 1. (a) Three-dimensional mapping of an arbitrary linear tetrahedron in xyz-space into a unit orthogonal tetrahedron in &-space; (b) a 
simple polygon q, in the xy-plane with N-oriented edges which expands into N-triangles with respect to the origin. 
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Thus, we may also write 

Let us now prove the result of Eq. (3) when rxn;, = Tyk clearly the edges are l,j, lJk, l,, (i.e. lpy refers to the 

edges of triangle joining (x,,, y,, and xy, y,). We have (see Fig. 2) 

This proves Eq. (3) when mxTT,, = Tz. 

The general result of Eq. (3) can be readily proved on similar lines. This completes the proof of Eq. (3). 
Now, let us consider the integral, 

x”yP(h + lx + my)‘+ dx dy 

The parametric equation of the oriented triangle T$ in the xy plane with vertices at (x,, Y,), (xi, Yj) and 

(x,, .vk) are 

x = x, + x,$4 + XkiU 
(7) 

Y = Y! + Yji’ + Yki’ 

Y4 

(Xk en) 

1’ 
// b (Xi *Y)) 

’ (Xl.Yi) 
/ / / 

// 
’ / / 

,’ /’ 
/ 

/I /;, 
/ 

/ /,A 

,$+ 
-3 

to,01 x 

Fig. 2. A linear triangle Ts with vertices at (x,, y,). (x,. y,) and (xk, y,) in xy-plane which expands into three new triangles with mpect to 

the origin. 
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where 

O~U,UGl, ufuG1 

x /’ = x, - x, , Sk, = XI, - xi 

Using Eq. (7) we can map an oriented triangle Tr;i in the xy-plane to a unit triangle in the uu plane (see Fig. 

1). 

w, Y) 

dx dy = d(u, u) 
~ du du = (x,;yk, - x,, yi;) du du 

= 24;;; du du 

= (2 X area of triangle T:;Vk) du du 

and we define 

24.;;; = x,,y,_ - .xI,y,, 

Use of Eqs. (7), (8) and (9) into Eq. (6) gives us 

(8) 

(9) 

II ;$‘+ = (24;;;) 
I’ i’-” 

(loa) 
0 0 

[x; + xj,u + xk;ulu[y, + yj;u + ykiulP x [z, + z,;u + Q,u]‘+ ’ du du 

where 

- = Z(X, y) = h + lx + my c 

Let us further use the transformation in Eq. (10) 

(lob) 

u=l-r, u = rs 

Use of Eq. (11) into Eq. (10) gives us 

(11) 

I I 
II&Y + 1 

T ‘.’ l/A 
I 24;; 

ii 
[x, + x,~. y + xk,rs]“[y, + y,,r +_y,,r~]~ X [z, + qir + ~~,r~]~+‘rdr ds (12) 

0 0 

We have defined Z(X, y) = h + lx + my. 

Clearly, ~(0, 0) = z. (say) = h and Z, can be either zero or nonzero. Choosing .x1 = 0, y, = 0, Z, = z. and 

recalling: 

xayp(lx + my + h)“” (13) 

where TV-a triangle in the xy-plane with vertices at (xi, y,), (0,O) and (x,, yk). We have now from Eq. (12) 

and the above explanations: 

I I 
“;$;y+’ = (2A.;;,) 

li 
ra+P+’ [xi+xkirla[y, +y,,sl’X ]~~+~(~,,,+z,,,,l~+‘d~d~ (14) 

0 0 

Y 

(xk.Yk) 

txI *Yi) w (0, I I 

ix1 nYi 1 l h- 
01 x (0.0) (I,01 ” 

Fig. 3. The mapping between an oriented triangle in the xy-plane and the unit triangle in the w-plane. 
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If z0 = 0, Eq. (14) reduces to 

[pf.Y + 1 2A-;<yk 
7-” ir>i( I 

1 

=(a+p+r+3) 0 
(Xi + xk,s)yy, + JQ,d?Z, + ,‘,;s) ‘+’ ds 

If z,, # 0, Eq. ( 14) reduces to 

Let us define 

X(s) = (r, + x,,s)” 

Y(s) = (?., + yl;s)D 

Z(s) = 

if :,, = 0 

.f(s) = X(S)Y(~)Z(~) 

Using Eq. (17). we can write Eq. (15), and Eq. (16) as 

87 

(15) 

(17) 

(18) 

where we have to note that f(s) is defined as in Eq. (17) for zo = 0 and z0 # 0. Using Taylor’s series expansion 
of a function of a single variable and from Eq. (17) 

(19) 

where 

f ‘“‘(0) = $ {X(S) 
[ 

Y(s) z(s))]s = 0 

We have now on using the generalised form of the Leibnitz’s theorem of differential calculus: 

(20) 

f yo) = 
--- 

Now, referring Eq. (17) on the definition of X(s), Y(s), Z(s), we obtain 

d” ‘x(s) 

[ 1 ds”’ r=O 
In, 

= a a-nlXn, *‘r 

0 
n, xi kr -F(a-n,,n,) 

(21) 

.s=o =p 
In 0 

n2 Ye- “‘y;t *zf G(P - n2, nz> 
2 

and 
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def 

= H(y+ 1 -n,,n,) 

from Eqs. (21) and (22), we have 

for z0 = 0 

-“3 I zl: for z, # 0 

Thus, from Eqs. ( 19) and (23), we obtain 

I 

a+/3+y+l 

“’ f(s) ds = c 1 
N =o n+l , )G(P - n2, nz) KY + 1 - 1239 n,) 

) we obtain the desired result claimed Combining Eqs. ( 18) and (23) and substituting in Eq. (3 
This completes the proof of Lemma 1. q 

(22) 

(23) 

(24) 

in Eq. ( la,b). 

Let n;._ be a simple polygon in the yz-plane and we define the structure product: 

def 

4,; = 
II 

(h’ + l’y + rn’~)~+‘y~z~ dy dz 
m”; 

where I’, m’, h’ are arbitrary constants and (Y, j3, y are positive integers including zero. 

LEMMA 2. The structure product II~,~“p’y over a simple polygon with N-oriented edges I,, (i = 1,2, . . . , N) 

each with end points at (y,, z;) and (ykr z,) (k = i + 1) and (y,,,, z, ) = (y , , z, ) in the yz-plane is expressible as 

a+p+y+1 

II a+l.p,y _ - 
TV: 

A;zk c 2 F(a+ 1 -n,,n,>G(P-n,,n,)H(y-n,,n,) 

n=O n,+n*+n3=n 1 
where 

F((Y + 1 - n,, n,) = ~~+‘-‘~_x[t; , x,=h’=O 

G(P - n?, n2) = 
P 0 n, yp”?y;j 

Y 
H(y - n3, n3> = n3 

( > 
zy-“‘zi,3 

(OCn, Cff + l,O~n,~~,O~n,~ y) 

2A;;, 

A ((Y+p+y+3)’ ifh’=xo=o 

12A;:, , 
2A:<;, = ykz, - y,z, 

ifh’=x,#O 

PROOF. Proof can follow on similar lines as in Lemma 1. 0 

(25b) 

Let us now define 7r_ be a simple polygon in the w-plane and we define the structure product: 
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xa(h” + 1”y + m”z)‘+ ‘zy dz dx 

where I”, m”, h” are arbitrary constants and CY, p, y are positive integers including zero. 

LEMMA 3. The structure product II~7p+“y over a simple polygon with N-oriented edges li, (i = 1,2, . . . , N) 

each with end points at (q, xi) and (z;:x,), (k = i + 1) and (zN, xN) = (y,, z, > in the vc-plane is qmssible as 

a+p+y+1 

p-“+‘.y = A ;<;, c 2 ~‘(a-n,,n,)G(P+ 1 -n,,n,)H(y-n,.n,) 
,1 = 0 ll,+fl*+n~=n 1 

where 

G(P + 1 - n2, n,) = y. = h” z () 

(2W 

(26b) 

2A;zk 

(a+P+7+3)’ ifh”=yO=o 

1 24;;, , 

2A;Yk = zkxi - zixk 

if h” = y, # 0 

PROOF. Proof can be developed on similar lines as in Lemma 1. 0 

3. Volume integration over an arbitrary tetrahedron 

Referring to Rathod and Govinda Rao [ 10,l l] we can obtain the volume integral of a monomial 

xn yP Z’(LY, p, r> positive integers and zero) over an arbitrary tetrahedron in Euclidean three-dimensional space. 
Let us define structure product over an arbitrary tetrahedron T as 

xaypzy dx dy dz (27) 

THEOREM I. Let T,,, 3,4 be an arbitrary linear tetrahedron in three-dimensional space with vertices at 

(x,, y,, z,) (p = 1,2, 3,4) bounded by the tetrahedron sulfate consisting of four arbitrary Ti,j,k with vertices at 

(xi, yir Zi), (x,, yj, Zj) and (xk, yt, ZJ with G, j, k) E {(1,2,3), (4% 2), (4, 1,2), (4,Z I>>, then the mucture 
product III~;~,~ 4 over a linear tetrahedron T, 23 4 , . . is pressible as 

(274 

where 
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ldet JI 
al, L3,4) = (det J) 

detJ= 1;:: i:i i:ii 

x =x -x 
G’b) 

PY Y’ Y = yp - yy , 

(~,4)~~~1,4),(2,4;:1(3.4)~ 

i,, = z, - z, 

PROOF. For the three-dimensional tetrahedron T, ,2,3,4 bounded by tetrahedral surface U,,,.,,, consisting of 

arbitrary triangles T, ,2,3, T4,j,2, T4,, ,3 and T4,2., in three space, let 

fjfx, y, z) = o,o, “‘t;‘l’ c ) 
be a vector field. Then, clearly x*y ‘zy = $3 and if we now further assume the regularity of the integration 

domain and continuity of the integration function we can then write from the Gauss’s divergence theorem: 

111 x”ypzy dx dy dz = 9. $dxdydz 
T 1.2.3,4 

(where ri is the outward unit normal vector to c?T,,~,~,~) 

where 

if (k”-ki(fO 

lk^. iii1 d.s = cos y ds = dx dy (28b) 

y = angle between the normal 6, and the positive z-axis 

L=+l or-l 0 
I$ * ri,l 

Now, we shall give an alternative proof which can help us in determining k^ * ii,, k^. ti2, k^. ri,. k^. ri,. 

PROOF. We can write 

@Y ?Ef III - II I xaypzy dx dY dz 
rI.?.7.4 

(29) 

We shall now make use of the isoparametric co-ordinates transformation in Eq. (29) 
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which maps an arbitrary tetrahedron T,,2,3,j into a unit orthogonal tetrahedron T with vertices (0. 0, 0), ( 1. 0, 0), 

(0, 1,O) and (0, 0, I ). 
We should note that ((x,, y4, z,), (x,, y,, z,), (x,, yz, z2), (.x3, y,, z,)) are, respectively, mapped to the Points 

(see Fig. la) 

(( 5, = 0, qA = 0. 5, = O), (6, = 1, 7, = 0, 5, = 0) 

(~2=0’r/2=lr~~=o)‘(~~=00’~~=O’53=l)) 

Now, using the chain rule on partial differentiation and the Gauss’s divergence theorem, we can express Eq. 

(29) as 

(31) 

where s is the surface of the unit orthogonal tetrahedron spanned by the Jertices 1,2, 3,4 at (( 1, 0,O). (0, 1. 0), 

(0, 0, 1). (0.0.0)) and ri is the unit normal vector pointing outward to T,,,,,,, 

P=(P,.P,,Q 

(32) 

Clearly, from Eq. (30) we find 

(33) 

In order to obtain a working relationship of Eq. (3), let us examine the surface integral J Ji t. ii 6, now clearly 
from Fig. 1, S consists of triangular surface S, (m = 1,2,3,4). 

We define surfaces s,, $, s,, S, as the triangular surfaces of T ,,2.3,4 spanned by vertices 1,2,3; 2,3,4; 1,3,4; 
and 1, 2,4, respectively. 

Thus, we may now write 

*II”,p,y _ Ql, 2, 3-4) 4 ,. n - 
T1.2.3.J XII - (y+ 1) m=, smF.nmdsm (34) 
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where 6, (m = 1,2,3,4) are the outward pointing unit normals to s,,, (m = 1,2,3,4), respectively. 
By considering the projection of ?, on 5, q-plane and noting the equation of the surface S: 5 + v-t d - 1 = 0, 

we obtain 

(35) 

(36) 

(37) 

(37a) 

Substituting from Eqs. (35)-(37a) in Eq. (34) we obtain 

I’ I’-’ 
‘-5 

- F, (0, rl, 0 drl dJ - F,( 60, t) d5 dJ 
0 0 

1-f 
- F,( 6,qv 0) d5 drl 

1 

Simplification of Eq. (38) leads us to the results: 

III, a.6.r = fi(l,2,3,4) 
12.3.4 (Y + 1) 

[(2A”Y )[lL?&Y +’ 
3’2 T312 

- (2A&)ZZ;~;y + ’ 

where 

pP.u + I = 
T Pyr I’ (I-” 

x”(u, u)y’(u, u)z’+‘(u, u) du du 
0 0 

x = x(u, u) = uxP + ux, + (1 - u - u)x, 

y = y(u, u) = uyp + uy, + (1 - u - u>y, 

z=z(u,u>=uzP+uz,+(l-u-u)z, 

(p, 4, r) E ((3, 1,2), (4,Z 3), (4, 1,3), (4, 1,2)1 

and Tpqr refers to the unit triangle in the uu plane with vertices (~(0, 0), q( 1,0) and 40, 1)). 
Using the property of integrals, it can be shown that integrals 

“;;;;Y t- ’ = pf;Y + ’ = ,y.Y + ’ = pP;Y + ’ 

VW 

= pd;Y + ’ = ,ye + ’ 

P’4 

We can also show that under the transformation (40) 

z(u, u) = lx(u, u) + my@, u) + h 

where 1, m, h are arbitrary constants. 
Let us now consider, 

(38) 

(39) 

(40) 

(41) 

(42) 
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x"y'(lx + my + /z)~+’ dx dy (43) 

where T$ is an arbitrary triangle with vertices (x,, y,), (x,, y,) and (x,, y,) in counter-clockwise direction. 

Using Eqs. (40), (42) and (43) we can show that 

and 
ax ax -- 

24;;1,=5& au au xPr Xyr 
= 

a(& u) 8Y 3Y I I Y,, y’ Y 
>o 

-- 
au av 

From the property of determinants we can show that 

2A;;, zz 2A.& = 2A”? 
‘Pi 

= -2A.;, = _2A;& = -2A”y 
P’4 

Thus, we have from Eqs. (41), (44), (45) and (46) 

II ;;;‘+’ = II$J f’ = II;!;+ 
Y’,’ 

= _II”.P.Y + 1 
T;;;r 

= -[I$J+’ = _“$y 
‘I’Y 

and 

II$?+’ 
P4’ 

= 12A;r/II;$;Y+ ’ 

Whenever p, 4, y are in counter clockwise orientation using Eqs. (39) and (48) we have 

where 

0. if 2Azi,. = 0 

(P, q, 4 E {(3,1,2), (4,3,2), (4,1,3), (4,2,1)) 

On comparing Eqs. (28a,b) and (49) we have 

-_ 

nc 1.2,3,4)s*4y32 - ,:. ;;, 

n . ,. 
-_ 

f&l, x3,4)6::, - ,;. ;;, 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(51) 

The above theorem was clearly proved by considering projection of the arbitrary tetrahedron on the xy- 

plane. 0 
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Similar results follow if we project the arbitrary tetrahedron on the yz and xz planes. This is further stated here 
in the form of Theorems 2 and 3. 

THEOREM 2. Let T,,,.,,, be an arbitrary linear tetrahedron in three-dimensional space with vertices at 
((x,, y,, z,), p = 1,2, 3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles Tijk with 

vertices at ((x,, y,, z,)t = i, j, k) and (i, j, k) E (( 1,2,3) (4,3,2), (4, 1,3), (4,2, l)), then the structure product 

III, “;t,i,. over a linear tetrahedron T, 2,3 4 is expressible as * . 

(52) 

with 0 (1,2, 3,4) as given in Eq. (27b). 

THEOREM 3. Let T,,, 3 4 

((x,9 yp, z,), p = 1,2,3,4j 

be an arbitrary linear tetrahedron in three-dimensional space with vertices at 

b ounded by the tetrahedral suflace consisting of four arbitrary triangles T+ with 
vertices at ((x,, yt, z,)t = i, j, k) and (i, j, k) E (( 1,2,3) (4,3,2), (4, 1,3), (4,2, l)), then the structure product 

III 9;t:,4 over a linear tetrahedron T, 2 3,4 is expressible as 2 . 

with fi( 1, 2,3,4) as given in Eq. (27b). 

4. Application-example 

We consider as an example, the 

ill 
x2y dx dy dz 

T1,z.U 

where T, .? 3 4 is the tetrahedron in . 

u, = (x,9 y,+ z, ) = (5.5,0) 

u2 = (X2, y2, Z?) = (10, l&O) 

uj = (x,, ys. z,) = @,7,8) 

evaluation of the volume integral: 

R3 bounded by tetrahedron surface aT,,,,,, with vertices 

(53) 

(54) 

(55) 

Fig. 4. The integration domain for application example. 
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ALGORITHM 1. We can show that on using the concepts developed in Rathod and Govinda Rao [lo,1 11 and 
Theorem I. Eq. (54) is expressible as 

x’y dx dy dz = 
II 

x*y( - 4(x - 10)) dx dy 
7% 

- x2?, (8(x - y)) dx dy + x2y(4(y - 5)) d.x dy (56) 

We can evaluate the integrals in the right-hand-side of Eq. (56) by using Lemma 1. 
We shall now illustrate the evaluation of the integral of the type 

II”J3.Y + 1 T1.k = ‘ii J-l 
x*y’(lx + my + A)‘+ ’ du dy 

7 1.’ ,,i 

For the application example, we have LY = 2, p = 1, y = 0 now by using the formula of Eq. (5) we can write 

x’y(lx + my + h) dx dy 

+ x’y(lx + my + h) dx dy 

note that Ix + my + h = z(x, y) is the equation of the plane spanning points (i, j, k) we shall illustrate the use of 
Lemma 1 to compute one of these integrals, say 

using Eqs. (la) and (lb). we have for the integral of Eq. (58) 

Il$ 
iOk = (Aj<yk) {F(2,O)G(f, O)H(L, 0)) i 

+ ; {F( 1, l)G( l,O)H( 1,O) + F(2,O)G(O, l)H( 1,O) + F(2,O)G( l,O)H(O. 1)) 

+ f {F( 1, l)G( l,O)H(O, 1) + F(2,O)G(O, l)H(O, 1) + F(O,2)G( l.O)H( 1,0) 

+ F(l. l)G(O, l)H(l,O)} 

+ + {F(O, 2)G( l,O)H(O. 1 + F( 1, l)G(O, l)H(O, 1) + F(O,2)G(O, l)H( l,O)} 

+ f V’(O, 2)G(O, 1 )H(O, l)}] 

where 

F( 2,O) = x; 

F(1, 1) = 2xiXki 

F( 0.2) = x;, 

G(l,O)=y, 

G(O, 1) = ~11 

z, if Z(0, 0) = h = 0 

H(l,O) = z, z, 
6fT’ ifZ(O,O)=h=Z,#O 

(59) 
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‘!fi’ if Z(0, 0) = h = 0 

MO, 1) = z,; - 
6 ’ 

ifZ(O,O)=h=Z,#O 

2A;Tk = xky; - x,yk 

Z(X, y) = h + Ix + my 

Hence, on using the above equations (57), (58), (59) and (60) we have 

23584 
=- 

3 

28744 + 50000 

(61) 

II;;;: = JJ x2y(8x - 8~) dw dy rL” 123 

2697 1 
=- 

9 

2.1.0 _ 
II - 

TZ, II 
x2y(4y - 20) dr dy 

r;+, 

= J JT,,+ J i,,,+ J JTp(+-20)~d) 
= ++(F)+(F) 

43772 
=- 

9 

Thus, from Eqs. (56), (61), (62) and (63) we obtained 

(62) 

(63) 

JJJ 23584 + 26971 + 43772 47165 

T1?14 
x2y &dy& = 3 __ - =- 

9 9 9 
(64) 

ALGORITHM 2. We can also show on using the concepts developed in Rathod and Govinda Rao [ 10,l l] and 

Theorem 2 that the integral of Eq. (54) is expressible as 

JJJ T 1.2.3.4 x2ydxdydz= -flJTi:,,(.+~)'ydydz+~JJT~~,, (-$+lO)Sydydz 

We shall now illustrate the evaluation of the integrals of the type: 

zz;y*y = JJ (l'y + m’z + h’)a+‘yPZy dy dz 
TTli 

(65) 

for the application example, we have (Y = 2, p = 1, y = 0 and we can write (by using Green’s theorem) 
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(66) 

where l’y + m’z + h’ = x(y, z) is the equation of the plane spanning the points (i j, k). We shall now illustrate 
the use of Lemma 2 to compute one of these integrals say 

Using Eqs. (25a) and (25b) we have for the integral of Eq. (67): 

II;;;;’ = (A;;,) {F(3,O)G( 1, 0)} 
I 

+ ; (F(3, ONJO, 1) + F(2, l)G(l, 0)) 

++(2, l)G(O, l)+F(1,2)G(l,O)) 

+;{1;(1,2)G(O, l)+F(O,3)G(l.O)) 

+ f V’(O, 3 )G(O, 1 )I] (68) 

where 

3 

x0+- - F(3,0)= i 3 
3x:x;, 

4 + 
3x,xf0 x1 

5 +6’ for = = h’ # 0 x, x(0,0) 

x7 , forx,=x(O,O)=h’=O 

3x: 6&i,, 
4+- 

3x;, 

F(2. 1) = 5 + 6 > xh, ’ for x,, = x( 0.0) = h ’ f 0 

for x,, = x(0,0) = h’ = 0 

forx,,=x(O,O)=h’#O 

forx,=x(O,O)=h’=O 

for x, = x(0,0) = h’ # 0 

for x, =x(0,0) = h’ = 0 

G(O, 1) = y,, 

2A:;, = y,$, - ?‘,Q, 

X(y.Z)=h’+l’y+m’, 

Hence, on using the above equations 

(69) 

(66), (67) (68) and (69) we obtain 

=0+85264- 11997 

= 73267 (70) 
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= ( 183424) - 62992 

= 120432 

Substituting from Eqs. (70) and (71) into Eq. (65) we obtain 

(71) 

x*y&d,di=-f/j-j, (y +x)iydyd’+fjj~, (--$+l”)‘ydydz 

-73267 + 120432 
= 

3 

47165 
=- 

3 (72) 

ALGORITHM 3. We can also show on using the concepts developed in Rathod and Govinda Rao [ 10,l l] and 
Theorem 3 that the integral of Eq. (54) is expressible as 

We shall now illustrate the evaluation of the integrals of the type: 

x”(l”z + m”x + Iz~~)~+‘z~ dz dx 

For the application example, we have cy = 2. ,L3 = 1. y = 0 and we can write on using Green’s theorem: 

where (l”z + m”x + h” = y(z, x)) is the equation of the plane spanning the points (i, j, k)). 

We shall now illustrate the use of Lemma 3 to compute one of these integrals, say 

where (1”~ + m”x + h” = y(z, x)) is the equation of the plane spanning the points (i, j, k)). 
Using Eqs. (26a) and (26b), we have for the integral of Eq. (74): 

II;;;;’ = (A,:,) {F(2,O)G(2. 0)} 
[ 

++(I, l)G(2,0)+F(2,O)G(l, l,} 

+ f {F(2,O)G(O, 2) + F( 1. l)G( 1, 1) + F(O,2)G(2,0)} 

++{F(l, l)G(O,2)+F(O,2)G(l, l)} 

+ f -#I, 2)G(O, 2)) I 

(73) 

(74) 

(75) 

where 
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F(2,O) =$F( 1, l)= 2xiXk~, F(O.2) = x;, 

G( 2,0) = 1 , if Y(O,O) = Y, = h” f 0 

if ~(0, 0) = y, = h” = 0 

G(1, l)= 
if ~(0, 0) = y,, = h” = 0 

if ~(0, 0) = y, = h” = 0 

G(0, 2) = if ~(0, 0) = y,, = h” # 0 

if ~(0, 0) = y, = h” = 0 

2A;;:, = zkx, - z,xk 

y(:, x) = h" + 1"~ + m’x 

Hence, on using the above equations (74) and (76) we obtain 

=o+( -13;22)+(4*y) 

349442 
ZIP 

9 

98432 =,-+o+( -73y4) 
632432 =_p 

9 

Substituting from Eqs. (77) and (78) into Eq. (73). we obtain 

(77) 

(78) 

I .‘. 1.4 
x’ydxdydz=-; j jriY,,~xz(5+,),;dx 

- 174721 316216 

= 9 +9 

141495 
=p 

9 

47165 
=- 3 (79) 

The results obtained in Eqs. (64), (72) and (79) are again incomplete with that of Bernardini 191. 

5. Line integration over arbitrary tetrahedron 

5.1. We have shown in the previous section that the surface integrals of the type: 
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are in fact reducible to line integra over the interval 0 d t d 1. Let us now define the equation of the plane 

spanning points (i. j, k) in three alternative forms which is dependent on the projection over which the volume 
integral IZZP;:;: is considered. Letting the equation of the plane spanning ((x,,, y,,, z,,), (xy, yq, z,), (x,, y,, z,)) be 

denoted by three alternative forms: :(x, y) = h + IX + tny, .x( y. z) = h’ + 1’ y + m’z and y(z. x) = h” + E”; + m”x, 

this may not be possible if the corresponding area integrals 

do not exit. Let us further denote 

z(x. y) = h + /.K + my = zcx, y, p. q, Y) 

X(r,~)=h’+l’l’+m’~=X(4’,-‘,P,q,r) 

_v(& x) = h” + I”: + In”.x = Y(z, x, p, q, Y) 

We should note that 1, m, h; I’, m’. h’; and I”, m”. h” depend only on (x,,, y,, z,), (x,, yy. z,), (x,, y,, z,). 

THEOREM 4. Let T,,1.3,J he an arbitrary linear tetrahedron in the three-dimensional space with vertices at 

((x,, y,,> z,,). a = I, 2,3,4) bounded by the tetrahedral su$ace consisting of four arbitrary triangles Tijk with 

vertices ((x,,, y,,, +, - ), a = i, j, k) with (i, j, k) E {( 1, 2, 3), (4,3,2), (4, 1, 3), (4, 2, l)} then the structure product 
III;;:;: is expressible as 

xayP{Zy+‘(x, y, 1,2,3, > - Z’+‘(x, y, 4,2, 1, )} dx dy 

+ II %2 
x*YP{Zy+‘(x, y, 1,2,3, ) - ZY+‘(x, y, 4,3,2 )>dx dy 

+ 
il 

x~Y~{Z~+‘(X, y. 1,2,3, ) -Z’+‘(x, y,4, 193, ))dxdy 
TX) _ 101 

+ 
II %‘I 

xnyP{Zy+r(x, y, 4,3, 2, ) - Z’+‘(x, y. 4, 1,3, ,> dx dy 

+ 
il r.V 

xayP{ZY+‘(x, y,4, 1,3, ) -Z’+‘(X, y,4,2, 1, >}&rdy 
IOJ 

+ 
il 

xtiyqZ’+l(x, y,4,3,2, )-z’+‘(x,~,4,2, 1, ))hdy 
7% 1 

PROOF. Follows from Theorem 1 and Eq. (5). 0 

THEOREM 5. Let T,,,.,., be an arbitrary linear tetrahedron in three-dimensional space with vertices at 

((x,7 Y,? z,), a = 1,2,3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles Tijk with 

vertices ((x,, y,, z,), a = i, j, k) with (i, j, k) E {( 1,2, 3), (4,3,2), (4, 1, 3), (4,2, 1)) then the structure product 

III ;;!;I is expressible as 

“+r(y,z,1,2,3, )-X a+1(y,z,4,2, 1, ))dYdz 

+ li yPZ~{~a+‘(y, z, 1,2,3, ) - x”+‘(y, z, 4,372, )> dy dz 
TSkz 

+ 
II 

yPZY{~n+‘(y,~, 1,2,3, )-X”+‘(Y,Z,~, 193, ))dYdz 
r’;h3 

+ yPZ~{~n+‘(y, z, 4,3,2, ) - xoL+‘(y, z, 4,173, ))dY dz 
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+ II yPzy+‘{~a+r(y, z, 4, 1,3, ) - Xa+‘(y, z, 4,2, 1, )I dy dz 
T& 

“+‘(y,z,4,3,2, )-X”+‘(y,z,4,2, 1, ))dydz (81) 

PROOF. Follows from Theorem 2 and Eq. (5) with x, y replaced by y, z. 0 

THEOREM 6. Let T 1. 2, 3,4 be an arbitrary linear tetrahedron in three-dimensional space bvith vertices at 

((x,,, Y,,. -,, > ) a = 1. 2, 3.4) bounded by the tetrahedral sutface consisting of four arbitrary triangles Tijk $vith 

vertices ((x,,. .v<,, z,,), a=i,j,k) with (i,j,k)E{(l._, 3 3), (4,3, 2). (4, 1, 3). (4, 2, l)} then the structure product 

III;; f;:is expressible as 

zyxn{YP+' (z,x, 1,2,3, )- YP+‘(z,x,4,2, 1, )Idzdr 

+ II ZYZXe{yP+l (z,x, 1,2, 3, > - yP+‘(z, ix 4,3,2, )) dz dx 
TK 

+ 
II 

ZYXn{YP+l (z,x,1,2,3, )-YP+‘(z,x,4,1,3, )>dzh 
TIa3 

+ 
II 

ZYXn{YP+l(Z,X, 4, 3,2, ) - Yp+‘(z,x, 4, 1,3, )>dz cb 
TW4 

+ 
II 

zyx”{YP+l (z,x,4,1,3, )-YP+1(z,x,4.2,1, ))dzdx 
TiX I 04 

+ 
II 

zYXa{YP+’ (z,x, 4,3,2, ) - Y’+‘(z,x, 472, 1, )I dz dr T&b 1 
PROOF. Follows from Theorem 3 and Eq. (5) with x, y replaced by z, x. 0 

(82) 

Use of Eqs. (go), (8 1) and (82) as stated in Theorems 4, 5 and 6 will further reduce the computational effort 

by 50% and suitable modification in Lemmas 1, 2 and 3 will help us in proposing better alternatives to 

Algorithms 1, 2 and 3 discussed in previous sections. The speciality of Eqs. (80) (81) and (82) is that they can 
be in reality viewed as six line integrals along the edges of an arbitrary linear tetrahedron T,,,,,,,. 

5.2. Let Ty& (6 =p, q) refers to arbitrary triangles in the uu-plane with vertices at (u,, u,), (u,, us) and (II~, vI;). 

We want to evaluate the following structure product: 

JJ;;;ir Ef {11’;1:~‘;’ (ipk) - IZ’$‘C;‘(iqk)} (83) 

where 

u”‘u”wr(u, v, i, 6, k) du dv 

(u, v) E (x. y), (y, z), (z, x> and Wu, v, i, 6, k), (6 = p, q) are the equation of the planes in u, v, u‘ space spanned 

by points (ui, u,, w,), (u,, u,, wg) and (+ vk, wk) we can write 

W(U, u, i, p, k) = H + LU + Mu 
(85) 

W(u, u, i, q, k) = H’ + L’u + M’u 

With the property 
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W(u,, u,, i, 6, k) = Wu(u = i, k, 6 = p, q) 

W(o, o i p k) = H = W”” (say) >> v ,I . 

W(o, o, i, q, k) = H’ = W:y” (say), 

(86) 

It should be noted that H, L, M are determined in terms of ((u,, u,, wa), a = i, p, k) and H’, L’, M’ are 
determined in terms of ((ub, uh, w,), b = i, q, k). 

LEMMA 4. Let T::Y, be a triangle in the m-plane with vertices at (u,, v,), (0, o) and (Us, vk) then the structure 

product 

,n+,,+r 

= (A:‘,:h ) c ’ c 
&‘(, (P + 1) CL,+~2+~3=~ p(n* - pu,3 &) 

x Q(iz - p.?. p2)R,Jr - I-%. f-h) 

where 

W - ,s 13LL3) = i (p;)(w:Sk)~‘-* A (w _ ( > h=p, (m +n + h-t2) I% ’ 
w:,~~)‘-’ if 1~:‘” = 0 

2A::::, ,Sk 

A 
1,” (m+n+s+2)’ 

ifw,, =0 
,,>A = 

PROOF. Let us consider the integral, 

u”‘u”W’(u, v. i, 6, k) du du 

(87) 

(88) 

(8%) 

(6 = p. 9) 

The parametric equations of the oriented triangles Tyik in the uu-plane with vertices at ((u,, u,,), a = i, s, k), 

s=p,q are 

u = u, + us,[ + Uh,V 

v=v,+v,i~+v,irj 
W(u, v, i, 6, k) = w, + wsjc + wk,v 

where 

06 c,nGl, [+nSl 
(8%) 

U& = ug - 11, , Uh, = II,! - u; etc. 

Using Eqs. (89a,b), we can map oriented triangles Ty& in the uv-plane to unit triangle in the &t-plane (see Fig. 

3). We have for the area element, 
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a(4 VI 
dudv = cq(,qq 

~ dt dv = (ugiuki - ukivgi) 

= (23:‘,‘;) d[ d7 

= (2 x -area of triangle Ty,“,) d.$ dv 

and 

23:‘ih = U&Vk, - Uh,V8, 

Using Eqs. (89a,b), (90) and (91), we obtain: 

We also note from Eq. (85) that 

M’(u, v, i, p, k) = MI, + \t’,,, 5 + IV~;~ = H + Lu + Mu , 

w(u, v, i, q, k) = wi + w,J + wkiv = H’ + L’u + M’v 

Let us further use the transformation: 

(=1-r, v = rt 

Use of Eq. (94) into Eq. (92) gives 

JJr;;;: ={ (2A;;k’,“,) I,’ i,’ [up + qpr + u,,t]“[v, + vipr + VJ]” 

X [wp + w,( + w,,rtlYr dr dt 

- (24’3 [uy + uiyr + uJ]“‘[vy + v,yr + vJ]” 

1 
X [wq + wiqr + wkirtlYr dr dt 

From Eqs. (85), (86) and (93) we have 

W(o. o, i, p, k) = H = w:f“ 

W(o, o, i, q. k) = H’ = w: 

choosing 

ur=O, v,, = 0 1 we obtain wp = WI:” 

uy=o. y/=0, I+ we obtain wy = w,, 

Let us recall from Eqs. (83) and (84) that 

(90) 

(91) 

(92) 

(93) 

(94) 

(9.5) 

(96) 

(97) 
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zz;gi, p, k) = I I u”‘~“W’(u, u, i, p, k) du dv r”” 
Sol 

ZZT$‘(i, q, k) = u”‘v”W’(~, v, i, q, k) du dv 

and 

JJyi;ir ={ZZy2;r(ipk) - ZZFi:‘r (iqk)} (98) 

Using Eqs. (96) and (97) in (95), we obtain Eq. (98), viz. 

JJ;;;’ = {ZZ~+C;Y(ipk) - ZZT;i;” (iqk)} 

I I 
= (2Lyk) 

II 
r”l+‘l+‘(u, + UJ)“yv, + v,,rT 

0 0 

x {[Wfk + r(w, - wy + WJ)lY 

_ [+,,:k + r(wi - WY + w,,t)]‘} dr dt 

Let us now define 

u(t) = (Ui + L&t)” 

V(t) = (v, + Vkif>” 

(wi + Wkir)r > if wiSk = 0 

@k(t) = 

g0 ,,,,; z’;;;) [(wi + WF) + &it]* , 
0 if WY” # 0 

2A;;k Sk 

A;lk= (m+n+A+3)’ ifwO =’ 

2A;Ik , if wyk # 0 

@=p,q) 

I 
1 

JJ;;;’ = A ;ik ~(t)V(t){W’~~(t) - Wiqk(t)} dt 
0 

Letting f(t) = U(t)V(t){W’pk(t) - Wiqk(t)} an using Taylor series expansion, we can write d 

where 

f@(O) = ( 
$ Mt)v(t)W’Pk(t) - Wiqk(t)] > 

r=O 

(99) 

(100) 

(101) 

(102) 

(103) 

we have, now on using the generalised form of Leibnitz’s theorem for Eq. (103), we obtain the expression 

f’“‘(0) = 2 !! 
p=l*,+/L*+IL3 I PII PAI P-3 

{ dp”‘@) 1 { “;vJO>,=, 
t=o dr”’ 

(104) 

Now, from Eq. (lOO), we obtain 
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r=o 

b, 
“z’Q(rr - ,I+. ,uul), 

dP3Wisk(t) [ 1 d/ 

!B 
f=“=Rs(y-pu,,p& @=P,q) 

i8k if w, =0 

= 

I 
WE? if WY’ # 0 

and 
def 

R,,(y - ,+t ,4 = R,(Y - k, 14 - R,(Y - kt ~l-3) 

from Eqs. (104) and (105) we obtain 

S&(O) -ZZ 

!Y 
c P(m - P,, p,>Q(m - hv M$,(m - EL.~> ~~1 

Thus, from Eqs. (101) (102) and (106). we cbtain 

m+n+y 

JJ’S;;’ = cA::k’,“,) wso &-jj 

(105) 

(106) 

This completes the proof of Lemma 4. Cl 

Application of Lemma 4 in conjunction with Theorems 4, 5 and 6 will further provide us with a better 

algorithm to compute the volume integral of monomials over a linear tetrahedron in Euclidean three-dimensional 

space. The new algorithm can be easily implemented for the application example illustrated in the previous 

section of this paper. 

6. Conclusion 

The theorems and lemmas we have presented on integration are interesting for various reasons. We have 

expressed the integral of spatial expression x”y’(lx + my + h)‘” (a, p, y) 2 0 and positive integers into line 
integrals not via the use of Green’s theorem which was normally done in all previous works, but by means of a 
simple transformation which joins the line segments end points to the origin of the xy-plane. This transforms the 
area integral over a plane polygon to a sum of line integrals along its segments. The line integrals thus obtained 

have a product of three linear functions as their integrand viz. 

(Xi + Xkir)“(y; + .V,;#(i, + Zk,#+’ 

01 

(x; + $,;r)“(.~; + yk;# c 
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We have used the technique developed in our earlier works [ 10,l l] which apply the Taylor series expansion, 
generalised form of Leibnitz’s theorem and multinomial theorem. We have demonstrated these derivations by 
means of an application example which explains the detailed computational scheme to evaluate the structure 
product HZ;;:;:. The volume integral of the monomial with vertices x”yP:’ over a linear arbitrary tetrahedron 
with vertices at ((CC,, y,, zP), p = 1,2,3,4) we have further developed a finite integration formula for the 

structure product HZ;;:;: fully expressed in terms of six-line integrals over the boundary edges of the linear 

tetrahedron T, 2,3 j. The application example illustrated in the earlier sections of this paper can be similarly 

worked out by’usk of the latter development proposed in terms of six-line integrals. The proposed algorithms of 

this paper are much simpler and economical in terms of arithmetic operations. 
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