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Abstract

This paper is concerned with explicit integration formulas and algorithms for computing integrals of trivariate polynomials over an
arbitrary linear tetrahedron in Euclidean. three-dimensional space. This basic three-dimensional integral governing the problem is
transformed to surface integrals by use of the divergence theorem. The resulting two-dimensional integrals are then transformed into
convenient and computationally efficient line integrals. These algorithms and explicit finite integration formulas are followed by an
application—example for which we have explained the detailed computational scheme. The numerical result thus found is in complete
agreement with previous works. Further, it is shown that the present algorithms are much simpler and more economical as well, in terms of
arithmetic operations. The symbolic finite integration formulas presented in this paper may lead to an easy incorporation of geometric
properties of solid objects, for example, the centre of mass, moment of inertia, etc. required in the engineering design process as well as
several applications of numerical analysis where integration is required, for example in the finite element and boundary integral equation
methods.

0. Nomenclature
Ilj',fy7 =ff7, x“yPh + Ix + my)” "' dx dy
= surface integration over a plane polygon in the XY-plane
n ‘:TB ’, II‘,’TiY have a similar meaning

h i, m
h',l',m' arbitrary constants
hlf’ l", m"

a, B,v Positive integers (including zero)
II:{S/\Z = f fr* x*VPh + Ix + my)” " dx dy

T}, = a triangle in the xy-plane with vertices at (x,, y,), (x;, y;) and (x, y,)
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/4 ‘;fa;/ ./ ?B:/ have similar meanings
i) i
A, = area of the triangle with vertices (x,, y,), (x,, ¥;) and (x;, y,)

A7

ASX P .
x> 4, have similar meanings

111;‘”=ff x®yP2" kA ds
1k ijk
= surface integral over T,

T, =a linear triangle in Euclidean three-dimensional space with vertices (x;, y;,z,), (x,y;2,) and
(e Yo )
k = unit normal vector along z-axis

(n,,i=1,2,3,4)—outward unit normal to triangles T,,,, T,,,, T,,; and T,,,, respectively.
{2, is either 1,0, —1 and it depends on the normal of linear T, ,

111;"”:fffx"y‘*zy dv

= volume integral of trivariate monomial x“v
three-dimensional space

27 over a linear three polyhedron in Euclidean

j f x*y?27* 'k - A ds = surface integral over the projected area s in the xy-plane,
N

= > I
T .ET uk
S =1is a surface of R” decomposable in a set T of triangles such that any pair of triangles T,andT,;, do
not intersect.

1. Introduction

Volume, centre of mass, moment of inertia and other geometrical properties of rigid homogenous solids
frequently arise in a large number of engineering applications, in CAD/CAE/CAM applications in geometric
modelling as well as in robotics. Integration formulas for multiple integrals have always been of great interest in
computer applications [1]. Computation of mass properties of both plane and space objects is discussed by
Wesley [2] and Mortenson [3]. A good description of integration methods in solid modelling is given by Lee and
Requicha [4] in their survey article. Lee and Reqquicha [4] observe that most computational studies in multiple
integration deal with problems where the integration domain is a very simple solid, such as a cube or a sphere
and the integrating function is very complicated, conversely, in most engineering applications the opposite is the
usual problem. In such problems the integration domain may have a nonconvex shape and the function inside
the integral sign is a trivariate polynomial. Timmer and Stern [5] discussed a theoretical approach to the
evaluation of volume integrals by transforming the volume integral to a surface integral over the boundary of the
integration domain. Lien and Kajaya [6] presented an outline of a closed form formula for volume integration
for a linear tetrahedron and suggested that volume integration over a linear polyhedron can be obtained by
simple means of disjoint decomposition technique. Cattani and Paoluzzi {7,8] have obtained finite integration
over plane polygons and space polyhedra via surface and volume integration methods based on Green’s and
Gauss’s Divergence theorems. In a recent paper, Bernardini [9] has presented explicit formulas and algorithms
over a n-dimensional solid by using decomposition representation and boundary representation. In recent works,
Rathod and Govinda Rao [10,11] addressed these problems, with an aim of giving more efficient and explicit
algorithms than the previous works of Cattani and Paoluzzi [7,8] which made reference to combined use of
well-known Taylor series expansion and Leibniz’s theorem on differentation to obtain finite integration formulas
for the integration of monomials over plane polygons and space polyhedra. Integration of a triple product, viz.
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x"v'(h + Ix + k)", (m. n, p-positive integers and zero, h, I, k arbitrary constants), an expression in bivariates
x. v plays a very important role [10,11] in the computation of volume integrals of a trivariate monomial viz.
x"v"z” over the domain of a linear polyhedron. The integral evaluation of this bivariate expression over a plane
polygon is computed by application of Green’s theorem which reduces the area integral to a line integral.
Because of the presence of (h + Ix +ky)""' the integration of the expression x™y"(h + Ix + kv)” "' has to be
expressed as a sum of p(p + 1)/2 line integrals, for each line segment of the plane-polygon. In this paper we
have found a means of overcoming this complication and now the same computation can be done only once for
each line segment of the plane polygon. We have further applied this technique (which is discussed in Lemmas
1, 2 and 3 of this paper) to evaluate the volume integral of monomials over a linear tetrahedron (which is
discussed in Theorems I, 2 and 3). With help of an application example, we have shown that the present
computational scheme is superior to earlier works [10,11]. We have further proposed three more theorems
(Theorems 4, 5 and 6) which express the volume integral over a linear tetrahedron in terms of six line integrals
over the boundary edges. In Lemma 4, we have proposed an efficient means of computing each of these line

integrals which is again an improvement over the earlier works [10,11].

2. Surface integration

In this section we first establish a preliminary result giving closed analytical formulas for surface integration
over a plane polygon either in the xy-plane, vz-plane or zx-plane. Then, we wish to use these formulas to derive
a closed formula for surface integration over a linear tetrahedral surface in R

2.1. Let m,, be a simple polygon in the xy-plane: we want to evaluate the following structure product:
e d;fjf VP + Ix + my)” "' dx dy (H

where [, m. h are arbitrary constants and a, (3, vy are positive integers: including zero.

LEMMA 1. The structure product II'; «PY over a simple polygon with N-oriented edges [, =123...,N)
each with end points at (x,, y,) and (xk, v ) k=1i+1)and (x,, x,) = (x,, v,) in the xy-plane is expressible us
N a+B+y+l
II’,',"[;"“Y+l => [A',‘:k > > Fla —n,,n)G(B —n,.n,)H(y + 1 ~n3.n3)] (la)
=1 n=0 ntnstng=n
where
24 a—n II
nﬁ’ n, ) ( —Hs n
y +1—n; n
( n, )y BZ’S}’ 2,=h=0
H(y +1—n,,n,)= y+l> yi1 (1b)

0
(P)Z,, B k5
pe "3 a+B+p+2) w0 ki
sa=sn,0s8=n,0sy+1=<n,)

245, .
A = @+tB+y+3) ifh=2,=0
247 if h=2,#0
240, =Xy, — Xy,
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PROOF. Let us consider the integral of Eq. (1):

/M d;fff x*yP(h + Ix + my)” " dx dy

_ aD(x, y)
_jf”‘\'———‘—ex dx dy

where

d(x, y) = J'x"yﬁ(h +Ix+my) " dx

=j @(x, y)dy, on using Green’s theorem.
aﬂ'.\’\

N
=2 f; k<1>(x, y)dy (2)
i=1Y1,.

(where 97, refers to boundary of 7).
We shall now show that

N
=2 f f XY b+ my) T dxdy (3)
=1 1ok

where T, refers to a triangle in the xy plane with vertices at (x,, y,), (0,0) and (x,, y,).
We can think of w,, as a region in R? decomposable in a set T of triangles such that any pair of members T},
(a triangle in the xy plane with vertices at (xi, yi), (xj. yj)), and T,” . ,. do not intersect.

!1\

y

Y4
X
(x;.y)
/
7/
7
//
Vs (x2,¥2)
g e
z7 -
Sy A
S g7 P //
Syl s T e (
A I T )
~, s
et (xwyw)
e D -
2 é://:’//”/
(0,00 x

Fig. 1. (a) Three-dimensional mapping of an arbitrary linear tetrahedron in xyz-space into a unit orthogonal tetrahedron in £7z-space; (b) a
simple polygon I, in the xy-plane with N-oriented edges which expands into N-triangles with respect to the origin.
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Thus, we may also write

11:‘?'”'=ff x“yP(h + b+ my)” " dx dy

Il

> HEkr (4)
roer 0
Let us now prove the result of Eq. (3) when 7, =T clearly the edges are [, [, [, (i.e. [, refers to the
edges of triangle joining (x,, y, and x,, y,). We have (see Fig. 2)

<fj +fj +ff )xayﬁ(h+lx+my)7+ldxdy
T, Ti Tiok
=<f +J’ +f )@(x,y)dy
aT o T, aT o
=<j +J +J>¢’(x,y)dy
Lo, i,
+(J +J' +J- >¢(x,y)dy+(j +j +J>¢(x,y)dy
IAu In; [;A Im Iuk lk:

= _dﬁ(x,y)dyZJJ x*yAh + Ix + my)” " dx dy
AT i T 5

=J5E! (5)

ik
This proves Eq. (3) when m,, =T ,.
The general result of Eq. (3) can be readily proved on similar lines. This completes the proof of Eq. (3).
Now, let us consider the integral,

11;'75*“' = f L x*yP(h + Ix + my)” "' dx dy (6)

ik

Xy

The parametric equation of the oriented triangle T,

s« in the xy plane with vertices at (x. y,), (x;, y;) and
(x,, v,) are

x=x txu+txv

(7
y=y, tyutyp )

(x..yt)

0,0 %

v

Fig. 2. A linear triangle T, with vertices at (x,, y,), (x,, y,) and (x,, ¥,) in xy-plane which expands into three new triangles with respect to
the origin.
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where
O=suv=l, utv=<li
X, =X =X, X, =X, — X

Using Eq. (7), we can map an oriented triangle T, in the xy-plane to a unit triangle in the uv plane (see Fig.
1).

dedy =28 4 =
Y = B vy WU = (55— X yy) du dv

=24, dudv
= (2 X area of triangle T7;) du dv (8)
and we define
240 =X, Y XY, 9)
Use of Egs. (7)., (8) and (9) into Eq. (6) gives us

1 1—u
H;‘,‘f‘i”H = (2AT}2)L Jo Lx; +xj,u +x,01% [y, + yju +yk,'v]ﬁ Xz, +zu+ Z,(,U]y+l du dv (10a)
where
z=zx, y)=h+ 1lx + my (10b)

Let us further use the transformation in Eq. (10)
u=1-r, v=rs (11)

Use of Eq. (11) into Eq. (10) gives us

1 1
11;';;'7+1 =247 fo J:] [x, +x,; v +x.,rs1°[y, +y,/r+y,“rs]ﬁ X [z, + z,;r + zrs]” ' r dr ds (12)

1k

We have defined z(x, y)=h + Ix + my.
Clearly, z(0,0) =z, (say)=h and z, can be either zero or nonzero. Choosing x = 0, y,= 0, 7,= 2, and
recalling:

g e J L P+ my + by’ (13)
IS

where T, —a triangle in the xy-plane with vertices at (x,, ,), (0,0) and (x, y,). We have now from Eq. (12)

and the above explanations:

1 |
11(1,11}'*1 = (ZAX-V )J- f ra+B+l[xi +xkir]a[y, +.ykls]B X [ZO + r(zm + Zkl.\]‘VJrl dr dS (14)
0 Jo

75 iok

y T VA

(x;.y;)
(Xk .y.)

[::> 0, 1)

{x;,y;)

>

(0,00 x (0,0} 1,00 u

Fig. 3. The mapping between an oriented triangle in the xv-plane and the unit triangle in the uv-plane.
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If z, =0, Eq. (14) reduces to
247 J
aBy+] _ 1ok a B . |
I]Tn _—(a n B"+_ v +3) s x; Fx,8) (v, T yu8) (2, +2,:8) ds
If z, #0, Eq. (14) reduces to

1 yti py+l y+i—p
v, By +) __ ac ~0 o
III ox - (ZAmL )L (xl +xkis) (.): + .Vkls) {20 (a 4 B +p + 2) ("m “k:S) }ds

Let us define
X(s) = (x| + x,8)"
Yis) = (y, + yus)”
(o F 28 if z,=0
Zs) =175 (pr! T

f1s) = X(s)Y(5)Z(s)

+ 2,87, if 7,#0

Using Eq. (17), we can write Eq. (15), and Eq. (16) as

1ok . =
By = (a+ﬂ+'y+3)ff(S)ds =0

T"

247, J’, fi)ds, 070

87

(15)

(16}

(17)

(18)

where we have to note that f(s) is defined as in Eq. (17) for zo = 0 and z, # 0. Using Taylor’s series expansion

of a function of a single variable and from Eq. (17),

a+[3+'y+1 o
fis) = {f © }
n= 0

where

() — in_ =
S0 I {X() Y(s) Zs)}|s=0

We have now on using the generalised form of the Leibnitz’s theorem of differential calculus:

|n {d"'(s) } {dy"z(s) } { dz"(s) }
(n) - L X - _
f (0) "x+"22+"3=" |_nl _l_ﬁZ I_n3 dsnl $=0 ’ dsnz s=0 ’ dsn3 s=0

Now, referring Eq. (17) on the definition of X(s), Y(s), Z(s), we obtain

[d"‘x(s)]
ds"' Js=0 (a’)x._x ny o, 4

|_’Z_1 = n, )% F(a—nl,n)
[d"zy(s)]
dsnz 5=0 __ ﬁ B—n, n2 i
|n2 <n2)yu G(ﬁ Ny, 1y)

and

(19)

(20)

(21)
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7'+ 1 yti-ng n
d"2(s) S for z,=0
ds"3 s={ ’ B
= +1
|n y+1 (y )Zy+1 3
2 B e

73
p=n, (@+B+p+2) Pz forz, #0

def
= H(y +1—ny,n,) (22)
from Egs. (21) and (22), we have
fln)(o)
ln = 2 Fla—n,.n) G(B—n,n,) Hy+1—n,n,) (23)
| nl+n2+n3:n

Thus, from Eqgs. (19) and (23), we obtain

a+B+y+1

i
1
Lf(s)ds= 2 n+l{ 2 Fa=n,n)G(B = nymn,) H<7+1—n3,n3)} (24)

nytnytry=n

Combining Egs. (18) and (23) and substituting in Eq. (3) we obtain the desired result claimed in Eq. (1a,b).
This completes the proof of Lemma 1. O

Let 7. be a simple polygon in the yz-plane and we define the structure product:
I/ = JJ (' +1U'y+m'2)* 'y dy dz
where I, m’, h' are arbitrary constants and «, B, y are positive integers including zero.

LEMMA 2. The structure product Ilitl""y over a simple polygon with N-oriented edges |, (i=1,2,...,N)
each with end points at (y,, z,) and (y,,z,) k=1i+ 1) and (yy, zy) = (¥,,2,) in the yz-plane is expressible as

N a+B+7+1
et =3 [Afjk > Y Fa+1-n,n)G(B —n, n)H(y—n,, n3)] (25a)

i=1 n=0 nytny,+ny=n

where

Fla+1-—n,n)= <a+1 xf‘ﬂ_"'x,':}, x,=h =0

(a+l a+1-p
+l p
e e, xg=h'#0

Xio
o= "1 (Bra+tpt+t2)hy
G(B _nz,nz)_(13>ylﬂ ’lqy"‘?

H(oy — n3, n3) = (ns)z;}’_'ljiz 3

O=n<a+10=sn<sB0=sn,<vy)

24;7, S h =0

A% = (@+B+y+3) U T

24%,, ifh' =x,#0
247, = vz, — Vi% (25b)

PROOF. Proof can follow on similar lines as in Lemma 1. [

Let us now define 77, be a simple polygon in the zx-plane and we define the structure product:
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def
nerr= ff X1y + m'2)? e dz dx
o #Z,\
where [”, m", h" are arbitrary constants and «, 3, v are positive integers including zero.

LEMMA 3. The structure product I’ BT hver a simple polygon with N-oriented edges |, (i=1,2,...,N)
each with end points at (z;,x;) and (zk, x.), k=i+1)and (zy, xy) = (y,,2,) in the zx-plane is expressible as

N atB+y+1
TGN E[mk > > F(a—n,,nl)G(B+l—nz,nz)H(y—na,n3)] (26a)

= n=0 nytnytna=n

where

_ _ a a—n,_n,
a—n,n)= n )% X

+1 v n ”
G(ﬂ+1—n2,n2)_<ﬂ >y§+l 2)’k,2’ Yo=h"=0

i
n,

B )B+lp
B
S b

R —_(/3+a+p+2)( )y . e =R"#0
(26b)

Y -n n
I'I(')’_nyn}):(r[3>ziy SZk?

0O=<n <a0sn<B+1,0<n,<vy)

MY
—_—— , l = o —
AT, =3 @+ B+y+3) Y
247, , ifh"=y,#0
240, = X, — T

PROOF. Proof can be developed on similar lines as in Lemma 1. [

3. Volume integration over an arbitrary tetrahedron

Refemng to Rathod and Govinda Rao [10,11] we can obtain the volume integral of a monomial

x* v (@, B y) positive integers and zero) over an arbitrary tetrahedron in Euclidean three-dimensional space.
Let us define structure product over an arbitrary tetrahedron T as

111"‘”—fff x*y?z” dx dy dz 27

THEOREM 1. Let T ,,, be an arbitrary linear tetrahedron in three-dimensional space with vertices at
(x,. ¥,02,) (p=1,2,3,4) bounded by the tetrahedron surface consisting of four arbitrary T, ; , with vertices at
&5 Yo 2 6, Y5, 2) and (%, y,.2,) with (i, j, k) €{(1,2,3), (4,3,2), (4,1,2), (4,2, 1)}, then the structure
product 11 ;15_ ", over a linear tetrahedron T , ; , is pressible as

£2(1,2,3, 4)
a,By a, B,y +1 a,B.y+1 a B,y+1 a, B,y +1
I”T|.2.3.4 - (y + l) [HTW 3 + HTW. + ”T” 3 + ”T“ 2, ] (273)

where
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£2(1,2,3,4 —M
(1239 = Get 1)
Xia Xog Xaq
detJ=|Yia Y Vi

Tie Ja Zaa

Xog = %p T Ay

_ Lo (27b)
Ypg TV T Yy g T T Yy
(p, @) €{(1,4),(2,4), (3. 4)}

PROOF. For the three-dimensional tetrahedron T , ;, bounded by tetrahedral surface oT, ,,, consisting of
arbitrary triangles 7', ,,, 745, T,,; and T, ,, in three space, let

ayB y+1
x, v, 2) =<0,0 —“:;1—>
be a vector field. Then, clearly x“y*z” =

=V and if we now further assume the regularity of the integration
domain and continuity of the integration function we can then write from the Gauss’s divergence theorem

JI),, o aoes]]] | viove

1.2,3,4 1,2,3.4

=Jf g7 ds
4Ty 234

{where 5 is the outward unit normal vector to 47, ,,,)

(y+1)[” YTk ds+”f xyBz k-, ds

4,32

J’f aﬂ‘y+l ds+ff aﬁy+1k n4ds
Tsi3 T,

(28a)
4,2,1
where
ki, i
A ——k-nlds, if|k-A,]#0
Fon, ds =4 lk-7]
0, ifk-A,=0
|k - 7| ds = cos y ds = dx dy (28b)
v = angle between the normal 7, and the positive z-axis
k-a,
—==+1 or—1 0O
|k - 7|
Now, we shall give an alternative proof which can help us in determining k- i, k-iy, kA, k-i,.
PROOF. We can write
apy def By
i JJJ x*y"z7 dx dy dz
71234
a B_y+1)
x%y"z
29
J’ffru“az{ vy+1 }dxdydz (29)

We shall now make use of the isoparametric co-ordinates transformation in Eq. (29)
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-’C:X(f,nvf)z(fxl +77x2+§x3)+(1—§_7’_§)x4
y=yEn =&+, )+t —&E—n— 0y, (30)
t=En =& T+ i)+ —§—n— Dz,

(0,1,0) and (0,0, 1).
We should note that {(x,, ¥,,24), (X1» ¥;»2,)s 2. Y20 22)s (X3, ¥3. 25)) are, respectively, mapped to the points

(see Fig. l1a)
(&=0,1,=0.4,=0).(§=1,7,=0,{,=0)
(£,=0,m,=1,{,=0),(§=0,7,=0,{=1)
Now, using the chain rule on partial differentiation and the Gauss’s divergence theorem, we can express Eq.
(29) as

Y — et/ 5 5.,)| J'J'J [ { ayb 71 ax. .V)}
Tizaa (7+1)det(11ﬂ34) Ty23a4 3(77» {)
i _La B v+l 8(’6 ))} { a B _vy+1 a(‘x y)}]

+3n{ Y S oS T Y am o) |

0(1 2,3, 4)ffr ffiﬁdfdndg

( 1.2.3.4

0(1,2,3,4)fﬁﬁ-ﬁd§dndg (31)
s

Tyt D)

where S is the surface of the unit orthogonal tetrahedron spanned by the vertices 1,2, 3,4 at {((1,0,0), (0, 1,0),
(0,0, 1), (0,0.0)) and 7 is the unit normal vector pointing outward to T , ;,

F=(F_F,F,)

F — xaVB:y+l a(x’ .V)

o " (32)

a(x’ }’) h

F~7 — 7B:y+1

TN gD

d'(x, »)
— e, Bytl
B=xyi S
Clearly, from Eq. (30) we find

WG Y) o [Fes Xaa

(. {) = 24425 Yaou Yia

ey o ‘xm X34

ANE D) 24405 = Yia Via (33)
a(x, V) —oAY = Xia X24

a(f 7]) L1227V, Yaa

In order to obtain a working relationship of Eq. (3), let us examine the surface integral [ [5 F -7 ds, now clearly
from Fig. 1, S consists of trian&ular surface S, (m =1, 2,3, 4).

We define surfaces S|, S,, S,, S, as the triangular surfaces of 7‘1,23'4 spanned by vertices 1,2, 3;2,3,4; 1,3, 4,
and 1, 2, 4, respectively.

Thus, we may now write

21,2,3,4) ff
apy _
e = =T mEl (34)
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where A, (m=1,2,3,4) are the outward pointing unit normals to §m (m=1,2,3,4), respectively.
By considering the projection of S, on &, n-plane and noting the equation of the surface S: é +n+{—1=0,
we obtain

R 1 r1-¢ 3
ff F'ﬁ,di:f J (2 Fm(f,n,l—vf—n))dfdn (35)
5 o Jo m=1

1 [
J-Eﬁ~ﬁ2d§2=—jj F,(0,m, {)dnd¢ (36)
N 0 Jo
I r1-¢
”S F.ﬁ3d;~3=—fof0 FL(£0,m) dé d¢ (37)
R ~ 1 -7
ffg F-ﬁ4ds4=—ff F,(&m,0)d€é dy (37a)
4 0 J0

Substituting from Eqs. (35)-(37a) in Eq. (34) we obtain

. Q1,2,3,8) [ [ e
IIIT’l{aZ‘.ZA = (7 + 1) [L J;) (mz=1 Fm(fv 7 1 - f_ 77)) df d’n

_L' LI_" F,(0, 7, g)dndg—Ll LMFz(f,O, dgdd

1 [1-¢
*LJ; Fs(f,n,O)dfdn] (38)

Simplification of Eq. (38) leads us to the results:

e — (X1,2,3,4)
Ti234 (v+1)

— AL

Ty23

QAT - QAT HIENT (39)

(a5 )z e

413 T412

where

1 1—u
II%;’;;”' = L JO X%, V)P, V)27 (u, v) du dv

x=x(u,v)=uxp+vxq+(1—u—v)x,

y =y, v)=uy, +tvy, +(1—u—vy, (40)
z=z(u,v)=uz, +tvz, + (1 —u -0,
(P, g N E{(3.1,2),(4,2,3),(4,1,3), (4, 1,2)}
and ipqr refers to the unit triangle in the uv plane with vertices (p(0, 0), ¢g(1,0) and r(0, 1)).
Using the property of integrals, it can be shown that integrals
afoytl _ gaBytl _ gaBy+l _ praBytl
V| T = 1 T, =]l T, 1 T
= pgaBrtl _ ppapoytl
=17 ns” (41)
We can also show that under the transformation (40)
(42)

z(u, V) = Ix(u, v) + my(u, v) + h

where [, m, h are arbitrary constants.
Let us now consider,
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/(e d;fJ'J’ , x*yP(x + my + 1) dx dy

Pyr
rgr

93

(43)

where T*_is an arbitrary triangle with vertices (x,, y,), (x,, ¥,) and (x,, y,) in counter-clockwise direction.

par

Using Egs. (40), (42) and (43) we can show that

a(x, y) ) ,
aBoy+l 2 ppaBaytl _ X a.B.y+]
IITI\';r a(u, v) Togr 2A’””HTM'
and
ax ox
! a(x, v ou Jv X, X,
247 = W _ =1 ) |>0
a(u, v) dy ay Yor Yo

ou ov

From the property of determinants we can show that

247 = 24" =24%

pqr qrp rd
— LA Xy xy
=-24,, 24, 24,.,

Thus, we have from Eqs. (41), (44), (45) and (46)

o, By+ _ jra.By+l _ jpa.By+1
ij =B =1

o o
TS, T

qrp wq
— aBy+l _ aBy+l _ a.B.y+1
=[BT = gt = -y
qpr Y pra

and
HEE7 " = AR Jresr™!

Tpar PariiT g
Whenever p, g, r are in counter clockwise orientation using Egs. (39) and (48) we have
£2(1,2,3,4)

o, B. _ xy By +1 xy Byt Xy N-AS! Xy By +1
O S T CHIU L AR P R I LSO + il ]
where
xv
pqr . Xy
| S, if24, #0
53, =1 PAne ‘
0. if 247 =0

(p, g NEL(3,1,2),(4,3,2),(4,1,3),(4,2, 1)}
On comparing Eqs. (28a,b) and (49) we have

W kA
1,2,3,4)85,, = Y
1

. kA,
02(1.2,3,.4)8%, = Y
2

W k-Ay

‘0(1, 2s 3’ 4)6413 = ‘]2';[ \
3

. ke,
0(1,2,3,48)8%, = Y
4

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

The above theorem was clearly proved by considering projection of the arbitrary tetrahedron on the xy-

plane. [



94 H.T. Rathod, S.V. Hiremath | Comput. Methods Appl. Mech. Engrg. 153 (1998) 81-106

Similar results follow if we project the arbitrary tetrahedron on the yz and xz planes. This is further stated here
in the form of Theorems 2 and 3.

THEOREM 2. Let T,,,, be an arbitrary linear tetrahedron in three-dimensional space with vertices at
(Ge,s ¥,,2,), P =1,2,3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles T, with
vertices at ((x,, y,,z)t =1, j, k) and (i, j, k) € ((1,2,3) (4,3,2), (4,1,3), (4,2, 1)), then the structure product
il ;1Bz :4 over a linear tetrahedron T, , , is expressible as

IIIG’B‘Y _ 0(1’ 2a 33 4)

Tiaas (a + 1) I:H;‘T:]wﬂy + H;;;;:ﬁ.y + ”;;{11,‘3&7 + [[;;"/5"/] (52)

2.1

with £2 (1,2,3,4) as given in Eq. (27b).

THEOREM 3. Let T, ,,, be an arbitrary linear tetrahedron in three-dimensional space with vertices at
((x,. ¥,.2,), p=1,2,3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles T, with
vertices at ((x,, y,,z)t =1, j, k) and (i, j, k) €((1,2,3) (4,3,2), (4, 1,3), (4,2, 1)), then the structure product
III';’f2 ", over a linear tetrahedron T, , ; , is expressible as

0(1.2,3,4)
a. By _ (s a,B+1.y a,B+ 1.y a,B+1,y a, B+ 1.y
IIIT},:J, - (ﬂ +1) []IT:l'fz.z + 1173?1: + IIT‘:‘,XI.} + IITZK:J ] (53)

with {X(1,2,3,4) as given in Eq. (27b).

4. Application—example

We consider as an example, the evaluation of the volume integral:

J J f x’y dx dy dz (54)
T 234

v] :(xla y|~Z|): (5. 5,0)
v, = (x,, ¥,,2,) = (10, 10, 0)
Uy = (X3, ¥3.23) = (8.7, 8)

(55)

Fig. 4. The integration domain for application example.
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v, = (X, ¥4, 24) = (10,5,0)

ALGORITHM 1. We can show that on using the concepts developed in Rathod and Govinda Rao [10.11] and
Theorem 1. Eq. (54) is expressible as

I,

<’y dxdydz = f f xy(— 4(x — 10)) dx dy
TH3.4

- f f X’y 8 —y) drdy + f f X*y(4(y = 5) dx dy (56)

We can evaluate the integrals in the right-hand-side of Eq. (56) by using Lemma 1.
We shall now illustrate the evaluation of the integral of the type

ger! ij x*yPx + my + b)Y dx dy
” T
For the application example, we have a =2, =1, y =0 now by using the formula of Eq. (5) we can write

II;\'_‘AT1 = fj xly(lx +my+h)dxdy + j j xzy(lx +my + h)dx dy
! T Tily

+ff x*y(Ix + my + h) dx dy (57)
Tiok

note that Ix + my + h = z(x, y) is the equation of the plane spanning points (i, j, k) we shall illustrate the use of
Lemma 1 to compute one of these integrals, say

nﬂfzfj..fﬂh+nw+hnu¢» (58)
m T3

using Egs. (1a) and (1b). we have for the integral of Eq. (58)
1 = (A';;:‘k)[{F(z, 0)G(1,0)H(1, 0)}
1
+5 {F(1, DG(1, OHH(1, 0) + F(2,0)G(0, HH(1,0) + F(2,0)G(1, 0)H(0. 1)}

1
+3 {F(1, DG, 0H(O, 1) + F(2,0)G(0. DH(, 1) + F(0, 2)G(1. 0)H(1,0)
+ F(1, DGO, DH(1,0)}

1
+ a1 {F(0,2)G(1,0)H(0, 1 + F(1, 1)G(0, 1)H(0, 1) + F(0, 2)G(0, 1)H(1, 0)}

+ % {F(0,2)G(0, 1)H(0, 1 )}] (59)
where
F(2,0)=x
F(1,1)=2xx,,
F(0.2) =x;,
G(1,0) =y,
GO, )=y,
Z if Z(0,0)=h=0

H(1,00=1z, 2z, (60)
5 +t5, fZ0,00=h=Z70
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Z,, ifZ0,00)0=h=0
HO, 1) =1 7,

i if 2(0,0)=h=2,#0
240, = Xy T XYy
2x, y)=h+Ix+my

Hence, on using the above equations (57), (58), (59) and (60) we have

Iy = f L x*y(—4x + 40) dx dy

234

o1l

+J'f x’y(—4x + 40) dx dy
T(\‘

£y 3
403 204

—120552
=—5 28744 + 50000
23584
== (61)
Iz = f f x*y(8x — 8y) dx dy
ZJJ +JJ +ff x°y(8x — 8y) dx dy
T30 T3b2 Tios
_ 0+( —36512> +(9541>
h 9 9
_ 26971
=5 (62)
2,1.0 _ 2 _
IITﬁ] = J J'T'E'Yn x“y(4y — 20) dx dy
=ff +JJ +jf x*y(4y — 20) dx dy
T3 T T
~ _176 +( 1606) Jr(43750)
B 9 9
43772 63
Thus, from Egs. (56), (61), (62) and (63) we obtained
” 23584 26971 43772 47165
Xydedydz=—7F "+t =" (64)
Ti234

ALGORITHM 2. We can also show on using the concepts developed in Rathod and Govinda Rao {10,11] and
Theorem 2 that the integral of Eq. (54) is expressible as

~ 1 Z\3 1 Z 3
~dxdd=——” (y+3 dd+—JJr (-%+10)yayd 65
fjJTm,ux Y y & 3 Tiaa Y 8> yETS T5aa 4 Y ©>)
We shall now illustrate the evaluation of the integrals of the type:

11;;‘“‘**’=ff Uy+m'z+h) "'y dydz
1 Tye

17k

for the application example, we have o =2, 8 =1, ¥ =0 and we can write (by using Green’s theorem)
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11;;'“0 UJ fj Jf )x (y,2)ydydz (66)

where I'y +m’z + k' = x(y, z) is the equation of the plane spanning the points (i, j, k). We shall now illustrate
the use of Lemma 2 to compute one of these integrals say

no JJ ([\+m&+h)\dvd" "
Using Eqgs. (25a) and (25b) we have for the integral of Eq. (67):
P (AM)[{FB 0)G(1,0)}
+ % {F(3,0)G(0, 1) + F(2, DG(1, 0)}
+ 5 1 1060, 1)+ FUL2)G(L 0}

1
+ 7 {F(1,2)G(0. 1) + F(0. 3)G(1, 0)}

1
+§{F(O, 3)G(0, 1)}] (68)
where

x 3xix,.u 3xoxi20 xi, " _ _
F3.0)=4 3 t—y 5 + 6 orx,=x(0,0)=h"#0

X, for x, = x(0,0)=h' =0

<3x 6xix,.(, 3x,.20> _ o,
F2. 1) = 7 + 5 + 6 )Xk for x, =x(0,0)=h"#0

3x7x,, . for x, =x(0,0)=h"=0

<3x +3x,(.> > (0.0)= h' %0

— Jx;;, forx, =x(0,0)=

F(l 2): 5 6 ki o

3y, X;. . for x, =x(0,0)=h"=0

x,“ for x, =x(0,0)=h"#0

F(0,3)=

Xy for x, =x(0,0)=h"=0
G(1,0) =y,
G0, 1)=y,
2Al\nk Yiele T N
x(y.2y=h"+l'y+m'z (69)

Hence, on using the above equations (66), (67), (68) and (69) we obtain
;}Il: IJ ()—!— ) dy dz
+ — rdz
<H, Lo 1L )6 ) e

201 32

=0+ 85264 — 11997
=73267 (70)
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Iy = ff ( $+10) ydyds
(” o, ”) —2+10) ydyd:

4(1

= (183424) — 62992
= 120432 (71)

Substituting from Egs. (70) and (71) into Eq. (65) we obtain

fffr “dx‘bd"“_ff (Hg)vdvd’ ff <4+10)vdyd7

1.2.3.4
—73267 + 120432
3

47165

= (72)

ALGORITHM 3. We can also show on using the concepts developed in Rathod and Govinda Rao [10,11] and
Theorem 3 that the integral of Eq. (54) is expressible as

”wa:ydxd_vdz: 2” 2(5+-§-)2dzdx

= f f (x-5) dear (73)
We shall now illusirate the evaluation of the integrals of the type:

Ilaﬁ+l y_JJ‘ x (lnz+m"x+hn)ﬁ+lz‘y dde

Thk
g uk

For the application example, we have ¢ =2, =1, y=0 and we can write on using Green’s theorem:

(], o], 1], s

where (I"z + m’"x + h" = y(z, x)) is the equation of the plane spanning the points (i, j, k)).
We shall now illustrate the use of Lemma 3 to compute one of these integrals, say

Iy = f f X"z + m"x + h")* dz dx (74)

where (I"z + m"x + h" = y(z, x)) is the equation of the plane spanning the points (i, j, k)).
Using Egs. (26a) and (26b), we have for the integral of Eq. (74):

I" (A,,,A)[{F@ 0)G(2.0)}
+%{F(1, 1)G(2,0) + F(2,0)G(1, 1)}
+%{F(2, 0)G(0,2) + F(1, 1)G(1, 1) + F(0, 2)G(2, 0)}
+%{F(1, HG(0, 2) + F(0, 2)G(1, 1)}

1
+ 3 {(0, 2)G(0, 2)}] (75)

where
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F(2,0)=x],F(1,1)=2xx,,, F(0.2)=x

1, 1 1
TRRE AR o —
G(z’ O) = [4 Yo 5 Yo¥io 6ym > if y(O, O) Yo h' #0
v, if ¥0,0)=y,=h"=0
[)’g + 2 m:l f 0 0 _ h" O
G 1y={L5 "6 P ¥0.00=y,=n"=
2):kai; if (0, 0):)70 =h"=0
— 2_ f . =v = h"
G(0,2)=1 6 Yk ¥0.0)=y,=h"=0
Yoo I X0,0)=y,=h"=0
2Au‘)’k “ I*Zixk

W xy=h"+1"7+m"x
Hence, on using the above equations (74) and (76) we obtain

mit (] T o) e

I)-l 3

( — 136622 ) N (486064 >
9 9

349442

(HTW SIS IR ECOR

201

98432 0+ ( —730864>
9 9
632432

9
Substituting from Eqs. (77) and (78) into Eq. (73). we obtain

f Jlx\ drdydz =~ f L 2(5+7) dedx

4]1

2” (x-g) doas

_ 174721 316216
9 T 9

141495

=79

47165

3

The results obtained in Egs. (64), (72) and (79) are again incomplete with that of Bernardini {9].

S. Line integration over arbitrary tetrahedron

5.1. We have shown in the previous section that the surface integrals of the type:

a, By +1 a+ 1.8y a.B.+ 1.y
R R Lo

99

(76)

(77

(78)

(79)
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are in fact reducible to line integra over the interval O=<<t= 1. Let us now define the equation of the plane

spanning points {i. j. k) in three alternative forms which is dependent on the projection over which the volume
a. By

integral 111 T 18 considered. Letting the equation of the plane spanning ((x,, YpoZpds By 02,05 (X, ¥, z,)) be
denoted by three alternative forms: z(x, Yy =h +Ix +my,x(y.2)=h' +1'y + m'z and y(z.x) =h" + 1"z + m"x,
this may not be possible if the corresponding area integrals

a By+1 a+ 1,8y afB+ly
My ™ My 0 gy

do not exit. Let us further denote

o vy=h+tix+my=2Zx, v, p.q.r

xXy,2)=h'"+tU'y+m'z=X(y,2. p. q. 1)

Wz, x)=h"+1"z+m"x =Yz, x. p.g.1)
We should note that /,m, h: I',m'.h’; and I", m", h” depend only on (x,, y,,2,), (X5 ¥, 2,)s (X,, ¥,5 ).
THEOREM 4. Let T, , ;, be an arbitrary linear tetrahedron in the three-dimensional space with vertices at

((x,. ¥, 2,0, a=1,2,3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles Tijk with
vertices ((x,. ¥,.2,), a =1, j. k) with (i, j. k) €{(1,2, 3), (4,3.2), (4, 1.3), (4.2, 1)} then the structure product

Ihi4 ;‘f 7 is expressible as

wsy  4A1,2,3,4) .
==+ [” Y2 T w3, 1,23, ) - 27 (, 1,4,2, 1, Dpdedy

2m

" f j xYHZ 0, 3, 1,2,3, )= 27 0, 7, 4.3,2 )} dx dy

302

+”T” V2 0y, 1,2,3, )= 27 (x, v, 4, 1,3, Y dx dy
10

03
+fJTn Y2 (x, y,4,3,2, )= 27 (v, v, 4, 1,3, )} dx dy
304
+”T” Y2 %, 3,4,1,3, )~ 27 (%, 3, 4,2,1, Hrdxdy
104
+” Y2 3, 4,3,2, ) - 27 4 2, 1, )}dxdy]
T3

PROOF. Follows from Theorem 1 and Eq. (5). [

THEOREM 5. Let T, ,,, be an arbitrary linear tetrahedron in three-dimensional space with vertices at
(%, Yo» 24)» @ = 1.2,3,4) bounded by the tetrahedral surface consisting of four arbitrary triangles Tijk with
vertices ((x,. ¥,.2,)» a =1, j, k) with (i, J, k) €{(1,2.3), (4,3,2), (4, 1,3), (4,2, 1)} then the structure product

m ;'f 7 is expressible as

ey = 2239 ff Yo (1,2, 1,2,3, )= X T (1,24, 2,1, )hdy dz
Ti234 (y+ 1 5,

+jj VX (3,2 1,2,3, ) - X T (3, 2,4,3,2, )Hdy dz

T

+IJ VX  (3,2.1,2,3, ) - X (3,2,4,1,3, )}dy dz
TYh3

+H YT (1,2,4,3,2 ) - X T (a4 L3 ) dy dz
T3bs
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+J’J' yﬁz“/+l{xa+l(y,z,4, 1’3, )_Xa+l(y’z’4’ 2, 1’ )}dde,
Tihs

+” Yo X (9,2,4,3,2, ) - X" (3,242, 1, Ydydz (81)
T2

PROOF. Follows from Theorem 2 and Eq. (5) with x, y replaced by y,z. [

THEOREM 6. Let T1.2,3,4 be an arbitrary linear tetrahedron in three-dimensional space with vertices at
(x,, y,.2,) a=1.2,3.4) bounded by the tetrahedral surface consisting of four arbitrary triangles Tijk with
vertices ((x,. v,,2,), a =i, j. k) with (i, j, k) €{(1,2,3), (4,3.2). (4.1, 3), (4,2, 1)} then the structure product

14 ‘;‘f is expressible as

wpy £21,2,3,4) .
le,f}f:——(ﬂﬂ) U L%l VP 2,5, 1,2,3. ) - Y 2, x, 4,2, 1, )} dzdx

+ff VP % 1,2,3, )~ YR (g, 20 4,3,2, )}dzdx
T2

302

+ff e g0, 1,2,3, ) - YP T (g, x,4,1,3, )} dzdx
T:x

1,

+H x VP g, x,4,1,3, ) - YP (g, x, 4,2, 1, ) dzdx
TZX

104

Y, x,4,3,2, ) - Y @ x4, 1.3, ) drdx

304

+” XY N 2,x,4,3,2, ) - Y (1, x,4,2,1, Y dz dx] (82)
7462
PROOF. Follows from Theorem 3 and Eq. (5) with x, y replaced by z,x. 0

Use of Egs. (80), (81) and (82) as stated in Theorems 4, 5 and 6 will further reduce the computational effort
by 50% and suitable modification in Lemmas 1, 2 and 3 will help us in proposing better alternatives to
Algorithms 1, 2 and 3 discussed in previous sections. The speciality of Egs. (80), (81) and (82) is that they can
be in reality viewed as six line integrals along the edges of an arbitrary linear tetrahedron T , ;.

52 Let Ti, (8 =p, q) refers to arbitrary triangles in the uv-plane with vertices at (u,,v,). (5. Us) and (4. v,).
We want to evaluate the following structure product:

mon,r def moan,r ;. mon.ry.
JI7" = {7 pk) — 7" Gigh)} (83)
where
1y .8k = f f W w (. v, i, 8, k) du dv 84)
s T

u, V) E (x, ¥). (¥, 2), (z,x) and W(u, v, i, 8, k), (6 = p, q) are the equation of the planes in u, v, w space spanned
by points («,, v, w,), (us Vs, w,) and (u,, v, w,) we can write

W, v, i, p.k) =H + Lu + Mv

. (85)
W, v,i,q,k)=H' +L'u+M'v

With the property
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W(ua’ va’ i’ 59 k) = Wa(a = i’ k’ 6 =p’ q)
W, 0,1, p.ky=H=W" (say) (86)
W(o, 0.1, . k) =H' = W' (say),

o

It should be noted that H, L, M are determined in terms of (g v,,w,), a=i,p,k)y and H',L',M' are
determined in terms of ((u,,v,,w,), b =1, q, k).

LEMMA 4. Let T}, be a triangle in the uv-plane with vertices at (4,,v,), (0, 0) and (u,,v,) then the structure
product

def

1y s~ 113 o)
mt+ntr 1

= (A:’,:);\) 2 2 Pm — p,, )

©=0 (p+1D My Tt puy=p

X Q(n = py. )R, (r = ps. ) (87)

where

Pon — wy, ) = (Mlln)u’;hﬂlullfll
s

Qn = s, py) = (uy)v,  “20g?
R, (r— py, i) = R (s — sy ps) = R (r — pay, )

(i, “whs ifwi =0
Ro(r — s, pm) = 2 MDY >(w _ WA =
Amr, m+n+A+2) \ M/ o o
S=(p.q
24"
1ok . lf W:’Sk — O
Aifll)sz m+n+s+2) (88)
24, if w0
PROOF. Let us consider the integral,
iy < f f V"W, v. i, 8, k) du dv (89a)
! T

(d=p.q

uv

The parametric equations of the oriented triangles T, in the wv-plane with vertices at ((4,,v,), a =1, s, k),
§=p,q are

u=u +u,E+um

v=0,tu,é Tt ugm

W, v, i, 8,k)=w, +ws é +w.,m

where

osén<l, +n=<1
¢ ¢ (89b)

Us, =Us — U, , U, =~ U, —Uu; etc.

Using Egs. (89a,b), we can map oriented triangles T, in the uv-plane to unit triangle in the én-plane (see Fig.
3). We have for the area element,
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au, v)
(&7 d€ dn = (U0, — U,Vs;)

dudv =
=(2475,) dé dn
= (2 X ~area of triangle T'5,) d¢ dn
and
A%, = us Uy, — U U,

Using Egs. (89a,b), (90) and (91), we obtain:

€

m,n, def mun.y, - mmn,y,.
JI7a” = {7’ pk) — H7" (iqk)}

1 1—&
:{(ZAZ’)JA) J” J:) [ll‘ + upr § + uk:n]m[vl + U,),f + vl\in]”

X [w, +w, i +w,ml” d¢ dn
-
- (ZA;':A) .[) J:) lu, +u, €+ w,n"v, +v,é+v,m"
X w, +w, € +w,nl" dé dn
We also note from Eq. (85) that

W, v, i, pky=w, +w &+w,n=H+Lu+Mv,

Pt
W(M,U, i9 qvk)zwi +qu§+wki77:H, +L,u +M,U
Let us further use the transformation:
E=1—-r, v=rt

Use of Eq. (94) into Eq. (92) gives

ut
Ttqu

1 i
.]Jm.n,7 :{(zAr:k) ,[) L [up + uzpr + ukit]m[vp + Uipr + vkit]"

X [w, +w, &+ w,rt]"rdrdt

1 1
— (2/_17;;) L JO lw, +u, r + u,“.t]'"[vq +tu,r+uo,"
X [w, +wyr+w,rt]’rdr dt}

From Eqgs. (85), (86) and (93) we have

W(o.0.i, p.k)y=H = w"™
W, 0,i,q. k)= H' = w*

choosing
— — : , = RIS
u,=0, v,=0, we obtain w, = w,
_ — . — gk
u,=0, v, =0, we obtain w, = w,

Let us recall from Eqs. (83) and (84) that

103

(90)

(91

(92)

(93)

(94)

(95)

(96)

(97)
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II';';'é;'(i, p. k)= J’ f W"v"W'u, v, i, p, k) du dv
o Ti5k
II'}';',',;'(i, g, k)= j f w"v"Wu,v,i, g, k)du dv
Tk
and
T3 = o) — I G} ©8)
Using Eqs. (96) and (97) in (95), we obtain Eq. (98), viz.

Mg ={H7s Gpk) = 7357 (k)

1 i
— (zAic(L:k) J j rm+n+l(ul + uk,t)m(vi + Uk,f)”
0 0
X {[wi"k +r(w, — wif’k +w,n)]”
— W+ rw, — w4 w17 dr dt (99)
Let us now define
U@t)= (u, + u, )"
Vit) = (v, + vt
w, tw,), if w=0
i8 -
W) =4 (I)(W;ak)y A
o (m+n+/\+2)[

w, + Wy +wlt, if wik#£0

24% .
e if Wl =0
A:f:kz m+n+A+3)
24 if w2 #0
iok 1w, (100)
é=p @
l - .
J " = Al f uOWVEW ™ (t) ~ W)} dr (101)
Letting f(r) = U@VE{W? *(©) — W)} and using Taylor series expansion, we can write
m+ntr pu 0
= 2 J% * (102)
n=0 _,u
where
d* )
o) = ( S OVOW™ 0 — W"’*(r)]) B (103)

we have, now on using the generalised form of Leibnitz’s theorem for Eq. (103), we obtain the expression

f(#)(o) _ 2 |_/-" {d“lu(t)} {d“zv(t)}
B=ay gty | 4 /"-21_&3 dr*t Ji=ol dr*? Ji-o

d!‘-JWiPk(t) :l [ d#awiqk(t) :| ] 104
X [[ dr*s =0 B dr*? =0 ( )

Now, from Eq. (100), we obtain
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[ d* u(r) ]
| ar e o
—Lm_——_(“n) lu P(m My ),
[ d“2u(r) |
L ar i- AV
#:(Mz)v #7 l-'- — Q(n i MZ)’
dp.3wi6k(t)
——lz——_—Rﬁ(Y Mo i) 5 (B=p,q)
;)wly_#3wﬁ3, " W:bk .
= A .
y (y>(W;5k)Y—A "
d gomug[(w +w, )+ wt]” T whsif w0
an
def
R, (Y= t3s 13) = R, (Y — s pt3) = R (v — i3, 1) (105)

from Egs. (104) and (105) we obtain
O _ 5

Myt tuy=p

P(m — py, u)Q(m = fhy, )R, (M — s, 115) (106)

Thus, from Egs. (101), (102) and (106), we cbtain

m+nty 1
’"u';” A" —
T ( mk) #}:0 (M + 1)
{ 2 POn— py, )00~ i )R, (Y~ s, #3)} (107)
mytpatpy=pa

This completes the proof of Lemma 4. [

Application of Lemma 4 in conjunction with Theorems 4, 5 and 6 will further provide us with a better
algorithm to compute the volume integral of monomials over a linear tetrahedron in Euclidean three-dimensional
space. The new algorithm can be easily implemented for the application example illustrated in the previous
section of this paper.

6. Conclusion

The theorems and lemmas we have presented on integration are interesting for various reasons. We have
expressed the integral of spatial expression x“y?(lx + my + h)" " '(a, B, ¥)=0 and positive integers into line
integrals not via the use of Green’s theorem which was normally done in all previous works, but by means of a
simple transformation which joins the line segments end points to the origin of the xy-plane. This transforms the
area integral over a plane polygon to a sum of line integrals along its segments. The line integrals thus obtained
have a product of three linear functions as their integrand viz.

(o + 2,0y, + ykir)ﬁ(" + Zk,r)7+l

y+1 <’y+1)zg+l*ﬁ

« P

+x, . Ny~ - ’
0+ XD 3 2 @+B+p+2) &%t

p=0

or
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We have used the technique developed in our earlier works [10,11] which apply the Taylor series expansion,
generalised form of Leibnitz’s theorem and multinomial theorem. We have demonstrated these derivations by
means of an application example which explains the detailed computational scheme to evaluate the structure
product 111 ?lﬁ ", The volume integral of the monomial with vertices x“y#z” over a linear arbitrary tetrahedron

&

with vertices at ((xp, Yo Zp)s P = 1,2,3,4) we have further developed a finite integration formula for the
structure product III;‘lf 3Z fully expressed in terms of six-line integrals over the boundary edges of the linear
tetrahedron T , ,,. The application example illustrated in the earlier sections of this paper can be similarly
worked out by use of the latter development proposed in terms of six-line integrals. The proposed algorithms of
this paper are much simpler and economical in terms of arithmetic operations.
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