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The linear and nonlinear Rayleigh-Taylor instability in a viscous fluid layer of finite thickness bounded above
by a porous layer and below by a rigid surface, have been studied based on approximations in effect similar to
lubrication and Stokes approximations. The linear problem is studied analytically while the nonlinear problem is
investigated using both, harmonic evolution of the interface and numerical integration.

It is shown that the nature of the linear stability curve is controlied by both the porous-slip parameter 4 and
the thickness h of the fluid layer while its shape is controlled only by the ratio of the surface tension % and
the normal stress term &, Comparing the results of linear and nonlinear analysis we found that nonlinear effects
are significant only for small values of h. In general, we observed that the change in the nature of the interface
(i.e., the nominal surface) is related to changes of the value of the slip parameter a.
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1. INTRODUCTION

The phenomenon of instability of the interface between a heavy fluid supported by a lighter fluid,
known as Raylexgh Taylor- mstablhty (hereafter denoted by RTI) has been studied extenswely starting
from Raylelgh and Taylor A detailed account of RTI is given by Chandrasekhar’. More recently,
this problem has attracted considerable interest (see Sharp4, and Mikaelian® and references therein)
because of its natural occurrence and of its importance in science, engineering and technology. It
plays a crucial role in the areas of 1nert1al conﬁnement fusion (CIF) target design, astrophysics and
geophysics (see Bernstein and Book®, Sharp ).

In ICF design where an ablative driven medium implodes compressmg the material ahead of
the ablation front to high densities, RTI plays a significant role (see Mikaelian’ ). On the other hand
Rudraiah et al.® pointed out that a magnetic field applied obliquely to the interface between two
kinds of electrically conducting viscuous fluids exerts a stabilizing influence on the configuration.
The literature mentioned above (being by no means an exhaustive survey of the work on this subject,
but rather a representative sample of the enormous effort in this area) is concerned with the RTI
between two different fluids, but much attention has not been given to its study either in two different
fluid saturated porous media or in a fluid bounded by a fluid saturated porous layer.
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There exists a large body of literature dealing with the sub_)ect of ﬂow, heat and mass transfer
in a fluid region bounded by a porous layer (see Rudraiah® !0, Prasad!!). The problem in this case
is to specify a suitable boundary condition at the interface between the fluid saturated porous layer,
called interior flow and the fluid layer, called exterior flow.

The usual conditions are the continuity of velocity and surface streses at this boundary.
However, it is not possible to apply these conditions when the interior flow is governed by Darcy’s
law which is of reduced order as compared to the Navier-Stokes equations.

To overcome this difficulty, Beavers and Joseph12 postulated a boundary condition

y=

known as BJ-slip condition. Here u is the local average tangential velocity in the exterior flow,
ug is the slip velocity at y = h,

__kop
Q——,u&x . (2)

is the tangential velocity in the interior flow given by Darcy’s law, k the permeability of the porous

P

layer, S the pressure gradient in the x-direction and « the slip coefficient, a dimensionless constant

depending on the local geometry of the interstices. Beavers and Joseph12 conducted experiments to
verify this BJ-slip condition and they found the values of & ranging from 0.1 to 4.

Taylor13 performed experiments with grooved plates as a well-characterized model for an
idealized porous medium to verify the BJ-slip condition and found values of a from 1.308 to > 7
as the thickness of the grooves changed His experimental results showed agreement with the
theoretical ones of Richardson!*. Saffman'’ gave a theoretical justification for the BJ-slip condition
and shoewed that the condition could be derived in the form

% + O(k). .. (3

Saffman!> notes that the detailed analysis of the transition region and precise definition of the
nominal surface are necessary to describe the slip velocity u, to higher order in k. Further, the

precise location of the nominal surface will affect the value of . Rudraiah'® has’ improved the
BJ-slip condition to make it valid for finite thickness of the porous layer. He derived from first
principles, a slip-condition of the form

1
du_(A7 p| _£4"Q , |
5 ( T[sinh(;‘,m+(ub—-Q)coth(ﬂH)], . (@

1.
where H is the thickness of the porous layer, £ the porosity (cf. eq. (8)), 4'= (o ’k)— 2 and 4”7 are
viscosity parameters. This equation reduces to the BJ-slip condition in the limit of H — eo.
From this discussion it is clear that the slip parameter depends on the nature of the interface.
The instability of the interface between porous medium and free flow has hardly been studied in
the literature. One of the motivations of this paper is, therefore, to analyze the effect of the slip
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parameter on the RTL. In other words, the results of this paper are both of academic and technological
interest.

The academic interest is to know how sensitive the interface will be to variations of the slip
parameter and the structure of a porous medium. The other academic interest is to know the evolution
of passive and active interfaces which helps to understand the continental drift and the volcanic
activities. The technological interest is in the study of material science, particularly involving localized
deformation and failure of solids. Brown'® has employed a RTI configuration to study the polymer
failures using viscous creeping flow in the absence of a porous layer. He has pointed out that
polymer failures occur normally by the formation and growth of planar defects (crazes) that look
like cracks. The two faces of these defects are joined by many fibrils with the environmental fluid
present between them. The bundle of these fibrils may be modelled as a porous medium and the
environmental fluid in it may be regarded as flow through porous media bounded on one side by
a natural fluid, ie., air. When the crazing is accelerated by the presence of a plasticizing fluid, it
is likely that the thin layer of material adjacent to the porous layer will be plasticized and will
experience a slip. it may then undergo a RTI-like instability. The problem of particular interest is
the effect of slip at the interface, of the permeability of the bundle of fibrils and of the thickness
of the layer on the instability wavelength. '

Another important application of RTI past a porous layer is in the design of an effective
porous wall insulation. Wetting of porous insulation has been noticed to persist despite many
preventive devices (see Ognewicz and Tien 8) This is attributed to the unavoidable formation of
openings arising from faulty insulation and aging. The wetting phenomenon is generally believed to
cause a significant deterioration in the performance of wall insulation.

This is generally a complex multi-dimensional problem involving a liquid in a porous medium
bounded by air. The interface between the liquid (wet) zone and air (dry) zone undergoes
RTI-phenomena and should be taken care of in designing an effective insulation. This problem
involves both heat and moisture transport in porous media in addition to momentum transport due
to gravity and capillary action. This momentum transport sets up a slip between a thin dry layer
and wet saturated porous layer. A solution to this general problem is not attempted at this stage;
instead we deal only with the effect of the slip parameter on the stability of the interface between
these two zones. We consider in this paper both one-dimensional and two-dimensional RTI
phenomena in a thin film bounded above by a porous layer using the slip condition proposed by
Saffman'®

The plan of this paper is as follows: The basic equations and the corresponding boundary
conditions are discussed in section 2 using the approximations proposed by Babchin ez al.'® Section
3 is devoted to the study of both linear and nonlinear one-dimensional RTI problems. The linear
problem is solved analytically whereas the nonlinear problem needs numerical integration based on
4th order central differences in space and time. The two-dimensional linear RTI-problem is discussed
in section 4 using an analytical method. Section 5 contains a discussion and general conclusions.

2. MATHEMATICAL FORMULATION

The physical problem to be studied is shown in Fig.1 There is a two-dimensional horizontal
fluid-porous medium composite system with a heavy fluid (of density 'pp) in the porous region of
height H supported by a light fluid (of density pf) in a region of height A bounded by a rigid

material at y = 0. The coordinates x and y indicate horizontal and vertical positions, respectively.
The interface between the fluid-saturated porous medium and the fluid is described by 77(x, #). When
it is completely flat we recover the nominal surface, 7 = 0, y = h. We denote by u and v the
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velocity components in x and y directions, respectively. The fluids are assumed to be Newtonian,
viscuous and incompressible. Between the two fluids there exists the surface tension . The relevant
parameters are the fluid viscosity M, the permeability £ of the porous layer, the slip parameter, o,
at the interface, the fluid surface tension ¥ and the gravitational force &= g(pp —pf). The basic

equations for the fluid-porous medium composite system are :

l ,
[ 7777777777

FiG. 1. Physical configuration

The conservation of momentum

# A P
Py 1+Xp . -1 +pp| 14X, (q- Vg

f o & pf—l
=-V + 1+x |22 _1 || v2g-x ef+€£él I 5)
=T VA P\ H Ed L A L
and the conservation of mass for an incompressible fluid

0, for the fluid layer
X = )]
1, for the porous layer.

Here ¢ = (u, v) is the velocity vector, ZZP the effective viscosity, £ the porosity, C, the

inertia factor (i.e. the drag coefficient) of the porous medium and all other quantities are as described
above. Eq. (5) is the conservation of equation of momentum written in a general form using the
binary number Xp in such a way that this equation gives the Navier-Stokes equation when Xp =0

and the Darcy-Lapwood-Forchheimer-Brinkman equation when Xp = 1.

This form is useful for numerical computation in so far as we get the combined numerical
results. Assigning suitable values for X we obtain the results either for fluid layers or for porous

layers. The parameters & K and C, are defined as (cf. Vortmeyer and Schuster®®:
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£=£0|:1+Cexp(1-——2d£)] . .. (8
4
K=1.75(1—£;;2')3 . )
P
1.75
and Cp=Jias €™ . (10)

Here &, is the effective porosity, the average value of which is 0.4. C is an empirical constant
to be adjusted according to &, and dp is the particle diameter. The solution to this general problem
is not attempted at this stage.

To understand the phgsics of the problem described above, it is simplified using the following
assumptions (Babchin et all )

(a) The fluid in the porous layer is saturated and immobile and its effect on the properties
is negligible.

(b) The thickness of the porous layer H, is assumed to be larger than the film thickness A.
That is

h< H . (1)

(c) The density of the fluid in the porous layer is higher than that in the film region. That
is

Pp> Py . (12)

(d) The Strouhal number S, which measures the ratio of the local rate of change due to
temporal changes to the convective rate of change in eq. (5) is small. That is

A
S=——« 1 .. (13)
(T0)
v . - . Hy . N
Here U =7 i the characteristic velocity and V=; the kinematic viscosity. The
!
characteristic length A is
1
HeY
l=£§]2 , the characteristic time 7T = ;zf—‘? . (14)
and
o=gp,-pPp -~ (15)
(¢) The film perturbation Reynolds number R, defined as
2
Uh
== .. (16
R==" (16)

is assumed to be small. That is

Rx 1. .. (A7
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(/) The interface elevation 77 is considered small in comparison with the film thickness h.
That is

n
h < 1 .. (18)

Using the conditions (11) to (18) many terms in the basic equations are estimated to be
negligible to leading order. For example, conditions (13) and (16) allow us to neglect temporal and
convective derivatives in eq. (5).

The required boundary conditions are:
The no-slip conditions

u=v=0 a y=0, .. (19)

the slip condition at the interface

& M_a -
3x+o7y—\/fu at y=h .. 20)
The normal stress condition
P . .
p=-9n 707x2+u07’ a y=h .. 2D

The kinematic condition

v=%’tl+uﬁ at

o y=h, . (22)

where the second term on the right-hand side of eq. (22) will be ignored in dealing with linear
analysis.

3. COMBINED LUBRICATION AND STOKES
APPROXIMATIONS

In addition to approximations (11) to (18) we use the approximation that the ratio of the film
disturbance y-scale to the x-scale is small. That is

h
,{< 1. .. (23)

Here A is the characteristic perturbation x-scale given by (14). Condition (23) allows us to neglect
the x-derivatives in the film in comparison to their y-counterparts. Approximations (11) to (18) and
(23) are, in effect the combined lubrication and Stokes approximations. Using these approximations,
equations (5) to (6) and the boundary and surface conditions (19) to (22) take the form

Fu_1dp
PRI o w (29)
%:0 . (25)
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du o
and o + 5 =0. .. (26)

The corresponding boundary and surface conditions are

u=0ay=0, .. 27)
M _«a
5’-—7]?“ aty = h, - (28)
>
p=~577—7E . (29
a1, 91
and v(h) = > +u3x ... (30)
We use the approximation
u(n) ~ u(h)+2% l :(1+aagju(h) .. 3
y=h
v(77) = v(h). .. (32)
Here a‘=;(%§ is the porous parameter. Then the kinematic condition (30) takes the form
_1 /i o
v(h) = Y + 1+a0'h u(h)o.,x . .. (33)

To obtain the equation for the interface elevation 77, we find from eq. (6) the expression

h
wy=- | %dy .. (34)
v 0

The solution of (24), satisfying (27) and (28) is

"
u= 2;%[ h(“fao)Jy,aa;el. .. (35)

The case @ o=1 is treated in the last section. Then (33), using (29), (34) and (35) becomes

hz[‘*“ag] G 3 Fn &
T w(l-ao) | "k T3 |k 12u(-ao)| x2 Tt |7

Let us analyse the interface evolution described by this equation.

3.1 Linear Evolution of Interface

When 77 is very small, the nonlinear terms in eq. (36) are negligible and we get the linear
equation
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n_K (@oc-4) irz 90 37
o 12,u(1—aoj Y

The question of interest is the growth rate of a small periodic perturbation of the interface.
Hence we assume

1 aexp (nt + ilx) ... (38)

Then eq. (37), using eq. (38), becomes

_hrr 12 é 2
= 2u (1 - (5 7o), ... 39

where f=a 0. In the limit #— 0, eq. (39) reduces to

2
n:h—l(§ ¥, .. (40)

in agreement with the results of Babchin et al.l’ Although these authors discussed RTI of plane
Couette flow, their evolution of the interface, in the case of linear theory, is independent of the
velocity of the bounding plate, because their velocity distribution is independent of this velocity. The
situation in the case of nonlinear evolution of the interface is quite different. In terms of non-dimen-
sional quantities, eq. (39) takes the form

A
A_BP@-8) . 5
= aog D .. (4])
Here 2:7‘—‘}—/’16; P=al h=n/ . (42)

n given by eq. (41), is computed for different values of Ik and A and the results are discussed in
the last section.

3.2 Nonlinear Evolution of Interface

Eq. (41) shows that the interface is neutraily stable (i.e., n= 0), for values of g = 4. RT stability

(i.e. n < 0) occurs for values of £ in the range 1 </ <4 and shorter-scale perturbations [lz<é }
4
Longer-scale (lz >;5/ ] perturbations amplify for values of £ in the range 1 </f <4 and die out for

f > 4. Shorter-scale perturbations 12<§ are linearly unstable for values of # > 4 or f < 1 and

thus subject for a nonlinear theory. We see that the characteristic length A, eq. (14), is of the order
of the critical wavelength. Eq. (41) shows that the growth-rate is maximum at a wavelength which
is of the same order as A. But, if n is very large, i.e. 77> hAS, then the linear terms in eq. (36)
can be neglected and we obtain:
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K? 1+ﬁﬁ
[ h l &
i) [J%’xz”ﬁ}%:o -

The process described is quite different from a process in which the film is bounded by a
fluid layer with moving boundaries instead of porous layer, discussed by Babchin et al.’®. Therefore,
we use eq. (36) to study the nonlinear interface evolution. Eq. (36) is not amenable to analytical
treatment and hence we solve it numerically using 4th order central differences in space and time
as explained below. For time-integration of eq. (36) Adams-Bashforth predictor and Adams-Moulton
corrector steps of fourth order are used, as described in Chapra and Canale®'. Spatial derivatives
are discretized by the following central difference formulae of fourth order accuracy :

Jd 1 . . .
g)(cx) - 12Ax[77(1—2)—877(1—1)-»877(z+1)—77(1’+2)], .. (44)
a;zgx) - 122 > [-nG-2)+16m(i-1)-30n0)+ 167G + 1) — n(i + 2)], .. (45)
X
jagx) — Al 5 [-7(i-3)-8n(i-2)+ 13n(i—-1)- 13+ 1)+ 8n(i + 2) — n(i + 3)]
X
... (46)
& nx) 1 . : ‘ .
and Py, - P [=7(i=3)+ 12n(i—2) - 397(i - 1) + 5677(i)
- 397G+ 1)+ 1291+ 2) — (i + 3)]. .. (47)

The abbreviated notation, e.g., 7(i — 2), stands for the value of 7 at the position x — 2 Ax. The integer
‘I’ indicates the i-th grid point.

The initial condition used in the numerical integration is a sine-wave with wavenumber [:

7(x, 0) = 77 sin(Ix). ... (48)

The amplitude 77, is assumed small. Its non-dimensional value is ;‘70= 1074,

Periodic boundary conditions have been applied in x-direction.

4. LINEAR EVOLUTION OF INTERFACE USING ONLY
STOKES APPROXIMATION

Using the approximations discussed in section 2 without the approximation (23), eqs. (5) and (6)
take the form

Fu Fu_1dp
Py +07y2 _/1 o ... (49)
Fv, Fv_1op . (50)

&24‘&})2_#(9)7
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o

ox
The required boundary and interface conditions are given by egs. (19) to (22). The question
of interest, here also, is the growth rate of a small periodic perturbation of the interface. Hence, we
assume :

and +%=0» .. (51)

(w4, v, 1) = (U(y), V), 77 () exp (nt + ilx). .. (52)
Substituting eq. (52) into eqs. (49) to (51) and simplifying (see Brown”), we get
D*v-2PD*5+ 1V = 0, . (53)
d
where D=—.
dy
This has to satisfy the conditions
F=DV=0aty = 0, .. (54)
SN SNV . (55
(D°+ )W :]?Dv aty=nh
and p=L@5-PD%) a y=h ... (56)
!

The kinematic condition (22), after neglecting the second term in it (as it is of second order)
becomes

V(h)=nTij. .. 867)
From (49) and (56), using (51) and (57), we get

N o X ()
U2 D) - D’ %(h)]

.. (58)

Solution of eq. (53), satisfying the above conditions, is

o) = (A, +A,y)sink () + (A, + Azy)cos h(ly). - (59)

Here

Al Al
A4—-O, A3——7,‘1‘f; A2~ﬁﬁ

_ZCHInE) -BE+HEO)
- 2hC-B§ ’

f

C = cosh (lh), § = sinh (lh). ... (60)

So, the dispersion relation (58), using eq. (59), is given by
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2
_@0-)
=N . (61)
Here
_SC-tn+pRlhy (P - 8
N ==& 2l b . (62)
20+ PR -1 +56)
In the limit #— 0, N — N, where
SC-1h
N,—» &= . (63
O 20+ Ph? ©
(8- N,
n—’*—/ll . (64)

is in agreement with the results of Brown'’. (We note a printing mistake in the expression N, given

by Brown [4], where we find cl instead of C in the denominator of (63).)
Making the expression n given by eq. (61) dimensionless, using eq. (42), we get

= ta-BN .. (65)

Here 1/\\/ is given by eq. (62) by replacing /h by th.

n given by eq. (65) is computed for different values of I, h and f and the results are
discussed in the last section.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated linear and nonlinear Rayleigh-Taylor instability of two-dimensional
flow in a rectangular comparatively thin fluid layer bounded above by a thick porous layer and
below by a rigid plate. Using the approximations common in thin-film lubrication theory and in
Stokes flow discussed in sections 3 and 4, we obtain the dispersion relations (39) and (58).

Relation (39) is valid for ## 1. When #— 1, we find that % — 0 and the corresponding dispersion

relation is

Ay h
BE
o 1= .. (66)

The dispersion relations (41) and (65) are numerically evaluated for different values of ?l[; and g4

A
n=

and the results are depicted in Figs. 2 and 3. We find that the shape of the dispersion curves as
well as the nature of the linear stability of the interface depend on £ and h. In the case of a thin
film bounded by a fluid layer, Babchin ez al.'® and Brown'!” have shown that the interface is always

;\2< 1} However, in the problem discussed here the

/4

situation is quite different. For ?2 <1, solution (39) shows that the interface is neutrally stable (i.e.

n = 0) for § = 4, that it is stable (i.e. n < 0) for values of £ in the range 1 <f<4 and linearly

linearly unstable for long waves (lz<§ ie.
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-2 T T T
0.0 0.5 .-
l

FIG. 2. Linear (curves with symbols) and nonlinear
(simple curves) dispersion relations for
three different values of f=a o (f=0.1:~—,

FiG. 3. Linear and nonlinear dispersion relations for
three different values of f=a o (f = 0.1 -,
f=20:---,=1000: - - -.) and a

£=20: f=100.0: -.-.-) and a ‘thin" fluid |
2 ‘thick” fluid layer with b= 22 Linear and
la f thi = 4 \J )
yer of thickness i =0.1 . . o
) nonlinear results coincide.

unstable (i.e. n > 0) for f > 4 or f < 1. The opposite is true for short waves

4

and vice versa. This means that the slip parameter greatly influences the nature of the interface as

(12 > 4 resp. /1\2 >1 ] The interface which is stable for long waves becomes unstable for short waves

stated in the introduction. To demonstrate this by analytical and numerical tools is one of the motives

of the present study.

In Figs. 2 and 3, we present not only linear, but also nonlinear results for two different values
h of the fluid layer, namely h = 0.1 and 1 and three values of the parameter f=a0 = 0.1, 2.0,
100.0, which are representative of the parameter ranges discussed above. While the linear results are
characterized by curves with the symbols [J O 4, the nonlinear results are represented by simple
curves (solid, dashed and dashed-dotted). In the case of linear results, the vertical axes of Figs. 2,

and 3 represent the growth rate r'; of the interface perturbation ;\7 (cf. ef. (41)). In the nonlinear

. . . . A 1
cases it provides the relative time rate of change of 77max, namely =& *'0#7 -k

TImax ot

maximum nondimensional perturbation of the interface. It turns out the both quantities coincide
|

A
. Mmax denotes the

perfectly for ‘thick’ fluid layers, given e.g. by h =10, ie. hz(gjz (Fig. 3). In other words: if

1

)

the thickness of the fluid layer is of the order of [Z ]2, the interface evolves linearly. On the other
hand, thin fluid layers (e.g. h = 0.1, see Figure 2) are more sensible to buoyancy and/or surface

tension effects and undergo a nonlinear temporal evolution, irrespective of the wavenumber ) Again

P=1 represents a special case. We also conclude from Figs. 2 and 3 that the shape of the ‘dispersion
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curves in the linear and nonlinear cases is controlled by the porous parameter 4 alone. There are

no qualitative differences between ‘thick’ and ‘thin’ fluid layers. When h becomes very large,

however, the approximations in section 3 are invalid.
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Fic. 4. ShapAe of interface growth rate for a wave-
number of [ = 0.75 and three porous parameters
£ = 0.1, 2.0, 100.0 (from top to bottom).
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FIG. 5. Shape of interface growth rate for a waven-
umber of / = 2.0 and three porous parameters
£ = 0.1. 2.0. 100.0 (from top to bottom).

Finally, it is interesting to discuss the spatial structure of the relative growth rate of the interface

A
1
in Figs. 4 and 5 in terms of the quantity ny. —naL. max=7};% -

1 377 max
A A

at an early stage,
NMmax Jt

before instability occurs for two wavenumbers I = 0.75 and 2.0 and the three porous parameters
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/3 selected in Figs. 2 and 3. In fact, the instant of time considered in these thin layer results is r
= 5.10™ and thus close to the initial time. In Fig. 4, six waves are contained in the interval 16m.
The peaks reflect the positions of the wave modes. Since nyL, max =0 for S = 100, the peaks are
the positions where the growth rate is maximum. This is not true for # = 0.1 and 2.0, where the
positions for nyL max coincide with those of the wave crests. The case of large wavenumber is

presented in Fig. 5. Now 16 complete waves are stored in the interval 16m. Compared to the P =
0.75-case the amplitudes have increased, but the shapes of the interface growth rates are qualitatively

3
000000000055 ]
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and 100.0 (from top to bottom). and 100.0 (from top to bottom)
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the same. Whether the full numerical solutions deviate from a simple harmonic behaviour of 7,
namely 7(x, 1) = 770(t) sin (Ix), is demonstrated in Figs. 6 and 7, where half waves are shown only
and the solid curves represent the general nonlinar case and the dashed curves the case with presumed
spatial structure of 7, introduced into eq. (36). Indeed, the general solutions are close to simple
harmonic waves for long and short waves (? = 0.75, 2.0) and all porous parameters, at least during
the short time interval considered. Computations at later times became unstable. The presumed

solution deviates earlier from the general solution when the wavenumber is small.

In conclusion, the nonlinear problem discussed here (section 3.2) is quite different from that
of Babchin et al.!’ considering plane Couette flow. The present problem is greatly influenced by
the slip velocity at the interface between porous layer and thin film. It is not amenable to analytical

l.]9

treatment as that of Babchin et al.””. Therefore, numerical solutions had to be found. Fourth-order

accurate central differences were used for spatial discretization. For large porous parameters of the

order of o=10% however, it was not possible to obtain smooth solutions. Instead, chaotic but
bounded solutions appeared which could not be avoided by increasing the number of grid points
even dramatically. A remedy might be to use upwind discretizations or to add artificial viscosity
terms to the centrally discretized terms.
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