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Abstract. Cyclic voltametric investigations have been made to understand the 
electrochemical behaviour of sodiam hypophosphite in electroless plating bath 
solution. The possible reaction steps at the anode and cathode have been identified. 
An ECE type of mechanism appears to be operative in the overall reaction during 
electroless plating. Both organic and inorganic species in the bath solution influence 
the voltammetric pattern of the hypophosphite. Temperature enhances the peak 
currents and changes the reaction mechanism. The oxidation potentials of the 
reaction steps vary with temperature and also the presence of organic components 
in the bath solution. 
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1. Introduction 

In recent years, electroless nickel (EN) coating technology has attained consi- 
derable significance in metal-finishing industries. However, the problems associated 
with the process continue to draw the attention of researchers owing to the lack 
of comprehensive and basic understanding of the system (Mallory and Hajdu 1990; 
Ridel 1991). 

In electroless plating, the metal reductant plays a significant role in driving the 
plating process. Polarisation (Flis and Duquette 1984; Crousier et al 1993) and 
voltammetric (Podesta et al 1990) studies have been made with sodium hypophosphite 
as reducing agent in EN plating bath solutions. However, the proposed mechanisms 
are not adequate for explaining the overall reaction. Hence, an attempt is made here to 
study the possible reactions of sodium hypophosphite (SHP) in the presence of bath 
constituents through the cyclic voltammetric technique. 

2. Experimental 

Solutions were prepared using distilled water and analytical grade chemicals. 
Experiments were carried out using acidic (pH 5) 0.15M NaH2PO 2 solution at 
ambient temperature. The composition of each solution component was varied as and 
when required. The solution of sodium hypophosphite being a good electrolyte, the 
need for using other supporting electrolytes did not arise. The detailed experimental 
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procedures adopted in the present investigations were similar to those given earlier 
(Mimani et al 1993). 

An all-glass single compartment cell was used, wherein the working and counter 
electrodes were platinum foils (0"5cm z) with saturated calomel electrode as the 
reference. The solutions were deaerated by bubbling pure nitrogen gas before every run. 
A PAR model Scanning Potentiostat 362 was used to record the data. Reproducible 
voltammograms were obtained on repeated scanning. 

3. Results 

The electrochemical reactions of 0-15 M sodium hypophosphite (SHP) at pH 5 were 
obtained by cycling the potential from -0 .25V to 1.20V at different scan rates 
(figure 1). The voltammograms show an anodic hump i~ followed by a large anodic 
peak i~ and a small cathodic peak i~. From the results obtained at different scan rates, 
a plot of ip values of peak iz~ versus ~/z is made. A straight line passing through the origin 
depicts the irreversible nature of the reaction as observed earlier (Podesta et al 1990). 
The peak i~ appeared only if the potential is scanned to the region of iz~ which indicated 
the inter-relationship between i~ and i~. 

Most of the developed EN baths containing SHP operate at higher temperature 
ranges. Hence, it was felt that it was necessary to study the effect of temperature on the 
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Figure l. Cyclic voltammograms obtained on platinum with 0-15M SHP at 
pH 5 in the potential range - 0.25 to 1.20 V, as a function of sweep rate: (1) 100, (2) 
50, (3) 20, (4) 10 and (5) 5 mVs- 1 
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Figure2. Cyclic voitammograms obtained on platinum with 0.15M SHP at 
pH 5 in the potential range - 0.25 to 1.20 V at a scan rate 50 mVs - 1 ( . . . . .  298 K; 
- -  - -  343 K) 

voltammetric pattern. A typical voltammogram with 0.15M SHP at pH 5 and 
temperature 343 K is shown in figure 2. The voltammetric behavior in the anodic cycle 
is almost similar to that at ambient temperature. However, peak current is increased 

�9 z shifts to lower values. In the cathodic cycle, the nearly tenfold and peak potential % 
i~ current is initially cathodic and then inverts to the anodic side at more negative 
potentials. 

Experiments were conducted in the presence of additives which are commonly nsed in 
plating bath solutions. Boric acid (BA), sodium sulphate (SS) and sodium chloride (SC) at 
0- 5 M each and nickel sulphate (NS) at 0.1 M were added individually to 0.15 M SHP at 
pH 5. Some of these commonly present ions in the EN bath were found to affect the 
reaction of the SHP by varying either the peak potentials or the current (table 1). 

The influence of organic acids or salts on the cyclic voltammogram was also studied. 
Sodium acetate (SA), lactic acid (LA), sodium potassium tartrate (SPT) and sodium 
citrate (SCI) with a concentration of 0.4 M were added individually to 0-15 M SHP at 
pH 5. Change in the ip's and Er's with evolution of gas at the extreme positive potential 
values is noticed (table 1). The shift in potential is in the order, 

(SCI) > (SA) > (SPT). 

Further, the additives BA (0"5 M), SPT (0.4 M), SC (0.5 M), NS (0" 1 M) and SCI 
(0.4 M) when added at pH 5 in various combinations affected the ip's and Ep's to 
different extents (figure 3). 

4. Results and discussion 

It is known that hypophosphite can be oxidized chemically to phosphate (Van Wazer 
1958). The voltammetric pattern (figure 1), however, shows a hump i~ and a broad peak 



206 T Mimani and S M Mayanna 

Table 1. The variation of peak currents (ip) and peak potentials (Ep) in 0"15 SHP at 
pH 5 and 303 K in the presence of different additives at a scan rate of 50 mVs- 1. 

Inorganic components Organic components 

Peak BA SS SC SHP SA LA SCI SPT 

i~ 0-650 0-920 0.460 0.740 0"360 0.370 0 " 3 2 0  0-360 
-2 tpa 

Ep~ 0"786 0"750 0'900 0"774 0"636 0-684 0"636 0"774 

i~ 0"080 0-090 0"050 0"120 0-240 0"210 0"190 0"020 

E v 0'324 0-324 0-396 0"280 0"204 0-216 0'216 0"216 

*in mA/cm2; + in V 
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Figure 3. Cyclic voltammograms obtained on platinum with 0" 15 M SHP at 343 K 
and pH 5 in the potential range -0-25 to l '20V at a scan rate 50mVs-1 ( _ _  
SHP; - - . - -  BA + SC; NS + BA + SC + SCI; . . . . . .  BA + SPT; . . . .  
BA + SC + SPT). 

i 2 conf i rming tha t  the ox ida t ion  is not  a s ingle-step process  bu t  involves an in termedi-  
ate. Based on  the observed  results, the fol lowing mechan i sm for the ox ida t ion  process  
can be p roposed .  
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At i~, the oxidation of the hypophosphite to hypophosphate takes place at the 
electrode surface (Griffith et al 1940): 

H2PO ~- + H20  ~ H 2 P O ;  + 2H + + 2e, (1) 

H2PO;  ~,-~-HPO 2- + H +. (2) 

The hypophosphate ion is in equilibrium with the phosphite ion (Cotton and Wilkin- 
son 1990) which is less stable. It easily gets oxidised to the phosphate, which results in 
the peak a~ (Blaser 1993). 

HPO 2- + H 2 0 ~ H 2 P O  ~ + H + +2e (3) 

On reversing the scan after .2 l~, the immediate reduction of the phosphate is not 
observed. The reason could be that after the electrochemical oxidation, a slow chemical 
reduction takes place to generate the hypophosphite species as proposed earlier, in the 
electrochemical reduction of phosphates (Franks and Inman 1970). 

H2PO ~- --. H2PO ~- + 0 2 . (4) 

The phosphite then gets reduced to form phosphine (Bard 1975). 

H2PO ~- + 5H + + 4 e ~  PH 3 + 2H20. (5) 

It is observed that the ip of i~ increases while that of i~ decreases with the increase in 
concentration of SHP. This non-proportionality in the peak currents and the increase 
in the ip of i F, on stirring, support the fact that reaction (5) is diffusion controlled by the 
preceeding slow chemical reaction (4). This step could be the most probable path for the 
observed production of phosphine (Ratzkar et al 1986) during electroless plating. 

At a higher temperature, the shift in potential (i 2) to lower value suggests the ease of 
hypophosphite oxidation to phosphate. From the reversal of the cathodic current of 
ig to anodic (figure 2), it is inferred that after the onset of the cathodic reaction, an 
anodic reaction of the type 

PH 3 ~ P  + 3H + + 3e (6) 

EO EO 

ICl" H2PO2- �9 H2PO3- 

DIRZCT : H2PO2- 
EO: Electrochemical Oxidation, 
and CR: Chemical Reduction: 

) H2PO4- 

PH3 ( H2PO2- 
! 

EO [* (>600C) 

ER 

> P 

ER: Electrochemical Reduction 
* variable conditions 
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occurs to produce phosphorus (De Bethane et al 1961). Based on the above reactions, an 
overall mechanism scheme for the role of hypophosphite in the electroless plating baths 
could be proposed. 

The feasibility of a direct mechanism as reported earlier (De Bethane et al 1961; Gafin 
and Orchard 1992) appears to be less relevant, because in such a case, the process would 
begin with hypophosphite reduction giving either an equal or an even larger amount of 
phosphorus content in the deposit than nickel. This is contrary to the observed results. In 
the case of the ECE mechanism, the process begins with the oxidation step to initiate the 
electrochemical reduction of the nickel ion. Because of the slow chemical reaction after the 
phosphate stage, the formation of phosphorus gets kinetically controlled. 

In the presence of the organic ions, the influence on the oxidation of the SHP is more 
distinct. The hydroxy carboxylic acids are known to form acyl phosphates or esters with 
hypophosphites (Burt and Simpson 1969), 

RC(O) OH + H2PO 2 --,RC(O)OP(O)H 2 + O H - ,  (7) 

The electrochemical process then proceeds from the hypophosphite ester to the phosphate 
ester (Kazlauskas and Whitesides 1985) in a manner proposed in the above mechanism. 

RC(O)OP(O)H 2 + H20--,RC(O)OP(O)OH 2 + 2H § + 2e (8) 

RC(O)OP(O)OH 2 + n 2 0  ~RC(O)OP(O)(OH)2 + 2H § + 2e. (9) 

At the positive end, the evolution of oxygen or carbon dioxide takes place due to the 
presence of hydroxyl and carboxylate groups. The lowering of potentials of i 2 by 
,-, 150 mV shows the ease of oxidation of SHP in the presence of these organic acids. 

The CV pattern is not affected at ambient or higher temperatures in presence of(BA) or 
(SC) in the SHP solution. But the addition of (SPT) or (SCI) or (NS) reduces the peak 
potential of i 2, while (NS) increases the ip of/pc to a considerable extent. The peak potential 
which is lowered in the presence of boric acid and tartrate is further lowered in the presence 
of sodium chloride. Thus, the role of the chloride ion in enhancing the oxidation of the 
hypophosphite is clearly seen. The increase of ip of i~ supports the earlier findings that 
nickel ions catalyze the co-deposition of phosphorus in EN bath solutions (Brenner 1963; 
Harris and Dang 1993). 

5. Conclusions 

From these studies it is concluded that in the EN plating systems the bath constituents not 
only influence the reaction of the metal ion but also the reducing agent. The effect ofpH and 
temperature on the oxidation potential of the phosphate formation suggests the need to 
carefully control the pH value and temperature during the EN process specially in the acid 
baths. The proposed mechanism explains the incorporation of phosphorus in the EN 
deposits. The organic acids which are thought to be behaving as complexing agents for the 
metal ion, have a greater role to play by way of enhancing the oxidation of the 
hypophosphite. The individual effect of the additive appears to be less pronounced when 
compared to the combined effect. 
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