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Abstract. The linear theory of thermoelasticity without energy dissipation is employed to study
thermoelastic interactions in a homogeneous and isotropic unbounded body containing a cylindrical
cavity. The interactions are supposed to be due to a constant step in radial stress or temperature
applied to the boundary of the cavity, which is maintained at a constant temperature or zero radial
stress (as the case may be). By using the Laplace transform technique, it is found that the interactions
consist of two coupled waves both of which propagate with a finite speed but with no attenuation.
The discontinuities that occur at the wavefronts are computed. Numerical results applicable to a
copper-like material are presented.
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1. Introduction

Thermoelasticity theories which admit a finite speed for thermal signals (second
sound) have aroused much interest in the last three decades. In contrast to the con-
ventional coupled thermoelasticity theory (CTE) based on a parabolic heat equa-
tion [1], which predicts an infinite speed for the propagation of heat, these theories
involve a hyperbolic heat equation and are referred to as generalized thermoelas-
ticity theories. Among these generalized theories, the extended thermoelasticity
theory (ETE) proposed by Lord and Shulman [2] and the temperature-rate depen-
dent thermoelasticity theory (TRDTE) developed by Green and Lindsay [3] have
been subjected to a large number of investigations. In view of the experimental
evidence available in favour of finiteness of heat propagation speed, generalized
thermoelasticity theories are considered to be more realistic than the conventional
thermoelasticity theory in dealing with practical problems involving very large heat
fluxes at short intervals, like those occurring in laser units and energy channels.
For a review of the relevant literature, see [4–6].
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Recently, Green and Naghdi [7] proposed a new generalized thermoelasticity
theory by including the ‘thermal-displacement gradient’ among the independent
constitutive variables. An important feature of this theory, which is not present in
other thermoelasticity theories, is that this theory does not accomodate dissipation
of thermal energy. In the context of the linearized version of this theory, theorems
on uniqueness of solutions have been established in [8, 9]; boundary-initiated one-
dimensional waves in a half-space have been studied in [10, 11], plane harmonic
waves in an unbounded body and Rayleigh waves in a half-space have been studied
in [12, 13], and thermoelastic interactions in an unbounded body due to a line
source have been studied in [14].

The purpose of the present paper is to study axisymmetric thermoelastic inter-
actions in a homogeneous and isotropic unbounded thermoelastic solid containing
a cylindrical cavity due to a uniform step in the radial stress or temperature applied
to the boundary of the cavity by using the linear theory of thermoelasticity without
energy dissipation (TEWOED) developed in [7]. We solve the governing equations
by employing the Laplace transform technique. Since the second sound effects are
short-lived [4], we perform the inverse Laplace transform operation for small time
and derive expressions for displacement, temperature and radial and hoop stress
fields. We find that the thermoelastic interactions consist of two coupled waves
propagating with finite speeds, of which one is predominantly elastic and the other
predominantly thermal, and that neither of these waves experiences attenuation.
We further find that the displacement is continuous but the temperature and stresses
are discontinuous at both the wavefronts. At the end of the paper we present some
numerical results applicable to a copper-like material.

The counterparts of our problem in the contexts of CTE, ETE and TRDTE have
been considered by Chattopadhyay et al. [15], Sharma [16] and Chandrasekharaiah
and Keshavan [17] respectively. It must, however, be mentioned that in these
works, transversely isotropic thermoelastic bodies have been considered and that
in particular in [17] a unified system of equations that includes the governing
equations of CTE, ETE and TRDTE as special cases have been employed. At the
appropriate stages in our discussion here, we make a comparison of our results
with those obtained in [15–17].

2. Basic Equations

According to TEWOED, the field equations for a homogeneous and isotropic
thermoelastic body, in the absence of body forces and heat sources, are as follows
[7]:

�r2u + (�+ �)r div u� r� = ��u; (2.1)

c�� + T0 div �u = k�r2�: (2.2)

In these equations, u is the displacement vector, � is the temperature-change
above the uniform reference temperature T0; � is the mass density, c is the specific
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AXISYMMETRIC THERMOELASTIC INTERACTIONS 21

heat, � and � are Lame’s constants,  = (3�+ 2�)��; �� being the coefficient of
volume expansion, and k� is a material constant characteristic of the theory.

The stress tensor T associated with u and � is given by the following constitutive
relation [7]:

T = �(div u)I + �(ru +ruT )� �I: (2.3)

In all the above equations, the direct vector/tensor notation [18] is employed;
also, an over-dot denotes the partial derivative with respect to the time variable t.
Some of the symbols and the notation employed here are slightly different from
those employed in [7].

In the present analysis we are concerned with an unbounded body having a
cylindrical cavity. We choose the z-axis along the axis of the cavity and consider
thermoelastic interactions which are symmetrical about the axis. Then the corre-
sponding displacement vector has only the radial component u = u(r; t), where r
is the distance measured from the z-axis and the stress tensor has only two compo-
nents �r and �' which are normal stresses in the radial and transverse directions
respectively. In this case, Equations (2.1) and (2.2) yield the following governing
equations for u and �:

(�+ 2�)
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@2u

@r2 +
@

@r

�
u

r
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@r
= �
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; (2.4)
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�
: (2.5)

Also, the relation (2.3) yields the following expressions for �r and �':

�r = (�+ 2�)
@u

@r
+ �

u

r
� �; (2.6)

�' = �
@u

@r
+ (�+ 2�)

u

r
� �: (2.7)

It is convenient to have the Equations (2.4) and (2.5) and expressions (2.6) and
(2.7) rewritten in non-dimensional form. To this end, we consider the following
transformations:

r0 =
1
l
r; t0 =

v

l
t; u0 =

1
l

�+ 2�
T0

u;

�0 =
�

T0
; �0r =

1
T0

�r; �0' =
1
T0

�': (2.8)
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Here, l is a standard length and v is a standard speed. Introducing (2.8) into
(2.4)–(2.7) and suppressing primes, we obtain the following equations which are
in non-dimensional form:

C2
P

"
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@r2 +
1
r
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@r
� u

r2

#
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; (2.9)
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+ �

u

r
� �; (2.11)

�' = �
@u

@r
+
u

r
� �: (2.12)

Here,

C2
P =

�+ 2�
�v2 ; C2

S =
�

�v2 ; C2
T =

k�

cv2 ;

" =
2�0

c(�+ 2�)
; � =

 
1� 2C2

S

C2
P

!
:

(2.13)

We note that CP and CS respectively represent the non-dimensional speeds of
purely elastic dilatational and shear waves, CT is the non-dimensional speed of
purely thermal waves and " is the usual thermoelastic coupling parameter. Further,
0 < � < 1.

Let a denote the (dimensionless) radius of the cavity. Then, if the body is
initially held at rest in an undeformed state at the reference temperature and zero
temperature-rate, the following initial conditions hold:

u =
@u

@t
= � =

@�

@t
= 0 at t = 0 for r > a: (2.14)

If the thermoelastic interactions are caused by a uniform step in the radial stress
applied to the boundary of the cavity which is held at the reference temperature,
then the following boundary conditions hold:

�r = ��0H(t); � = 0 for r = a and t > 0:

Here, �0 is a positive constant and H(t) is the Heaviside unit step function. On
using (2.11), these conditions become

@u

@r
+ �

u

r
= ��0H(t) for r = a and t > 0: (2.15)
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AXISYMMETRIC THERMOELASTIC INTERACTIONS 23

Alternatively, if the thermoelastic interactions are caused by a uniform step in
temperature applied to the boundary of the cavity which is stress-free, then the
following boundary conditions hold:

� = �0H(t); �r = 0 for r = a and t > 0:

Here, �0 is a positive constant. On using (2.11), these conditions become

@u

@r
+ �

u

r
= �0H(t) for r = a and t > 0: (2.16)

Equations (2.9) and (2.10) serve as a system of governing differential equations,
(2.14) serve as a set of initial conditions and (2.15) or (2.16) (as the case may
be) serves as a boundary condition for the determination of the non-dimensional
displacement u and non-dimensional temperature �. Once u and � are determined,
then �r and �' can be computed with the aid of expressions (2.11) and (2.12).

We note that the boundary conditions (2.15) and (2.16) are strikingly similar.
Accordingly, the two cases corresponding to (2.15) and (2.16) need not be studied
separately; if we replace ��0 by �0 in the analysis corresponding to the condition
(2.15), we obtain the analysis that corresponds to the condition (2.16). In what fol-
lows, we therefore confine ourselves to the analysis corresponding to the condition
(2.15).

3. Transform Solution

Taking the Laplace transform of Equations (2.9) and (2.10) and expressions (2.11)
and (2.12) under the homogeneous initial conditions (2.14), we obtain the following
equations:

[C2
PDD1 � s2]�u = C2

PD
��; (3.1)

[C2
TD1D � s2]�� = "s2D1�u; (3.2)

��r = D�u+ �
�u

r
� ��; (3.3)

��' = �D�u+
�u

r
� ��: (3.4)

Here, an over bar denotes the Laplace transform of the corresponding function,
s is the transform parameter, and

D =
d
dr
; D1 =

d
dr

+
1
r
:

The coupled Equations (3.1) and (3.2) can be decoupled (by eliminating �u or ��)
and put in the following form:

(DD1 �m2
1)(DD1 �m2

2)�u = 0; (3.5)
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(D1D �m2
1)(D1D �m2

2)
�� = 0: (3.6)

Here, m1 and m2 satisfy the biquadratic equation

C2
PC

2
Tm

4 � s2fC2
T + (1 + ")C2

P gm2 + s4 = 0: (3.7)

Solving Equations (3.5) and (3.6) under the regularity conditions that �u; �� ! 0 as
r!1, we obtain the following expressions:

�u = A1K1(m1r) +A2K1(m2r); (3.8)

�� = B1K0(m1r) +B2K0(m2r): (3.9)

Here, K1 and K0 are modified Bessel functions of the second kind and of first and
zeroth order respectively, andA1; A2; B1; B2 are arbitrary constants. Also, m1 and
m2 are taken to have positive real parts.

By solving Equation (3.7), we find that

m� =
s

V�
; (3.10)

where

V� =
1p
2
[fC2

T + (1 + ")C2
P g+ (�1)�+1�]1=2 (3.11)

with

� = [fC2
T � (1 + ")C2

P g2 + 4"C2
PC

2
T ]

1=2 (3.12)

= V 2
1 � V 2

2 : (3.13)

Here and in the expressions that follow, the index � takes values 1, 2.
Since �u and �� are coupled together, A� and B� cannot be independent. By

substituting for �u and �� from (3.8) and (3.9) in Equation (3.2) and equating the
corresponding coefficients with the aid of the identities

d
dz
fK0(z)g = �K1(z);

d
dz
fK1(z)g = �1

z
K1(z) �K0(z);

we find that

B� =
"s2m�

s2 � C2
Tm

2
�

A�: (3.14)
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Taking the Laplace transform of the boundary condition (2.15) and substituting
for �u from (3.8) in the resulting expression, we obtain the following expression for
A�:

A� = (�1)�
(s2 � C2

Tm
2
�)

s�
�0m3��K0(m3��a): (3.15)

Here,

� = [m1K0(m1a)(s
2 � C2

Tm
2
2)]

�
(1� �)

a
K1(m2a) +m2K0(m2a)

�

�[m2K0(m2a)(s
2 � C2

Tm
2
1)]

�
�
(1� �)

a
K1(m1a) +m1K0(m1a)

�
: (3.16)

Substituting for A� from (3.15) and for B� from (3.14) in (3.8) and (3.9), we
obtain explicit expressions for �u and ��. Taking the inverse Laplace transform of
these resulting expressions, we obtain u and �. However, determining u and � for
arbitrary t is a tedious task. Since the second-sound effects are short lived [4], it
may be sufficient to obtain and analyse the solutions for small t. This is done by
taking s to be large.

We note that when s is large, m�, then given by (3.10), are also large. Hence in
our computations we set

K0(m�r) � K1(m�r) =

�
�

2m�r

�1=2

e�m�r: (3.17)

4. Derivation of the Solution

With the aid of (3.10) and (3.17), expressions (3.15) and (3.16) simplify to the
following form:

A� =

�
2m�a

�

�1=2 �C�
s2 +

E�

s3

�
e(s=V�)a: (4.1)

Here,

C� = �0

 
1� C2

T

V 2
�

!
V 3
�V

2
3��

C2
T (V

2
� � V 2

3��)
;

E� = �0
1� �

a

 
1� C2

T

V 2
�

!
(V�V3�� + C2

T )

(C2
T )

2(V3�� � V�)

V 4
�V

3
3��

(V� + V3��)2 : (4.2)
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Substituting for A� from (4.1) and for B� from (3.14) in expressions (3.8)
and (3.9), we obtain �u and ��. Substituting the resulting expressions into (3.3) and
(3.4), we get ��r and ��'. Taking the inverse Laplace transforms of the expressions
for �u; ��; ��r and ��' so obtained, we obtain (after some lengthy calculations) the
following solutions for u; �; �r and �', valid for small values of t:

u(r; t) =

"�
t� R

V1

�
C1 +

1
2

�
t� R

V1

�2

E1

#
H1 +

��
t� R

V2

�
C2

+
1
2

�
t� R

V2

�2

E2

#
H2; (4.3)

�(r; t) =

�
F1 +

�
t� R

V1

�
G1

�
H1 +

�
F2 +

�
t� R

V2

�
G2

�
H2; (4.4)

�r(r; t) = �
"
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�
t� R
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�
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�
t� R
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#
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�
"

I2 +

�
t� R

V2

�
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�
t� R

V2

�2

M2

#
H2 (4.5)

�'(r; t) = �
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N1 +
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t� R
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�
P1 +

�
t� R

V1

�2
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#
H1

�
"
N2 +

�
t� R

V2

�
P2 +

�
t� R

V2

�2

Q2

#
H2: (4.6)

Here, R = r � a, and

F� =
�0"V

2
�V

2
3��

C2
T (V

2
� � V 2

3��)
;
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1� �
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(V�V3�� + C2
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(C2
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2(V3�� � V�)

V 3
�V

3
3��
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C�

V�
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1� �

r
C� +

E�

V�
+G�;
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1� �

2r
E�; N� = �

C�

V�
+ F�;
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E�
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� 1� �
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C� +G�; Q� = �(1� �)
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E�;
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a

r
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H
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t� R
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�
:

(4.7)
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From the solutions (4.3)–(4.6) we observe that each of u; �; �r, and �' is made
up of two parts and that each part corresponds to a wave propagating with a finite
speed, the speed of the wave corresponding to the first part being V1 and that
corresponding to the second part being V2. Using expressions (3.11)–(3.13), we
find that

(i) V1 > (CP ; CT ) > V2,
(ii) If CP > CT , then V1 > CP > CT > V2 and V1 ! CP ; V2 ! CT as "! 0,
(iii) If CT > CP , then V1 > CT > CP > V2 and V1 ! CT ; V2 ! CP as "! 0.

Accordingly, the interactions being considered consist of two coupled waves,
one following the other; the faster wave has its speed equal to V1 and the slower
wave has its speed equal to V2. If CP > CT , the faster wave is a predominantly
elastic wave (or the e-wave) and the slower is a predominantly thermal wave (or
the �-wave). On the other hand, if CT > CP , the faster wave is the �-wave and the
slower is the e-wave.

From the solutions (4.3)–(4.6), we observe that neither the e-wave nor the �-
wave experiences decay with the distance (attenuation). That this is not the case
in CTE, ETE and TRDTE is an interesting fact to record; in these theories, the
waves do experience attenuation [15–17]. The absence of attenuation is, evidently,
a characteristic feature of TEWOED. From (4.3)–(4.6), we also note that all of
u; �; �r and �' are identically zero for r > tV1; this means that, at a given instant
of time t� > 0, the points of the region r > a that are beyond the faster wavefront
r = V1t

� do not experience any disturbance. This observation verifies that, like
ETE and TRDTE, TEWOED is also a generalized thermoelasticity theory.

By direct inspection of the solutions (4.3)–(4.6), we find that u is continuous,
whereas �; �r and �' are discontinuous, at both the wavefronts. The discontinuities
in �; �r and �' are given as follows:

[�]� =

�
a

r

�1=2

F�;

[�r]� = �
�
a

r

�1=2

I�;

[�']� = �
�
a

r

�1=2

N�:

(4.8)

Here, [ ]� denotes the discontinuity of the function across the wavefront t = R=V�.
In view of expressions (4.7), we note that the discontinuities given by (4.8) are

all constants. This is not so in ETE and TRDTE; in these theories the discontinuities
decay exponentially with distance from the boundary [16, 17]. It is the absence
of attenuation in TEWOED that brings out this difference between TEWOED and
ETE and TRDTE.

The first expression in (4.8) exhibits another interesting phenomenon. This
expression and the expression for F� contained in (4.7) show that the temperature
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Table I. Discontinuities in temperature and
stresses at the wave fronts

�-wavefront e-wavefront

[�]1 = 0:000734 [�]2 = �0:000842
[�r]1 = �0:000773 [�r]2 = �0:952595
[�']1 = �0:000755 [�']2 = �0:497424

Figure 1. Variation of u with r at t = 0:1.

is discontinuous at both the wavefronts in spite of the fact that the boundary load
is purely mechanical in nature. This means that a discontinuous mechanical load
applied to the boundary does generate discontinuities in temperature. This phe-
nomenon is present in ETE as well [16] but is absent in TRDTE [17]; according to
TRDTE, the temperature is continuous when the applied load is purely mechanical
in nature [17]. A similar observation has been made in the half-space problem in
the context of TEWOED [10].
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Figure 2. Variation of � with r at t = 0:1.

5. Numerical Results

With the view of illustrating the theoretical results obtained in the preceding section,
we now present some numerical results. For this purpose, we choose a copper-like
material for which

C2
P = 1; C2

T =
1

0:05
; C2

S = 0:2387; " = 0:0168:

For this material, we haveCT > CP . As such, the faster wave happens to be the
�-wave and the slower wave the e-wave. By using expressions (3.11) and (3.12),
we find that the (dimensionless) speeds of these waves are V1 = 4:474113 and
V2 = 0:999558 respectively. By taking a = 1 and�0 = 1, we analyse the behaviour
ofu; �; �r and�' at (dimensionless) time t = 0:1. We find that at this instant of time,
the faster wavefront (�-wavefront) is positioned at r = r1 = 1 + tV1 = 1:447411
and the slower wavefront (e-wavefront) at r = r2 = 1+ tV2 = 1:099956. We have
computed the discontinuities in �; �r and �' at the wavefronts by using expressions
(4.7) and (4.8) and the results are summarized in Table I. We have also computed
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30 D.S. CHANDRASEKHARAIAH AND K.S. SRINATH

Figure 3. Variations of �r and �' with r at t = 0:1.

the values of u; �; �r and �' at t = 0:1 for r > 1, by using the solutions (4.3)–
(4.6). These values are displayed in Figures 1–3. From these Figures we find that
the displacement, temperature and stresses are all identically zero beyond the �-
wavefront. This indicates that the effects of disturbances are confined to the domain
1 6 r 6 tV1, as predicted by the theoretical results obtained earlier.

Figure 1 shows that u is continuous at all positions including those of the
wavefronts, as predicted by the theoretical results obtained in the preceding section.
We further note that u decreases steadily in the domain r > 1, the maximum value
of u, equal to 0.095201 (approx), occurring on the boundary of the cavity.

Figure 2 shows that � is negative between the boundary and the location of the
slower wavefront (e-wavefront) and is positive between the location of the slower
and faster wavefronts. In each of these intervals (viz, in 1 < r < 1:099956 and
1:099956 < r < 1:447411), � decreases steadily. The maximum value of �, equal
to 0.000811 (approx), occurs at the point that lies just beyond the slower front.

Figure 3 shows that both �r and �' are compressive throughout the domain of
influence (viz, 1 6 r 6 1:447411). Between the boundary of the cavity and the
location of the slower wavefront, the magnitude of �r decreases while that of �'
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AXISYMMETRIC THERMOELASTIC INTERACTIONS 31

increases. Between the locations of the slower and faster wavefronts the magnitudes
of both �r and �' decrease. Whereas j�rj is maximum, equal to 1, on the boundary
of the cavity, j�'j is maximum, equal to 0.498227 (approx), at the point that lies
just behind the slower wavefront. We further find that j�'j � 0:452209 on the
boundary of the cavity.

References

1. P. Chadwick, Thermoelasticity. The dynamic theory. In: I.N. Sneddon and R. Hill (eds), Progress
in Solid Mechanics, Vol. I. North Holland, Amsterdam (1960) pp. 265–328.

2. H.W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys.
Solids 15 (1967) 299–309.

3. A.E. Green and K.A. Lindsay, Thermoelasticity. J. Elasticity 2 (1972) 1–7.
4. D.S. Chandrasekharaiah, Thermoelasticity with second sound. A review. Appl. Mech. Rev. 39

(1986) 355–376.
5. D.D. Joseph and L. Preziosi, Heat waves. Rev. Mod. Phys 61 (1988) 41–73 and addendum 62

(1990) 375–391.
6. J. Ignaczak, Generalized thermoelasticity and its applications. In: R.B. Hetnarski (ed.), Thermal

Stresses III. Elsevier Science Publishers, Amsterdam (1989) pp. 280–353.
7. A.E. Green and P.M. Naghdi, Thermoelasticity without energy dissipation. J. Elasticity 31 (1993)

189–208.
8. D.S. Chandrasekharaiah, A uniqueness theorem in the theory of thermoelasticity without energy

dissipation. J. Thermal Stresses 19 (1996) 267–272.
9. D.S. Chandrasekharaiah, A note on the uniqueness of solution in the linear theory of thermoelas-

ticity without energy dissipation. J. Elasticity 43 (1996) 279–283.
10. D.S. Chandrasekharaiah, One-dimensional wave propagation in the linear theory of thermoelas-

ticity without energy dissipation. J. Thermal Stresses 19 (1996) 695–710.
11. D.S. Chandrasekharaiah and K.S. Srinath, One-dimensional waves in a thermoelastic half-space

without energy dissipation. Int. J. Engng. Sci 34 (1996) 1447–1455.
12. D.S. Chandrasekharaiah, Thermoelastic plane waves without energy dissipation. Mech. Res.

Comm. 23 (1996) 549–555.
13. D.S. Chandrasekharaiah, Thermoelastic Rayleigh waves without energy dissipation. Mech. Res.

Comm. 24 (1997) 93–101.
14. D.S. Chandrasekharaiah and K.S. Srinath, Thermoelastic interactions without energy dissipation

due to a line source. (submitted).
15. A. Chattopadhyay, A. Keshri, and S. Bose, A coupled thermoelastic problem for an infinite

aelotropic medium having a cylindrical hole. Indian J. Pure Appl. Math. 16 (1985) 807–823.
16. J.N. Sharma, Transient generalized thermoelastic waves in a transversely isotropic medium with

a cylindrical hole. Int. J. Engng. Sci. 25 (1987) 463–471.
17. D.S. Chandrasekharaiah and H.R. Keshavan, Axisymmetric thermoelastic interactions in an

unbounded body with cylindrical cavity. Acta Mech. 92 (1992) 61–76.
18. D.S. Chandrasekharaiah and L. Debnath, Continuum Mechanics, Chaps. 1–4. Academic Press,

New York (1994).

elas1260.tex; 13/06/1997; 14:49; v.7; p.13


