
J. Austral. Math. Soc. Ser. B 39(1998), 355-385

INTEGRATION OF TRIVARIATE POLYNOMIALS OVER LINEAR
POLYHEDRA IN EUCLIDEAN THREE-DIMENSIONAL SPACE

H. T. RATHOD1 and H. S. GOVINDA RAO

(Received 13 April 1995; revised 24 October 1995)

Abstract

This paper concerns with analytical integration of trivariate polynomials over linear poly-
hedra in Euclidean three-dimensional space. The volume integration of trivariate polyno-
mials over linear polyhedra is computed as sum of surface integrals in R3 on application
of the well known Gauss's divergence theorem and by using triangulation of the linear
polyhedral boundary. The surface integrals in R3 over an arbitrary triangle are connected
to surface integrals of bivariate polynomials in R2. The surface integrals in R2 over a
simple polygon or over an arbitrary triangle are computed by two different approaches.
The first algorithm is obtained by transforming the surface integrals in R2 into a sum of line
integrals in a one-parameter space, while the second algorithm is obtained by transforming
the surface integrals in R2 over an arbitrary triangle into a parametric double integral over
a unit triangle. It is shown that the volume integration of trivariate polynomials over linear
polyhedra can be obtained as a sum of surface integrals of bivariate polynomials in R2. The
computation of surface integrals is proposed in the beginning of this paper and these are
contained in Lemmas 1-6. These algorithms (Lemmas 1-6) and the theorem on volume
integration are then followed by an example for which the detailed computational scheme
has been explained. The symbolic integration formulas presented in this paper may lead to
an easy and systematic incorporation of global properties of solid objects, for example, the
volume, centre of mass, moments of inertia etc., required in engineering design processes.

1. Introduction

The computation of area, volume, centre of mass, moment of inertia and other geomet-
rical properties of rigid homogeneous solids are of central interest in a large number
of engineering applications, in CAD/CAE/CAM applications, in geometric modelling
and as well as in robotics. Computation of such physical quantities is defined by triple
integrals over domains of three-dimensional Euclidean space. Quadrature formulas
for multiple integrals have always been of great interest in computer applications.
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A good overview of various methods for evaluating volume (triple) integrals in
this context is given by Lee and Requicha [4]. Lee and Requicha observe that most
computational studies in multiple integration often deal with calculations over very
simple domains, such as a cube or a sphere, while the integrating function is very
complicated, on the contrary in most of the engineering applications the converse
problem usually arises. In such problems the integration domain may have a non-
convex shape and the function inside the integral sign is a trivariate polynomial. Lee
and Requicha [5] outlined a family of approximate algorithms for computing inertial
properties of solids. Such algorithms are based on a representation conversion from
CSG to octree, via recursive subdivision. With a different approach based on the
concept of finite elements, O'Leary [7] developed integration formulas based on a
quasi disjoint decomposition of the solid in volume elements of simple predefined
shape. Wilson and Farrior [9] gave a large set of formulas for the computation of the
main geometrical and inertial properties of planar polygons and of rotational solids.
Timmer and Stern [8] discussed a theoretical approach to the evaluation of volume
integrals by transforming the volume integral to a surface integral over the boundary
of the integration domain. Lien and Kajiya [6] presented an outline of a closed formula
of volume integration for a tetrahedron and suggested that volume integration for a
linear polyhedron can be obtained by decomposing it into a set of solid tetrahedrons.
Cattani and Paoluzzi [2, 3] gave a symbolic solution to both surface and volume
integration of trivariate polynomials in K3 by using a triangulation of the solid based
on the concept proposed by Timmer and Stern [8]. In a recent paper, Bernardini [1]
presented the evaluation of integrals over n-dimensional linear polyhedra which are
based on methods proposed earlier by Timmer and Stern [8] and Lien and Kajiya [6].

In the present paper, we have developed closed-form integration formulas which
mainly follow the concepts proposed by Timmer and Stern [8] and Cattani and
Paoluzzi [2, 3]. In the derivation of these formulas, our approach differs from that of
Cattani and Paoluzzi in that we have transformed the surface integral in three-space
to a double integral over a polygon in the jcv-plane via the use of the equation of a
plane spanning the three co-ordinates of a triangle in three-space. The double integral
in plane over a polygon can then be computed by either transforming it into unit
triangles in two-parameter spaces or by means of line integrals along the edges of
the two-dimensional polygons. We have also addressed these problems, with an aim
to give more efficient algorithms than previous work of Cattani and Paoluzzi [2, 3].
In these derivations, we have made reference to the well known Gauss's Divergence
theorem, Taylor series expansion and Leibnitz theorem on differentiation to produce
the present form of analytical integration formulas. It is very clear from these for-
mulas that they do not duplicate the integration over a unit triangle or over the edges
of an arbitrary triangle which is in contrast to the previous studies [2, 3] and thus
save in terms of arithmetic operations. The theorem connecting a volume integral to
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a surface integral in three-space and in turn further connecting a surface integral in
three-space to a double integral in two-space is of prime importance and leads to the
closed-form integration formulas presented in Section 3 of this paper. Two different
algorithms proposed in this paper to compute the volume integral in three-space is
evident as a natural consequence of the Lemmas 1-5 and Lemma 6 on computing
the surface (double) integrals in two-space which are discussed in Section 2. These
explicit integration formulas are followed by an application example in Section 4 of
this paper for which we have explained the detailed computational scheme using the
two algorithms proposed in Sections 2 and 3.

2. Surface integration

In this section, we first establish two preliminary results which give closed-form
analytical formulas for surface integration over a plane polygon in the xy-plane. Our
aim is then to derive a closed formula for surface integration over a linear polyhedral
surface in K3.

2.1. Let n be a simple polygon in the x_y-plane. We are actually interested in
evaluating the integrals of the following kind, which we call the structure product
over a linear two-polyhedron, that is, over the simple polygon in the .ry-plane (see
Fig. 1).

N - 1

N

We define

FIGURE 1. A simple polygon in the .ry-plane.

If (I, m, h) = ff x'y'Qx + my + h)"+l dxdy, (1)

where, /, m, h, are arbitrary real constants and a, 0, y are either zero or positive
integers.
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LEMMA 1. The structure product Il°Py(0, m, h) over a simple polygon n with N
oriented edges /,-,,-+1 (i = 1,2,.. . , N) each with end points (x,, y,) and (xi+l, yi+i)
in the xy-plane is expressible as

/ / ;• ' •"(() , m,h)= if xay\my + hY+1 dxdy = £ !L+>> (2)
JJn , = 1

where

(i)

/£-'+1=0; wheny,=yi+l, (3)

(ii)

a+P+y+2 . , .,
Aii + \\J) , , , ,.s

w y ' ^ y i + u Xi *Xi+l ( 4 )

and

Fi.i+\(& + 1 — y'i, yi)G,,,+i(/3 — j 2 , ji)
jl=0jl=O

x H(y + 1 - j + h + J2, j ~ j \ ~ ji), (5)

(iii)

I'L+1 = yu+\—! 52 ~ ~ when y, / yi+l, x, ^ xi+i (6)

and

j

A-/.f+i0') = 5 2 G ' - ' + i ( ^ ~ ^ ' • j i ) H u + i ( y +l - J + j>> J - Ji) (?)
; ,=0

xu+i = xi+i - Xi, yu+i = yi+] - y,, xiJ+i = zi+\ - Zi- (8)
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PROOF. We can write

II^y(O, m, h) = ff xay\my + h)y+l dxdy

— 11 — { f dxdy
J A d* [ (« + 1) J

= jf(VF)dxdy, (9)

w h e r e F =

By applying the divergence theorem in two dimensions it follows that

, m, h) = [fx'yl'imy + hy+l dxdy =( ^ + l / (
J Jit Jdn (.a +

dy

Let the boundary of the polygon dn consist of /V-line segments /,,,+i
(i = 1,2,... , N) each with end points at (*,, >,-) and (JC,-+1 , y,+]). It is clear that
(X|, yt) = (xN, yN) for the simple polygon of Figure 1 the parametric equations of the
line segments lu+i may be taken as

x = x(t) = Xj +xu+]t, y = y(t) = yt + yu+\t,

Z = z(t) = Zi+ZU+\t, 0 < t < 1,

where

xu+i = xi+\ - Xj, yu+l — yi+] - yi, z-, = xmyt + h, zu+\ = Zi+\ - Zi, (13)

Using (11), (12) and (13), we can write

(14)

w h e r e i r = r u(tMOw(t)

Jlu» a + l

= 7 ^ 7 / u(t)v(t)w(t)dt (16)
(a + 1) Jo

and u(t)=xa+l(t), w(0 = / ( 0 , w(t) = zy+\t). (17)
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Using a Taylor series expansion of a function of a single variable t about t = 0 we
can write

=u(tMt)w(t), (18)

where

Using Leibnitz's theorem on differentiation, it can be shown that

y y uU>\0)vW(0)wu-J'

and from (17) and (12), it can be further shown that

17 < - L I •

: ^ r 1 = Hu+l

1J ~ j \ ~ h
ji+ ji, j - j \ - h),

where

i

\a

P-h yh

u+\ (y j 2 , j - jt - h) =
y+l — j—yi-h j-j,-h

( 2 0 )

(21)

Y + 1 - j + h + h I j ~ h ~ J:

Substituting from (21) into (20), we find

(23)

where

j j-j,

j,=0 J2=O
- j \ , j\)Gu+l(P - h, h)

\-j + ji+ h, j - h - h)- (24)
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Integrating (18) with respect to t from 0 to 1, we get

I a+^+y+2 fU)(Q) 1

u(t)v(t)w(t)dt= 22 , — (25)

a+P+y+2 . , ...

= £ ^ ; . (26)

Finally from (16) and (26), we see that
a+p+y+2 . , ..

W/) (2?)

Clearly (27) is valid for all values of x,, xi+u _y, and yi+u but it assumes a simple value
fory,- = yi+l, viz.,

/ [ ' + l = 0, when yt = yi+l. (28)

This proves the results of (3) and (4). Proceeding in a similar manner, the results
(6) and (7) can be easily proved.

The proofs of Lemmas (2-5) are similar to that of Lemma 1 and hence we include
only the statements of the Lemmas.

LEMMA 2. The structure product II"^Y{1, 0, h) over a simple polygon it with N-
oriented edges /,,)+1 (/ = 1,2,... , N) each with end points (*,, _y,) and (xi+i, yi+l)
in the xy-plane is expressible as

ff A •• ,
II"liY(l,O,h)= / / xay^{lx + h)Y+xdxdy = - 2_,/[ , (29)

J J" ;=l

where

0)

/ [ '+ '= 0, whenx,=x,+l, (30)
(ii)

x a+p+y+2

I'L'+ = ~7T~ y . M/.i+i(y)/(y + 1) when Xj ^ xi+l, yt ^ _y,+i,
(P + D ,=o ( 3 1 )

and
j i-n

>l=0 J2=0

l-j+ jt + j 2 , j - 7, - j2), (32)



362 H. T. Rathod and H. S. Govinda Rao [8]

(iii)

0+1 a+y+i

I'L+1 = xi.i+ij^i—7T YI ^'•'•+>0')/0' + i) wneny> = y>+i,Xi # x i+i,
(P + l) ;=o ( 3 3 )

and

10) = -j + j \ , j ~ ji), (34)
yi=0

with

xrxn I (r + s \
^•,,+i(r, 5) = ' l l + | r +s = f ^ ) « , + , .

u + i (r, 5) =

Hu+](r,s) =

:—I r + s =
LLLL ' v r

(35)

|r + 5 =

= xi+\ — xi' yi,i+\ = yi+i ~ yii Zi = lxt + h, Zi.i + \ = Zi + \ — Zi-

(36)

LEMMA 3. The structure product I l"Py(l, m, 0) {where I / 0, m •£ 0 are arbitrary
real constants and a, ft, y + 1 are either zero or positive integers) over a simple
polygon with N-oriented edges lu+[ (i — \,2, ... , N) each with end points at
(Xj, yi) and (xi+\, yi+i) in the xy-plane, is expressible as

m
f [ N

,0)= / / xayfi(lx + myY+l dxdy = J^ IL (3V)

where

(i)

(ii)

/ [ ' + l = 0, when y, = yi+u (38)

7=0

u Xj = xi+i, (39)
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= yiJ+l <D0.y
(y+n/2

Z(y)

when

and

(iv)

when

with

P=\

Bu+i(2p - 1, 2p)H'l+'(a

yi+\, ,y + 1 =0,2,4,6, ...

0, y + 1 # 2 , 4 , 6 , . . .

1, y + 1 = 2 , 4 , 6 , . . .

0, y + 1 = 0,

y/2

p=0

(40)

(41)

l)Hu+l(a

= 1, 3, 5, 7 , . . . (42)

* ; v + i _ / ( / , m) = ' — = I ' I —
\j \«+l-j (a + l-j) \ J J ( «

/ o r r, 5 = 0, 1 , 2 , . . .

Fll+\r,s)= xr(t)ys(t)dt,
Jo

21+i or 21
2 2 (

/•'
Hii+I{r,s)= txr(t)ys(t)dt,

Jo

(44)

X(t) =Xi+ Xu+lt,

y(t) = yi + yu+\t, yu+\ =
(45)
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LEMMA 4. The structure product ll°fiY{l, m, h) {where I ^ 0, m ^ 0 and h ^ 0 are
arbitrary real constants and a, p\ y are either zero or positive integers) over a simple
polygon n with N oriented edges /,,,+i (/ = 1, 2, 3 , . . . , A0 each with end points at
(xi, yi) and {xl+\, 3>,+i) in the xy-plane is expressible as

f f
I^y(l,m,h)= / / xa

J Jn

where

(i)

(ii)

(iii)

with

I'L'+i = 0, whenyi = yi+u

when yi ^ yi+u xt = xi+l,

(46)

(47)

j - r )

(48)

(49)

PlH(a (50)

P=I

;(2/7 - 1, 2p)F'-'+1(or + 2p,fi + j - 2p)

j ~ 2p)

for j = 2,4, 6, . . . , (51)
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O-D/2

and

+ Bj(2p, 2p + \)Hii+\a + 2p + l,p + j - 2 p - 1),

for j = 3 , 5 , 7 , . . . (52)

ii+](r,s) = f xr(t)ys(t)dt, Hii+I(r,s)= I txr{t)ys{t)dt,
Jo Jo

yi + yij+it, (53)

Po = <&o,o(l,m,h) +Xj<t>i,0(l,m,h) + yt<i>o,\U, m, h),
(54)

^i = <&\,o(l,m,h)xu+i +<t>o.\(l,m,h)yu+u

Aj(r, s) = yi4>rj-r(l, m, h) + Xj&sJ-s(l, m, h),

Bj(r, s) = yLi+i<t>rJ-r(l, m, h) + xu+l<t>sJ-s(l, m, h) (55)

for j = 2, 3 , 4 , . . . ,y + 1,

I Y + 1

[I_\j -r \y + l - j ( g + r + 1) (56)

0 < j < y + 1, 0 < r < j .

LEMMA 5. The integrals defined as

Fii+i(r,s)= I xr(t)ys(t)dt Hu+i(r,s) = I txr(t)y\t)dt, (57)
Jo Jo

where

x{t) = x; + xu+]t, yit) = y/ + yu+\t,
xu+\ = xi+\ —Xi, y,.i+\ = yi+\ — y,-, (58)

can be expressed as

' \k=0
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*=0 + \k=o )

where

i.i+\ _ / r | r-J A £1.1 + 1 —( S \ *-(*-*•) k-k /gQx

2.2. Consider the integral of (1) discussed in Lemmas 1, 2, 3 and 4, that is,

I If (I, m, h) = ff xaye(lx + my + h)y+i dxdy,

where n is the simple polygon in the *_y-plane as described in Figure 1, /, m, h are
arbitrary constants and a, f}, y + I are either zero or positive integers. We can now
think of n as a region in K2 that may be decomposed into a set T of triangles such that
any pair of triangles T*fk (a triangle in the xy-plane with vertices at Qc,, y,), (XJ, yj)
and (xk, yk)) and x*yyk, do not intersect. The integral over the polygon n can be split
into integrals over the elements of a triangulation of n. Thus we may write

IIf (I, m, h) = ft xayp(lx + my + h)y+i dxdy = ^ 7 /"f (*• m' h^ <61)

where
U"J/{1, m, h) = ff xayp(lx + my + h)y+l dxdy.

LEMMA 6. The structure product II"^'r(l, m, h) over a triangle T*Jk in the xy-plane
with vertices at {xt, y(), {Xj, yj) and (xk, yk) can be expressed as

ir^(l,m,h)=2Auk X, T^TY' (62)

where

Sn = SP\P\n-p [k(p,n-p) + X(n - p, p)}

S" = X I \p \n~ P {x(P>n - P) + Hn - P,P)\ for n= 1 , 3 , 5 . . . ,
p=0
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So = MO, 0),
p p-pi q i-9i

.«> = £ £ E £
p,=0 P2=0 q,=Oq2=O

p + q=n, Pi = p-Pi-P2, 4 3 = 4 - 4 i -

F(pi,q\) =\a

G(p2, qi) = H_

I Pi I? , lot - (pi

P2 142 \P-(.P2 + >

i , 4 3 ) = | y + l
[P3 Y + 1 - (P3 + 43)

i,;/t = area of triangle with vertices at (*,, >>,•), (jr,-, y^) a«d (A: ,̂ yt)

1 1 ! ! l

= ^(axby-bxay) = - (63)

PROOF. The parametric vectorial equation of the oriented triangle x*Jk in the *.y-plane
with vertices at (JC,-, >,-), (JC,-, yj) and (xt, j t ) is

p = p, +au + bv, 0 < M, u < 1, u + v < 1, (64)

where

p = (*,>>), a = p ; -p , - , b = p*-p,-, a = (ax,xy), b = (Jbx,by). (65)

If we now consider the mapping (see Figure 2) between the xy-plane and the
Mi>-plane defined in (65), we have for the area element

dxdy = \J\dudv, (66a)
dx dy dx dydx dy dx dy

171 = det y = -— - _ . — = axby - bxay = 2A,-,M (66b)
du dv dv du= 2 x area of triangle x^k, (66c)

where J is the Jacobian of the transformation.
If we change the coordinates according to (64) and express the area element using

(66) we obtain
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V

(0,1)

[14]

u + v = 1

(0,0) (0,0) (1.0)

FIGURE 2. The mapping between an oriented triangle in the xy-plane and the unit triangle in the
MU-plane.

= ff xa
/ ( / * + my + h)y+l dxdy

= ff[x, + axu + bxvY"[y, + avu + byvf[n + azu + bzv]y+> (2Aijk)dudv,
JJf (67)

where

z(u, v) = lx(u, v) +my(u, v) + h = z\+ azu + bzv,

Zj = IXJ + myj + h, Zk = lxk + myk + h (68)

and f is the unit triangle spanning the vertices (0,0), (1, 0) and (0, 1) in the u w-plane.
We can now rewrite (67) as

where

I"£r(l, m, h) = ff f(u, v)(2Aijk)dudv,

/(«, v) = X(u, v)Y(u, v)Z(u, v),

X(u,v) = (.x, +axu + bxv)a,

Y(u,v) = (yi +ayu + byv)fi,

Z(u,v) = {Zi+azu+bzv)y+].

(69)

(70)

We use Taylor's theorem to expand each of the functions f(u,v), X(u,v), Y(u,v)
and Z(u,v) in powers of u and v so that we may write

(71)
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We now apply the binomial theorem to expand (71) to obtain

369

J 2 J 2 { durdvs )
;=o r=a LULL V ou av /(o,o)
a j arbsxa~'

X J L L u V (where 5 = j - r).
J

(72)

In a similar manner, we can derive

0 j arhsvP~J

Y(u, V) = fa •

a
rhs7?+x~'

a+p+y+l n

( 7 4 )

( 7 5 )

(0.0)

where q = n — p.
We determine I d"(iu'v}),. „, by using Leibnitz's theorem on differentiation. We

I duPdav^ 3 (0,0) J °

have
dpf(u,v)

p / \ i api v
^—i I P \ \ & "•

r—\ I p\ dp'X(i4

P,=o\P>J duP

^~^ ^ ~ ^ 1 P i I P ?
p , = 0 pi=0 \ r l \ r ±

\p-

j

.2=0

Pi

idP-P'[Y(u,v)Z(u,

(P- P\\ 9P2Y(u,
V pi ) duP*

dp'X(u,v)S

— P2 duPl

v)])

i"2y(i.«, v) dp-»

*,v)

UP-PI-,

u, v)
Pl

(76)

Differentiating of (76) q times with respect to v and using Leibnitz's theorem we
obtain

that is,

<0.0)
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p p-P\

^~' ^"^ ' "• ' Pi I /?3 ^~^ ^~^

'— i (77)
(0,0) L 3« f t 3w* J(o.o)

' p-p' I ^ ^ 1 ^d"'+<"X(u,v)-\

3«"9v" J(o.o)

where

i i , i /HQ\

P\ ~r Pi ~r P3 = P> q\ + qi + q3 ^ ?• ( 'o)

We also have from (72), (73) and (74) that

<7i) (say)a _
9M"1

{u,v)^ / / x

3w?' J ( 0 0 ) / VI 1—/

= axt> x, ( 7 9 )

— I Pi ig, a - (/>i + ^ i )

:. qi)

(80)
| Pi \qi

= y
•\P3

From (77) - (81), we can write

P P-Pi 1 <?-<?

= E E E E F ^ " 9i)G(P2, qi)H(p3, q3).
p,=0 p2=0 q,=0 q2=0 (82)

Finally using (75) and (82), we can write

/ ( « , u ) = J ] £]X(/>, <?)«'„«, q = n - p . (83)
n=0 p=0
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Substituting for f(u,v) from (83) into (69) we obtain

UaJt
Y{l, m, h) = 2 Ayt ff f(u, v) dudv

= 2Ayt J

371

a+p+y+l n

0 n=0

a+p+y+\ Sn

n=0 \n + 2 '

where

Sn = ,n- p).

Clearly

So = A. (0,0).

We now determine a simple expression for Sn (n = 1,2,3,... ,a

(i) Let n = 2, 4, 6 Then from (85)

(84)

(85)

(86)

p=0

f
« - P)\P \n ~ P

\n-p
p=0

^ 1̂  X ( ^ ) . (87)

(ii) Let-n = 1, 3, 5, 7 Then from (85)

p=0

(¥)
= Yl I P I n ~

0

n ~

- p, p)\. (88)

The results obtained in (84) through (88) prove Lemma 6.

3. Volume integration

Let V be a three-dimensional polyhedron bounded by a polyhedral surface dV.
Then the volume integral of a scalar function / (p) = x"y^zY (a, fi, y die either zero
or positive integers) can be easily derived by using Gauss's divergence theorem.
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THEOREM A. A structure product

IIIa/y = III x°yfizydV (89)

over a linear polyhedron V is a polynomial combination of structure products of
suitable order over a triangulation of the polyhedral boundary 3 V and it is expressible
as

Ul?'r = £ TTTn if xOyV+lk •ndT m

TiJkeT W "*" > J J*at

= J2 —^j- fj x°yp(lx + my + h)y+] K dxdy, (91)
where

(i) T is a triangulation of the polyhedral surface d V,
(ii) Tijii £ T is a linear triangle in the three-dimensional space with vertices at

(Xj, yi ,Zi), (xj, yj, Zj); and (x^, y^, Zk), n is the outward unit normal vector to r,yi and
k is the unit normal vector along the z-axis,

(iii) z = lx + my + h, (I, m, h are arbitrary constants) is the equation of the
plane spanning the three vertices (JC,-, yt, z,), (JC,-, yj, Zj) and (xk, yk, Zk) of a linear
triangle rijk € T,

(iv) xxjk is a projection of a linear triangle xijk in three-dimensional space onto
the xy-plane with vertices at (JC,, y,), (xj, yj) and (xk, yk),

(v) K = 0, +1 , — 1, depends on the orientation of the linear triangle xijk in
three-dimensional space.

PROOF. Let V be a three-dimensional polyhedron bounded by a polyhedral surface.
Let F = (0, 0, xayfizy+l /(y + 1)) be a vector field in three-dimension space. Then
xay^zY = V • F and if we assume regularity of the integration domain and continuity
of the integrand, we have from Gauss's divergence theorem that

xay0zy dxdydz = 11 Ia/y = I I I V • Fdxdydz = 1 1 F n d S

If x"yfizr+lk-ndS (92)
J JdV

V

1

J2 • ndr. (93)

The results of (92) and (93) follow from the fact that Fx = 0, Fy = 0 which gives a
null contribution to the scalar product inside the integral sign. This establishes (90).
We now proceed to prove (91).
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The equation of the plane for the linear triangle ri;* spanning the vertices {(*,, yt, z,),

(•*/> )>j, Zj), (xk, yk, zk)} is given by

(x - Xi)Jijk{y, z) + (y- yi)Jijk(z, x) + (z - Zi)Jijk(x, y) = 0, (94)

where

Judy, z) = (yj - yi)(zk - Zi) - {Zj - z{){yk ->>,),

JijkiZ, X) = (Zj - Zi){xk - Xj) - (Xj - Xj){zk - Zi),

Jijkix, y) = (Xj - xt)(yk - yt) - (yj - yi)(xk - xt). (95)

CASE 1. If JlJk(x, y) ^ 0, Jijk(y, z) ^ 0, Jijk(z, x) # 0, we can write (94) as

z = lx + my + h, (96)

where

/ = -Jijkiy, z)/Jijk(x, y), m = -JiJk(z, x)/Jijk{x, y),

h = {XiJijk(y, z) + yiJijk(z, x) + ZiJijk(x, y)}/Jijk(x, y). (97)

Let us now analyse the surface integral

UI«*-y= ff xayf>zy+]k-ndz. (98)

Using definition (93) as

we know from the theory of surface integrals that if z = f(x, y) is the equation of the
surface then we can write

( 1 0 0 )

Thus from (98) and (99), we find that

k-ndz = ±dxdy, (102)



374 H. T. Rathod and H. S. Govinda Rao [20]

and from (96), we also have that

z = f{x,y) = lx + my + h. (103)

Using (102) and (103) we can write (98) as

III'** = If xayt>zY+x'k-ndT = ± II xayp{lx+my+h)Y+i dxdy.
JJivK JJ*$ (104)

In (104), we have to choose the positive sign if J,jk(x, y) > 0, which corresponds to
positive orientation of the projection r'jk. The contrary sign simply means that the
projection is in a clockwise orientation.

CASE 2. If J/jkiy, z) = 0, Jjjk(z, x) — 0 and Jjjk(x, y) =£ 0, then the equation of the
plane in (94) reduces to z = Zi, so that we may take / = 0 m = 0 and h = z, in (103).
So from (104)

IlllfY=±!l x'y^ztY^dxdy. (105)

Clearly, from (105),

/ / / « : ^ = 0, if z,-=0. (106)

We have to choose the positive sign in (105) when the plane z = Zi is bounded by
planes z = z>• — e for arbitrarily small e > 0 contained in V. We have to choose the
negative sign in (105) when the plane z = Zi is bounded above by planes z = z,+ e
for arbitrarily small e > 0 contained in V.

CASE 3. If Jijk(x, y) = 0 and either or both of Jijkiy, z) and ryt(z, x) are nonzero,
from (94) the equation of the plane containing the linear triangle xijk is given by

(x - Xi)Jijk{y, z) + (y- yJJudz, x) = 0 . (107)

From (107), we have

n _ J. V { ( * ~ Xi)J'Jk(y' z) + iy ~ y
\V{(x-xl)JlJk(y,z) + (y-

From (108) we find

nk = 0, (109)

and from (108), we obtain

III°fr=[f xayfizy+]k-ndr = 0. (110)

The results obtained in (104), (105), (106) and (110) prove the theorem.
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FIGURE 3. A tetrahedron with vertices V, (/' = 1, 2, 3, 4).

4. Application - Example

Consider the evaluation of volume integral fffv x2y dxdydz, where V is a tetra-
hedron bounded by tetrahedral surface 3 V with vertices V; as shown in Figure 3.

Vl = (xl,yl,zi) = (.5,5,0).

V2 = (x2, y2, ii) = (10,10, 0).

V3 = (JC3. yz, z3) = (8, 7, 8).
( I l l )

By using the theorem of the previous section, we can write

[ff x2y dxdydz = II x2yzk • ndS,

where 5 is the surface of the tetrahedron consisting of linear triangles (in K3) T42I , T234,
T123, 4̂3i and n is the outward unit normal vector to S (see Figure 3). Hence using (90)

x2yzk • ndxx2y dxdydz =

(112)

We can evaluate each of the above integrals on the right-hand side of (112) by using
the theorem of the previous section. By (91) we obtain

x2ydxdydz -IL x2y{-4(x- 10)) dxdy-IL x2y{S(x-y)}dxdy
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+ If x2y[4(y-5)}dxdy. (113)
r43l

We can evaluate the integrals of (113) by using Lemmas 1,2, 3,4, 5 or Lemma 6. We
shall illustrate this in Algorithms 1 and 2 in the succeeding pages.

4.1. Algorithm 1 We shall now illustrate first the use of Lemmas 1 to 5 to compute
integrals of the type

r r
xayP(lx+my + h)y+l dxdy. (114)

With (112), we have a = 2, p = 1, y = 0. Let us first consider the computation of
the integral ffz,f x

2y{-4x + 40) dxdy.
We have using Lemma 2

JL x2y(-4x+40)dxdy = - ^ I['\ (115)

where

_J_(_4^+40)d*. (116)

We have on using Lemma 2 again that

5

2

where
j j-u

H-p.q(j) = / / FpqQ- ~ 7i, jt)Gpq(2 — ji, h)Hpq{\ — j" + 7i + 72, 7 ~ 7*i ~ 72),
Jl=0j2=0

Fpq{2, 0) = x2
p, Fpq(l, 1) = 2xpxpq, Fpq(0, 2) = x2

pq,

Gpq(2,0) = y2
p, Gpq(l,\) = 2ypypq, Gpq(fl,2) = y2

pq, (118)

H (\ C)\ — 7 H (0 ]) — 7

We now show the details of the computation for (p, q) = (2, 3). For the other pair
(/?, q) = (3, 4) the computational procedure is similar.

Choosing

p = 2, q = 3, / = - 4 , h = 40,

x2 - 10, y2 = 10, zi = /x2 + A = 0,

*3 = 8, y3 = V, z3 = lx3 + h = 8
„ O , , T Q
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and substituting from (119) into (118), we obtain from (117) that

f x2v2

if-3 = / -^-(-4x +40)dx
L 2

, M23(2) , M23(3) , , M23(4) , M23(5) )

2 I 2 3 4 5 6
80000 (-80,000) (29600) (-4800) 288

3

In a similar manner, we obtain

from (115), (120) and (121), we obtain

where

,,20)

(12.)

PC 23584
/ / x2y(-4x + 40) dxdy = ——. (122)

Now using Lemma 1 we obtain

(I x2y{4y - 20} dxdy = ^ 1P
L", (123)

^ r « i (p.?)€{(4.3).(3,l)|

where

1L = f X~T-^y~ 20) dy. (124)

Using Lemma 1 again,

E ^ / O ' + D, (125)
y=o

= 5 1 ^ Fw(3 ~ h. J\)Hpq^ ~ h, h)HM(\ -j + j \ + j2, j - j \ - ji),
; , =0,2=0

Fpq(3, 0) = j : p
3 , Fpq(2, 1) = 3xp

2xp,, F w ( l , 2) = 3JC,JC^,

F M ( 0 , 3 ) = ^ , G w ( l ,0) = yp, Gpq(0,l) = ypq, (126)
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We now show the details of computation for (/?, q) = (4, 3). For the other pair, the
computational procedure is similar.

Choosing

p = 4, 9 = 3, / = 0, m = 4, h = -20,

x4 = 10, y4 = 5, ZA= my4 + h = 0,

x3 = 8, y3 = 7, Z3=my3 + h = 8,

x43 = - 2 , y43 = 2, Z43 = 8

and substituting (127) into (126), we obtain from (125)

J=0

"(1)1 40000 8000 4800 1600 1281 98592

2 3 4 5 6 1 9 ( 1 2 g )

In a similar manner, we obtain

v3v —54820
= « • ( 1 2 9 >

'hi J

Thus, from (123), (128) and (129), we obtain

xzy(4y - 20) dxdy = . (130)
J JTI>, 9

Let us now consider

IL *'H*x- *y) dxdy=IL s H 8 T - «T
(131)

Clearly

/," = f (\x*y - | * V ) rfy. (133)

Using Lemma 3, for y + 1 = 1, a = 2, {! = 1, / = 8, m = - 8 gives

, 1)} , (134)
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where

/ 8 8 \
Ap(0, 1) = l--yp + -xp\ ,

( 8 8 \
Bpq{0, 1) = l--ypq + -xpq\ . (135)

Also using Lemma 5,

TTT,iKb'U (0 < * - A < 1, 0 < A < 3)
k=o <-* * l>

2

nP1 _ r 3 „?« _ T r 2 P? _ o 2 p« _ 3
"3,0 — " V "31 — J-tpAP<7' "32 — •>xPXpq' "33 — X p « '

b™o = yP. b"=ypq. (138)

We have from (111), (134), (135), (136) and (137) that

x\ =5,y\= 5, x2 = 10, y2 = 10, x3 = S, y3 = 7,
*12 = *2 - * I = 5 , yl2 = y2 - yt = 5,

JC23 = xi ~ x2 = - 2 , y23 = y3-y2 = - 3 ,

x3, = x, - *3 = - 3 , y3, = - 3 ,

A,(0,l) = - y , B,2(0,l) = - y ,

A2(0, l) = - y , S23(0, 1) = 4,

B3I(0, 1) = - | ,
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129
F12(3, 1) = 53 x 31, Hu(3, 1) = 53 x — ,

, 1 ,
16W I ' " 15 16' w ' " ~ 45 4'

i 1 2 U * y ~ 3 * y / y = ~3~* F (3'1) + // (3J)'
= -109375, (139)

f \-x4y- -xJy2) dy = (-3) I — F23(3, l)+4//23(3, 1)1
4 A 4 3 / 1 3 j

= 95904, (140)

/ \-x4y - -x3y2) dy = ( - 2 ) 1 — F3I(3, 1 ) - -#3 1(3, 1)1
h \4 3 J 1 3 3 J

= . (141)

Thus, from (139)-(141), we obtain from (131) that

121

- %y)dxdy = — . (142)

Finally from (113), (122), (120) and (142) we obtain

fff x2y dxdydz = ff *2;y{-4(;c - 10)} dxdy + ff x2y{4y - 20} dxdy

- ff x2y(8x-8y)dxdy

23584 43772 26971 47165

4.2. Algorithm 2 We shall now illustrate the use of Lemma 6 to compute integrals
of the type

JC ' / ( / I + my + h)y+l dxdy. (144)

Comparing with Lemma 6 for the application example (113), we have a = 2, /3 = 1,
Y = 0 and here it will be sufficient to demonstrate the computational methodology
with reference to one of the integrals, say

ff x2y{-4{x - \Q))dxdy = 7/2^°(-4, 0, 40).
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We have from (61) and (62) that

+!+i+Tl+7!!- (l45)

where

A = _L {k(li 2) + A(2, 1)} + ̂  {A(3, 0) + *(0, 3)},

4 = !̂ (2'2) + i W4'0) + A(0'4)} + T^o{M1'3)

and

EE
/)|=0 P2=O ij 1 =0 ^2=0

(0 < P\ +q\ < 2=<x, 0 < p2+q2 < 1 =P, 0< p3+qi<l =y+ \)
(146)

with

F(0,0)=;t,2, G(0,0) = yi, H(0,0) = Zi,

) = 2x,ax, G(\,0) = ay, H(l,0)=az,

,l) = 2x,bx, G(0,\) = by, H(0,\)=b,,
(147)

F(2, 0) = a],

,l) = 2axbx,

Zi = Ixi + myj + h, Zj = Ixj + myj + h, Zk = lxk + myk + h,

ax = xj - xit ay = yj - yt, az = Zj - z,, (148)

bx=xk-Xj, by = yk-yi, bz = zk-Zi.

Letting / = 2, j = 3, k = 4, we can evaluate the integral //r
2;,'°(—4, 0, 4, 0) from

(145H147).
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From (111), (147) and (148) we obtain

x2 = 10, x3 = 8, x4 = 10, y2 = 10, y3 = 7, y4 = 5, z2 = 0, z3 = 8, u = 0,

ax = -2, ay = -3, az = 8, ^

bx = 0 , by — —5, bz = 0.

Substituting the numerical values obtained from (149) into (147), we obtain

F(0, 0) = 100, G(0, 0) = 10, H(0, 0) = 0,

F( l ,0) = -40 , G(l,0) = - 3 , #(1,0) = 8,

F(0, 1) = 0, G(0, 1) = - 5 , H(0, 1) = 0,

F(2, 0) = 4,

F(0, 2) = 0,

l , l ) = 0 . (150)

Also from (63) we obtain

2A234 = 10, (151)

MO, 0 ) = 0 , Ml, 0) = 8000, M0, l) = 0, Ml, 0 =-4000 ,

M2, 0) = -5600, M0, 2) = 0, M2, 1) = 1600, k(l, 2) = 0,

M3, 0) = 1280, M0, 3) = 0, M0, 4) = 0, A.(4, 0) = -96,

M2,2) = 0, A( l ,3 )=0 , M3, l) = -160,

— = - x 0, — = -{8000 + 0}, — = —{-4000} H {0-5600}
2 2 6 6 24 24 12

— = —{0+1600} + —{1280 + 0},
120 60 20

Finally, substituting from (151) and (152) into (145), we obtain

2 ' 0 ( - 4 , 0 , 4 0 ) = _ , l 2 . 6 • 2 4 • 1 2 • 6 Q

1280 0_ (-96) (-160)-|
20 180 30 120 J
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23584

3

In a similar manner, on using (145)—(148), (111), (113) and (114) we obtain,

-26971

(153)

//^°(8, -8, 0) =

/ / - • ° (0 ,4 , -20) = ^

From (153), (154), (155) and (113) we again find that

, 23584 26984 43772 47165
x1ydxdydz = —j- + —^— + —^— = —^—- (156)

The results obtained in (143) and (156) are also in full agreement with that of
Bernardini [1].

5. Conclusions

The theorem we have presented in this paper is interesting for various reasons
as it has provided us with a powerful method to compute volume integration of
trivariate polynomials as a sum of linear combinations of surface integrals of bivari-
ate polynomial expressions in OS2. In particular, the theorem proves that volume
integration in D&3 of the spatial trivariate polynomial xaypzy (a, f$, y are nonneg-
ative integers) is related to the surface integration in K3 of the spatial expression
xaypzy+i/(y + 1) via triangulation of the linear polyhedral boundary. Further, the
theorem establishes a relation between surface integration in R3 of the spatial ex-
pression xay^zy+l /{y + 1) and a double integral over the x_y-plane of the spatial
expression xayl>(lx + my + h)y+i/(y + 1).

We have also proposed a few lemmas (Lemmas 1 to 6) in which new techniques to
integrate the spatial expression xayP(lx + my + h)y+l over the simple polygon or over
the triangulation of the simple polygon in the xy-plane are considered. The proof of
these lemmas has clearly demonstrated the efficient use of Taylor series expansions,
Leibnitz's theorem on differentiation, Gauss's divergence theorem (Green's theorem)
in two dimensions and the binomial theorem. Our formulas are more compact than
those of previous researchers and require less computer arithmetic as is evident by
comparing the summations required in earlier studies and the present one. These
derivations are then followed by a numerical example for which we have explained
the detailed computational scheme by use of two algorithms. The first algorithm
computes a surface integral in K2 over an arbitrary triangle as a sum of three line
integrals in a one-parameter space, while the second algorithm computes the same
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integral in K2 as a double integral over the unit triangle in two-parameter space. We
have also developed a pseudocode for volume integration given in the appendix of the
paper, which may help in implementing the method.
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Appendix: Pseudocode

We feel that the development of a Pseudocode is quite simple if we follow the proof
of the theorem on volume integration given in Section 3 of the paper.

Here is the simple outline of the Pseudocode.

(1) Find the equation of the plane spanned by each triangular surface 7} of a poly-
hedron.

Let the number of such Tj be denoted by F.
For / = 1 to F
Compute the equation of the plane spanned by three vertices {x{, yf, zf),
{xj, yj, zf) and (x{, y[,z[) for triangular surface 7}.
Determine the outward unit normal nf and Kf = k • n^ [as a vector product
(0, 0, 1) • (/i|, n2, «3) withn3 = 0 or 1 or —1.]
Next / .

(2) Let / V note the volume integral and IS(F, Kf) the surface integral on triangular
face / with outward unit normal nf.

F

Compute / V = ]T IS(f, Kf),

where IS(f, Kf) is computed via a function subprogram IS(f, Kf).
(3) Function IS(f, Kf).

Compute / 5 ( / , Kf) = Kf / / r , , x
ayP(lx + my + h)y+] dxdy by using Lem-

mas 1 to 5 or Lemma 6.
Return.
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