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A b s t r a c t  
Convective instability of a ferromagnetic fluid in a Rayleigh-Benard situation between fluid-permeable, magnetic 

boundaries and subject to an external constraint of a uniform, transverse magnetic field is studied. The fluid-permeable, 
magnetic boundaries require general boundary conditions on the velocity and the scalar magnetic potential. For these, the 
Garlerkin method predicts the critical eigenvalue to be between that of free-free and rigid-rigid boundaries. The paper also 
reaffirms the qualitative findings of earlier investigations which are, in fact, limiting cases of the present study. 

1. I n t r o d u c t i o n  

Convective fluid motion in ferromagnetic fluids has 
been the subject of intensive study because of the remark- 
able physical properties of the fluid and also due to 
practical applications [1]. Since the magnetisation of the 
fluid depends on the temperature as well as the magnetic 
field, convection may occur if, at least, a gradient of one 
of them is present. Convection in magnetic fluids due to 
infinitesimal perturbations has been studied by Finlayson 
[2] and Gotoh and Yamada [3] considering magnetic 
boundaries. Sekhar [4] has made an exhaustive study of the 
problem with non-uniform basic temperature profiles. Re- 
cently, the author [5] studied the problem with second 
sound waves. All these published research works deal with 
rigid or free boundaries. In this paper use has been made 
of a derived boundary condition which is intermediate 
between the free and rigid boundaries. 

2 .  M a t h e m a t i c a l  f o r m u l a t i o n  a n d  s o l u t i o n  

The onset of linear convective instability in a horizontal 
ferromagnetic liquid layer bounded by fluid-permeable, 
magnetic boundaries, as shown in Fig. 1, is considered. 
The basic state is quiescent and is perturbed by infinitesi- 
mal disturbances. The dimensionless perturbation equa- 
tions for the Rayleigh-Benard situation in a Newtonian, 
Boussinesq and ferromagnetic fluid are [2]: 
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Fig. 1. Schematic diagram of the flow configuration. 

aT 
- -  = W+ V2T, (2) 
at 

i~21~ aT 
aZ 2 + M31712~D = i~'--Z ' ( 3 )  

where W is the vertical component of the velocity, T is the 
temperature, ~ is the scalar magnetic potential Pr and R 
are the dimensionless groups named after Prandtl and 
Rayleigh, V12 and V 2 are the two- and three-dimensional 
Laplacian operators. M1 and M 3 are magnetic parameters 
(see Ref. [2]). Eq. (2) does not contain the magnetic 
parameters for reasons given by Finlayson [2]. The analy- 
sis is made in terms of periodic waves as analysed by 
Chandraseldaar [6] and so W, T and • take the form 

(function of Z)  exp( o" t + i(lx + my)),  (4) 
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where l and m are the x- and y-components of the 
horizontal wave number a, cr is the growth rate and i 
= ~ 1. Substituting the form (4) into Eqs. (1)-(3), we 
obtain 

O" 
: - ( D  2 -- a2)W= - R ( 1  + M1)a219+ (D 2 -  a2)2W 
v r  

+ RM 1 a2Dq b, (5) 

o'~)= W +  (D 2 - a2)O,  (6)  

(D 2 - a 2 M 3 ) ~ =  DO.  (7)  

where W, ~9, • are the respective amplitudes of the 
velocity, temperature and magnetic potential perturbations 
and D = d /dZ .  

The horizontal layer of ferromagnetic fluid is confined 
between two plane, fluid-permeable, isothermal, magnetic 
surfaces and hence the boundary conditions are (see Ap- 
pendix for derivation of Eqs. (8) and (9)): 

W = D2W - Da~DW = 0 at Z = 0, (8) 

W = D 2 W + D a ~ D W = 0  a t Z = l ,  (9) 

@ = 0  at Z =  0 and Z =  l ,  (10) 

( l + x ) D ~ - a q b = 0  a t Z = 0 ,  (11) 

(1 + x ) D q b + a ~ = 0  at Z = I ,  (12) 

where Da s = ah/~/K is the slip-D'Arcy number ( a  is the 
slip coefficient [7], K is the permeability of the bounding 
porous media) and X is the magnetic susceptibility. Eqs. 
(8) and (9) are derived from the Beavers and Joseph slip 
condition [7], the continuity equation and the normal mode 
solution (4). The Maxwell stresses do not appear in these 
equations because of the assumed boundary conditions on 
the magnetic field. The eigenvalue R for stationary con- 
vection is obtained by applying the Galerkin method. 
Oscillatory convection is ruled out because the principle of 
exchange of stability is valid. The trial functions used for 
W, O and • are: 

Da s 2 
W =  Z 4 - 2Z 3 + - - Z  2 + Z, 

2 + Da~ 2 + Das 

61 = Z(1 - Z) ,  ~ : ML Z2 -- MLZ d- 1, 

where M L = a / ( l  + X). The results are discussed below. 

3. Results and discussion 

A linear stability analysis is performed of the convec- 
tive instability of a ferromagnetic fluid in a Rayleigh- 
Benard situation between fluid-permeable, magnetic 
boundaries and subject to an external constraint of a 
uniform, transverse magnetic field. Since the boundary 
conditions are complicated, the Galerkin method is used to 
obtain the critical eigenvalue which is stationary to small 
changes in the trial functions [2]. The analysis predicts the 
critical eigenvalue to be between that of free-free and 
rigid-rigid boundaries. The reasoning is that the fluid-per- 
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Fig. 2. Plot of critical Rayleigh number R c and magnetic number 
N c vs. slip-D'Arcy number Da~. 

meable boundaries allow for slipping of the magnetic fluid 
and give scope for greater mobility of the fluid near the 
boundaries unlike the rigid case. However, the mobility is 
less than that near free boundaries. Thus, we have the 
following result for the critical eigenvalue Re: 

g F r e e  ~ Rpe rmeab l  e ~ R R i g i d .  

The equality sign is understandable because RFree and 
RRigid can be obtained from Rpermeabl e in the limits Da S ~ 0 
and Da~ ~ cc respectively. Fig. 2 is a plot of the critical 
Rayleigh number R c and magnetic number N¢ ( =  RcM l) 
versus the slip-D'Arcy number Da s. When M l is very 
large, N c is the governing parameter in place of R c. The 
figure comprehensively shows the bridge between the re- 
sults of free-free and rigid-rigid boundaries constructed 
on the assumption of fluid-permeable boundaries. The 
figure also reaffirms the predicted destabilising nature of 
M 1 and M 3 and the stabilising nature of X [2]. 
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Appendix A. Derivation of a general boundary condi- 
tion on W 

The Beavers-Joseph (B J) condition is extended here to 
arrive at an appropriate boundary condition at the fluid- 
permeable surface considered in the present problem. It is 
assumed that there is a trickling flow of a suitable carrier 
fluid through the densely packed porous beds and the 
horizontal magnetic fluid layer between the beds is almost 
quiescent with limited dynamics seen only in a thin, 
horizontal magnetic fluid layer adjacent to the porous-fluid 
interface. This weak basic flow can be neglected for all 
practical purposes while studying the stability of 
Rayleigh-Benard convection in the magnetic fluid layer. 

Using the terminology of BJ, let Q1, Q2 be the horizon- 
tal D'Arcy velocity components in porous media and Up, 
Vp the horizontal slip velocity components at the interface. 
Let wp be the vertical component of the porous-media 
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velocity resulting from gravity. Let ub, vb, w b be the 
components of velocity of the basic flow in the channel 
limited to a thin, horizontal magnetic fluid layer adjacent 
to the interface, w b can be taken to be independent of X 
and Y in this thin layer. 

The dimensionless form of the BJ slip condition at the 
interface can now be written as 

~U b OU b 

OZ = D a s ( u p - Q l ) ,  OZ = O a s ( v p - Q 2 )  

at Z = 0 ,  

Ou b Orb 
0Z D a s ( U p -  Q1) '  0-Z - = - D a s ( v p -  o 2 )  

at Z = l ,  

and 

Up = Ub~ Up = Ub~ Wp = W b 

at Z = 0, 1. 

(13a) 

(13b) 

(13c) 

Da s is the slip-D'Arcy number (see main text). 
We now consider the boundary at Z = 0 to obtain the 

general boundary condition. Similarly, one can obtain the 
required condition at Z = 1. The analysis in the paper is 
limited to infinitesimal perturbations of the almost quies- 
cent magnetic fluid layer. Denoting the perturbations by 
primed quantities, one can write 

i~u' i~v' 
-~- =Dasu'P '  OZ -Dasv'p,  u '=Up' ,  v'=Vp', 

w '  = O, 

at Z = O, (14) 

where it has been assumed that the D'Arcy velocity com- 
ponents Q1 and Q2, and wp remain unperturbed. The 
thermal condition and a properly chosen carrier fluid en- 
sure such a situation, it is assumed. In Eq. (14), the 
subscript ' b '  has been dropped for the velocity perturba- 
tions of the magnetic fluid layer. 

Using the periodic wave solution (4) in (14), we get the 
conditions on the amplitudes of the velocity perturbation 
as 

dU dV 
d--Z = D a s U '  dz DasV, W = 0 ,  

at Z = 0. (15) 

Now, consider the continuity equation 

~u' Ov' Ow' 
- -  + - -  + = 0 .  ( 1 6 )  
0X aY 0Z 

Using the periodic wave solution (4) in (16), we get on 
rearrangement 

dW 
lU + mV = i dZ " (17) 

Eq. (17) applies at the boundaries also. Combining (15) 
and (17), we arrive at the general boundary condition on W 
used in the paper. The major assumption in the entire 
derivation is that the mutual mixing of the pure carrier 
fluid in the porous media with the magnetic fluid in the 
channel does not alter the dynamics on either side of the 
interface. However, if the carrier fluids in the two regions 
are immiscible or slowly mixing, then the general bound- 
ary conditions are better realised. 
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